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The propagation of transient inertio-gravity waves in a shear flow is examined using
the Gaussian beam formulation. This formulation assumes Gaussian wavepackets
in the spectral space and uses a second-order Taylor expansion of the phase of
the wave field. In this sense, the Gaussian beam formulation is also an asymptotic
approximation like spatial ray tracing; however, the first one is free of the singularities
found in spatial ray tracing at caustics. Therefore, the Gaussian beam formulation
permits the examination of the evolution of transient inertio-gravity wavepackets from
the initial time up to the destabilization of the flow close to the critical levels. We
show that the transience favours the development of the dynamical instability relative
to the convective instability. In particular, there is a well-defined threshold for which
small initial amplitude transient inertio-gravity waves never reach the convective
instability criterion. This threshold does not exist for steady-state inertio-gravity
waves for which the wave amplitude increases indefinitely towards the critical level.
The Gaussian beam formulation is shown to be a powerful tool to treat analytically
several aspects of inertio-gravity waves in simple shear flows. In more realistic shear
flows, its numerical implementation is readily available and the required numerical
calculations have a low computational cost.
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1. Introduction
Inertio-gravity waves are those buoyancy waves in a rotating frame that have

the intrinsic wave frequency close to the local rotation frequency f so that their
properties are influenced by Coriolis effects. Jones (1967) found that monochromatic
gravity waves that propagate in a shear flow in a rotating frame have three critical
levels: the classical one in which the background flow equals the wave phase speed
similar to the one obtained for internal gravity waves, and two extra levels that are
located where the magnitude of the intrinsic wave frequency ±Ω equals the Coriolis
frequency f . He found that the critical levels of inertio-gravity waves have different
properties from the internal gravity wave critical levels. In particular, a transverse
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perturbation to the horizontal wind perturbation is induced as the inertio-gravity wave
propagates towards its critical levels; indeed, the wave tends to a circular polarization
as the wave propagates towards its critical levels. The strong attenuation of internal
gravity waves at the critical levels shown by Booker & Bretherton (1967) is also
found for inertio-gravity waves (Grimshaw 1975).

There is a large amount of observational evidence that shows important peaks of
the frequency spectrum in the atmosphere close to the local Coriolis frequency. The
early work of Thompson (1978) examined radiosondes launched in Australia (38◦ S)
and it showed traces of waves with wavelengths between 1 and 3 km with a strong
anticyclonic rotation of the wind vector that have their wave energy concentrated near
the local inertial frequency. Cadet & Teitelbaum (1979) also detected stratospheric
inertial waves from radiosondes launched every 3 h from a ship at 8.5◦N and 23◦W.
A statistical analysis of MU (middle and upper atmosphere) radar data at (35◦N,
136◦ E) over the course of three years showed gravity waves with an average frequency
of f /Ω≈0.5 in the height range of 16–22 km (Sato 1994). Uninterrupted observations
with the MU radar over three weeks showed the presence of inertial waves of
f /Ω ≈ 0.8 at a height of 22 km (Sato, O’Sullivan & Dunkerton 1997). Radiosondes
launched from an experimental ship in a wide latitudinal range from 28◦N to 48◦ S
at intervals of 1◦ showed that gravity waves of f /Ω ≈ 0.5 were localized in the lower
stratosphere and waves of f /Ω ≈ 0.3 in the troposphere; no latitudinal dependences of
the frequency were found (Yamamori & Sato 2006). An event of two inertio-gravity
waves with f /Ω ≈ 0.5 and f /Ω ≈ 0.8 was captured by Tateno & Sato (2008)
in an intensive radiosonde campaign in which high-vertical-resolution radiosondes
(10 m vertical resolution) were launched every 3 h. Measurements with superpressure
balloons also showed a peak in wave energy near the inertial frequency (Hertzog et al.
2002). These superpressure balloons follow a quasi-Lagrangian trajectory and thus
allow one to measure directly intrinsic frequencies. Therefore, inertio-gravity wave
events appear to be ubiquitous in the lower stratosphere, particularly in low latitudes.
However, the dominance of inertio-gravity waves in observed vertical profiles may be
favoured because low-frequency gravity waves are easier to capture from observations
than high-frequency waves (Alexander, Tsuda & Vincent 2002).

Although inertio-gravity waves are thought to transport a lower amount of
momentum flux from sources to the middle atmosphere than higher-frequency
gravity waves, they can connect sources and sinks of wave momentum flux that
are horizontally very far apart, an aspect that is largely ignored in the current
gravity wave parametrizations implemented in climate and weather forecast models
(e.g. Warner & McIntyre 1996; Hines 1997). Inertio-gravity waves can propagate very
long horizontal distances because the ratio between the vertical group velocity and the
horizontal group velocity is small compared with that for higher-frequency waves (e.g.
Dunkerton 1984). In a recent work, Sato et al. (2012), using high-resolution numerical
simulations of a general circulation model, found that waves with long horizontal
wavelength (≈300–400 km) generated by Andes topography over Patagonia and the
Antarctic peninsula are propagated several thousands of kilometres from the mountains.
Sato et al. argued that these waves are likely to be the main factor that contributes to
the global maximum of momentum flux found with satellite data (e.g. Alexander et al.
2008, 2010). Further observational evidence in Patagonia also showed the presence
of high-amplitude gravity waves generated from the Andes mountain range with
240 km of zonal wavelength and an intrinsic frequency of f /Ω ≈ 0.3 (Pulido et al.
2013) so that the waves found in the Patagonia region and the Antarctic peninsula
propagate very long distances and are affected significantly by rotation effects. Apart
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from orographic forcing, other significant sources of inertio-gravity waves are fronts
and jets in middle latitudes (O’Sullivan & Dunkerton 1995; Zhang 2004) and deep
convection in the tropics (Lane, Reeder & Clark 2001). Furthermore, simulations
of moist jet-front systems, which combine two possible sources, jet and convection,
show gravity waves with higher amplitudes than in dry simulations (Wei & Zhang
2014).

A further distinctive aspect of inertio-gravity waves that propagate in shear flows is
the characteristics of the wave breaking. The wave breaking characteristics determine
the wave momentum flux deposition in the background flow, i.e. the distribution of
the wave momentum flux divergences, which is relevant for the parametrizations
of unresolved gravity waves in climate and weather forecast models. Fritts &
Rastogi (1985) showed that inertio-gravity waves with frequency close to the Coriolis
frequency can reach the amplitude threshold for the dynamical instability at lower
heights than the convective instability threshold. This result is contrary to what
was found for internal gravity waves (Hodges 1967). Fritts & Yuan (1989) used a
linear stability analysis to examine the conditions for which inertio-gravity waves
produce a Kelvin–Helmholtz instability in a flow without shear. They found that the
instability has a faster growth rate in the transverse direction to the wave propagation
direction when the frequency of the wave is close to the Coriolis frequency. Yuan
& Fritts (1989) extended the previous work for inertio-gravity waves in a shear
flow; the dynamical instabilities are found for a wider range of frequencies and they
have faster growth rates when the waves propagate in a shear flow. Dunkerton (1997)
further extended the linear stability analysis for a situation in which the inertio-gravity
wave propagates in a background flow that resembles a gravity wavepacket without
mean shear. He showed that the dynamical instability is the dominant mechanism for
f /Ω→ 1, while for f /Ω→ 0 the convective instability is dominant. For intermediate
values of f /Ω , a hybrid convective–dynamical instability is expected. Numerical
simulations of the three-dimensional breaking of an inertio-gravity wave with intrinsic
frequency close to the inertial frequency confirm that the wave breaks preferentially
through dynamical instability (Lelong & Dunkerton 1998a), even when the convective
instability is established initially by the wave (Lelong & Dunkerton 1998b).

In this work, we examine the propagation and breaking mechanism of transient
inertio-gravity waves in a shear flow. Previous works assume a steady-state wave
field, so that the inertio-gravity wave has a fixed frequency, which produces three
critical levels in a shear flow. In the case of a transient wave in a shear flow, there
is a continuous frequency spectrum associated with the wave so that the different
components of the frequency spectrum reach critical levels at different heights.

Pulido & Rodas (2008) examined a transient internal gravity wave that propagates
in a shear flow (in a system without rotation) towards the critical level. They found
that the wave amplitude of the horizontal wind reaches a maximum and then decays
asymptotically as the inverse root square of time, contrary to steady-state waves
(i.e. monochromatic waves) whose amplitude becomes unbounded at the critical level.
Two extreme breaking regimes are found. On the one hand, quasi-monochromatic
waves with a large initial amplitude break with amplitude and height close to those
of the monochromatic wave (before the waves reach the maximum amplitude),
keeping the classical image of wave overturning. On the other hand, highly transient
wavepackets break very close to the critical level with small amplitudes and high
vertical wavenumber so that dissipative effects are likely to be important in this
regime.

To determine the wave amplitude and height of the breaking for transient waves,
the usual spatial ray theory (Lighthill 1978) is not useful, and nor are the stationary
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phase methods, because they only give the asymptotic tendency for long times, while
transient waves may reach the instability threshold before attaining the asymptotic
regime. Indeed, transient gravity wavepackets reach the maximum amplitude during
propagation well below the critical level, a feature that is not captured with the
first-order asymptotic approaches (Pulido & Rodas 2008). The Gaussian beam
formulation, which is extensively used in other contexts such as optics (Heyman
& Felsen 2001), quantum mechanics (Hagedorn 1984) and seismic waves (Cerveny,
Popov & Psencik 1982; Cerveny 1983), is able to represent the wavepacket from
the early times – this formulation is free of the caustic artifacts that appear in the
spatial ray path, in particular at the initial time – up to long times when it reaches
the asymptotic behaviour. Therefore, the Gaussian beam formulation is a very useful
technique to determine the characteristics of gravity wave propagation as a function
of the wave and background flow parameters.

One of the reasons that turned our attention to study inertial effects using the
Gaussian beam formulation is that waves of any absolute frequency, as long as they
propagate in a geophysical flow towards the critical level, will have an intrinsic
frequency that tend towards the Coriolis frequency and therefore any gravity wave is
affected by inertial effects in the neighbourhood of the critical level. This effect is
expected to be particularly important for transient waves that have a critical height
range. Our main purpose is thus to determine the characteristics of the breaking of
transient inertio-gravity waves as a function of the main parameters of the wave and
the background system using the Gaussian beam formulation.

The work is organized as follows. In § 2, the Wentzel–Kramers–Brillouin–Jeffreys
(WKBJ) solution of an inertio-gravity wave in a shear flow is given, and then it
is used in a frequency spectrum to derive the Gaussian beam formulation. The
main characteristics of transient inertio-gravity waves propagating in a shear flow are
examined. Section 3 introduces an analysis of the possible instabilities that induce the
inertio-gravity waves as they propagate towards critical levels. Numerical simulations
and their comparisons with the Gaussian beam formulation are given in § 2.2. Finally
we draw the conclusions of the work in § 4.

2. Mathematical formulation
Consider small adiabatic buoyancy perturbations under the effect of gravity g in a

background flow that is time-independent and horizontally uniform so that the only
dependence of the background flow is on height, i.e. u0(z). The coordinate frame
rotates with an angular frequency f . The hydrostatic and inviscid approximations are
taken for the derivation. Since the coefficients of the equations are independent of
x, y and t, we propose a harmonic solution for the vertical velocity perturbation of
the form

w1(x, y, z, t)= w̃(z) exp[i(ωt− kx− ly)], (2.1)

where ω is the absolute frequency, and k and l are the wavenumbers in the x and
y directions, respectively. To simplify the presentation in what follows, we assume a
wave with null wavenumber in y, l = 0. The generalization is straightforward and it
does not add any qualitative effect.

Replacing (2.1) in the equations, an ordinary differential equation is obtained for
w̃(z) (Jones 1967),

d2w̃
dz2
−
[

2k f 2dzu0

Ω(Ω2 − f 2)

]
dw̃
dz
+
(

N2
0 k2

Ω2 − f 2

)
w̃= 0, (2.2)
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where Ω =ω− ku0 is the intrinsic frequency, N0 is the constant buoyancy frequency,
also known as the Brunt–Väisälä frequency, and dzu0 is the background shear. The
background flow curvature, d2u0/dz2, is considered negligible.

2.1. Wentzel–Kramers–Brillouin–Jeffreys approximation
An approximated solution to (2.2) may be found using the well-known WKBJ
method (Bender & Orszag 1978) following the works of Wentzel, Kramers, Brillouin
and Jeffreys. This is an asymptotic method that approximates ordinary differential
equations with coefficients that vary with the independent variable. A solution of the
form

w̃(z)≈ exp

[
1
ε

∞∑
n=0

εnSn(z)

]
(2.3)

is proposed, where ε is the smallness parameter of the asymptotic series. The
dependences with the smallness parameter are made explicit in (2.3) in this way;
Sn(z) is assumed to be of order one (Sn(z) does not depend on the ε parameter).
The independent variable z is also assumed to be of order one. A set of differential
equations for Sn is obtained by replacing (2.3) in (2.2) for the different powers of ε.

The first two equations, which correspond to the two lowest orders in ε, are
obtained by replacing (2.3) in (2.2) and identifying the orders ε−2 and ε−1 in the
resulting equation. They are, respectively,

1
ε2

[
dS0(z)

dz

]2

+ N2
0 k2

Ω2 − f 2
= 0, (2.4)

2
dS0(z)

dz
dS1(z)

dz
− 2k f 2dzu0

Ω(Ω2 − f 2)

dS0(z)
dz
+ d2S0(z)

dz2
= 0, (2.5)

where we have assumed implicitly in (2.4) that the term N2
0 k2/(Ω2 − f 2) is of

order ε−2.
The proposed solution (2.3) must satisfy approximately the differential equation

(2.2). If we replace (2.3) up to order n = 1 in (2.2), the WKBJ solution satisfies
exactly {[

1
ε

d2S0

dz2
+ d2S1

dz2
+
(

1
ε

dS0

dz
+ dS1

dz

)2
]

−
[

2k f 2dzu0

Ω(Ω2 − f 2)

] (
1
ε

dS0

dz
+ dS1

dz

)
+
(

N2
0 k2

Ω2 − f 2

)
[1+ d(z)]

}
w̃= 0, (2.6)

where we represent explicitly the error of the WKBJ solution, d(z), in satisfying the
exact differential equation (2.2). If d(z) = 0, the WKBJ solution (2.3), up to n = 1,
would be an exact solution of (2.2). If d(z) is small (|d(z)|� 1), the WKBJ solution
is an approximate solution of (2.2).

The solution of (2.4)–(2.5) is

S0(z)=±iε
∫ z

zi

[
N0k

(Ω2 − f 2)1/2

]
dz′ (2.7)
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FIGURE 1. The smallness WKBJ parameter d as a function of Ri0 and f /Ω . The curves
for d = [−0.1, 0, 0.1, 0.5] are shown. The lighter grey shaded region represents |d|< 0.1
for which the WKBJ approximation is considered valid.

and

S1(z)=
∫ z

zi

k f 2dzu0

Ω(Ω2 − f 2)
dz′ − 1

4
ln
(
Ω2

i − f 2

Ω2 − f 2

)
, (2.8)

where zi is taken as the reference height and Ωi=ω− ku0(zi) is the intrinsic frequency
at the reference height.

Therefore, replacing (2.7) and (2.8) in (2.3) we obtain the WKBJ solution of (2.2),

w̃(z)= ŵ
(
Ω2

i − f 2

Ω2 − f 2

)1/4 (
Ω

Ωi

)
exp

{
±i
∫ z

zi

N0k
(Ω2 − f 2)1/2

dz′
}
, (2.9)

where ŵ is the wave amplitude at the reference height and hereinafter we leave
the smallness parameter implicit. The derivative of the imaginary exponent can be
identified as the local vertical wavenumber m at z, and thus the local dispersion
relation is

m=± N0k
(Ω2 − f 2)1/2

. (2.10)

The signs in (2.10) represent upward and downward propagation. For k > 0, the
negative sign in (2.10) indicates upward propagation of the waves.

The range of validity of the WKBJ approximation is obtained by replacing (2.7)
and (2.8) in (2.6). The WKBJ solution, (2.9), is a good approximation as long as

d(z)= 1
Ri0(1− f 2/Ω2)

∣∣∣∣14 − 5
2

f 2

Ω2
+ 2

f 4

Ω4

∣∣∣∣� 1. (2.11)

The smallness parameter d as a function of the background Richardson number,
Ri0 = N2

0/(dzu0)
2, and f /Ω is shown in figure 1. The lighter grey shaded region in

figure 1 represents |d| � 1 in which the WKBJ solution (2.9) is expected to be a
good approximation. For Ri0= 40, the approximation is valid for f /Ω / 0.95 and for
Ri0= 80 the validity of the approximation is extended up to f /Ω/ 0.98. For f /Ω→ 0,
the approximation from (2.11) is valid in general for large Ri0, which is the known
limit of validity of the WKBJ approximation for internal gravity waves (e.g. Pulido &
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Rodas 2011). For f /Ω = 1
2(

5
2 − 1

2

√
17)1/2≈ 0.33, the expression between bars in (2.11)

is zero, so that d is small for f /Ω close to 0.33 independently of the Richardson
number value. In this case, the WKBJ approximation holds even for small Richardson
numbers.

Since the velocity field is divergence-free, û = k−1mŵ, using (2.9) the horizontal
velocity perturbation in x is

ũ(z)= û
(
Ω2

i − f 2

Ω2 − f 2

)3/4 (
Ω

Ωi

)
exp

{
±i
∫ z

0

N0k
(Ω2 − f 2)1/2

dz′
}
. (2.12)

The wave energy density is given by the sum of the kinetic and potential wave
energy,

Wr = 1
2ρ0

(
u2

1 + v2
1 +N2

0η
2
1

)
, (2.13)

where v1 is the component of the velocity perturbation in the y direction, η1 is the
vertical displacement produced by the perturbation and the overlines represent an
average in phase. Because the hydrostatic approximation is taken since we consider
low-frequency waves, the vertical velocity contribution to the kinetic energy is
negligible. Even when l is assumed zero, the component v1 is not null from the
polarization relationship; indeed, inertio-gravity waves have an elliptical polarization.

The wave energy is not equipartitioned between kinetic and potential energy for
inertio-gravity waves (e.g. Gill 1982) contrary to internal gravity waves. As the
intrinsic frequency goes to the Coriolis frequency, the kinetic energy increases and
the potential energy decreases.

Using the polarization relations for inertio-gravity waves and considering N2
0 �Ω2

in (2.13), we obtain

Wr = 1
2
ρ0 u2

1

[
1+ 1

Ω2

(
f 2 + N2

0 k2

m2

)]
. (2.14)

Using (2.10) in (2.14) yields
Wr = ρ0 u2

1. (2.15)

Note that (2.15) is similar to the expression for the wave energy density obtained
in Pulido & Rodas (2008) for internal gravity waves, but in that case the derivation
is based on energy equipartition while for inertio-gravity waves that principle is not
valid.

2.2. Gaussian beam formulation
The general solution for transient inertio-gravity waves can be expressed as a linear
superposition in frequency of the harmonic solution (2.12),

u1(x, z, t)= 1√
2π

∫ ∞
−∞

û(ω)
(
Ω(ω, zi)

2 − f 2

Ω(ω, z)2 − f 2

)3/4
Ω(ω, z)
Ω(ω, zi)

exp(iψ)dω, (2.16)

where the phase is given by

ψ =ωt− kx−
∫ z

zi

m(ω, z′)dz′. (2.17)
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To obtain an analytical expression of the solution (2.16), we assume that the
wave trains have a frequency distribution concentrated around a dominant frequency,
such that the envelope amplitude of the wavepacket changes slowly in a period. For
such wavepackets, an asymptotic expansion based on ray theory is a representative
approximation of (2.16). The Gaussian beam approximation assumes that the
wavepacket propagates concentrated along the ray trajectory and the amplitude of
the wavepacket satisfies the Schrödinger equation (Ostrovsky & Potapov 1999). The
solution of the Schrödinger equation decays exponentially as the square of the distance
to the ray. This gives the name to the approximation (Cerveny 1983). Therefore, the
approximation associates with each ray a beam or tube that has a Gaussian section
normal to the ray.

Here, we apply the approximation directly in the frequency space. A Gaussian
frequency spectrum relatively concentrated around a central frequency ωc of frequency
width σω is proposed,

û(ω)= ûω
σω

exp
[
−(ω−ωc)

2

2σ 2
ω

]
. (2.18)

As the spectrum is assumed to be concentrated, we expand the phase in a Taylor
series up to second order in ω around ωc. The first term in the Taylor series of the
amplitude is the only one that we keep in the amplitude expansion. The changes in
the amplitude term are assumed to be slower than the changes in the oscillatory term.
This is also consistent with the WKBJ approximation (2.3) and it is valid for d� 1
(see (2.11)).

A detailed derivation of the Gaussian beam approximation for mountain waves may
be found in Pulido & Rodas (2011). A formal proof for mountain waves that shows
that the equation system is well posed and the Gaussian beam approximation is close
to the integral solution, (2.16), is given in Tanushev, Quian & Ralston (2007). The
resulting wave perturbation after replacing (2.18) in (2.16) and integrating (2.16) by
completing squares (see Pulido & Rodas 2011) is

u1 = ûω
σω

(
Ω2

ic − f 2

Ω2
c − f 2

)3/4
Ωc

Ωic

exp{i[ψc − tan−1(−∂2
ωωψcσ

2
ω)/2]}[

1/σ 4
ω + (∂2

ωωψc)2
]1/4

× exp
[
− (∂ωψc)

2

2(σ−2
ω − i∂2

ωωψc)

]
, (2.19)

where the c subindex represents evaluation at the central absolute frequency, Ωc is
the central intrinsic frequency and Ωic is the initial central intrinsic frequency. The
transient inertio-gravity wave solution obtained in (2.19) differs from the solution
obtained by Pulido & Rodas (2008) for transient internal waves in the amplitude and
phase terms due to the dispersion relation.

The part of the exponential with imaginary argument in (2.19) represents the phase
that defines the central ray given by the stationary phase points

∂ωψc = 0. (2.20)

The Gaussian beam approximation removes one of the main limitations of spatial
ray tracing, which predicts a singularity in the points where rays intersect between
them, called caustics. This includes the initial time of transient wavepackets and a
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vertical line above the mountain, for mountain waves which indeed is the location
of the maximum wave amplitude (e.g. Pulido & Rodas 2011). The Gaussian beam
approximation considers not only the central ray but a bunch of rays around the
central one, so that it accounts not only for the convergence and divergence of rays
(as the spatial ray path does) but also for the interference between neighbouring rays.

2.3. Evolution of the wave amplitude

The amplitude of the disturbance is defined by A(z, t) =
√

ū2
1. This represents the

envelope amplitude and the square of it is the wave energy per unit mass, i.e.
Wr/ρ = A2. From (2.19), the evolution of A is given by

A(z, t) = ûω

(
Ω2

ic − f 2

Ω2
c − f 2

)3/4
Ωc

Ωic
[1+ σ 4

ω(∂
2
ωωψc)

2]−1/4

× exp
{
− (∂ωψc)

2

2[σ−2
ω + (σω∂2

ωωψc)2]
}
. (2.21)

Equation (2.21) gives the evolution of the wave envelope close to the stationary
phase points in z as a function of time. The envelope amplitude depends on the second
derivative of the phase, which represents the dispersion of the wavepacket, i.e. the
amplitude diminishes with time because trajectories of the rays with different absolute
frequency separate. The exponential in (2.21) gives the amplitude of the beam around
the central ray path determined by (2.20).

We are interested in the maximum amplitude of the wave envelope, because this
point will first reach the wave overturning threshold. The maximum wave amplitude
is located along the central ray path, so that evaluating z in (2.21) at the altitude of
the central ray for each time (say zc(t), which is determined from (2.20)) gives the
maximum amplitude of the wave envelope as a function of time,

a(t)= ûω

(
Ω2

ic − f 2

Ω2
c − f 2

)3/4
Ωc

Ωic
[1+ σ 4

ω(∂
2
ωωψc)

2]−1/4, (2.22)

where Ωc and ∂2
ωωψc must be evaluated at (2.20).

At the initial time, ∂2
ωωψc(t = 0)= 0, so that from (2.22) a(0)= ûω. The Gaussian

beam approximation is a good approximation of the disturbance for any time. There
are also some techniques based on spatial ray tracing that give a finite amplitude at
any time. For instance, the first formulation proposed by Hayes (1970), who suggests
solving an extra differential equation for the gradient of the wavenumber vector (so
that the gradient of the wavenumber vector must be specified at the lower boundary).
Broutman, Rottman & Eckermann (2001) propose solving an integral representation
of the wave field close to the source and then to use ray tracing in the far field.

3. Results
The Gaussian beam approximation introduced in the previous section is now

applied to examine the breaking conditions of transient inertio-gravity waves that
propagate in a shear flow towards the critical level. The results of the Gaussian beam
approximation are contrasted with an exact linear numerical model. The numerical
model does not pretend to be realistic, but to evaluate the limitations of the Gaussian
beam approximation in a linear context.
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The numerical simulations were conducted with the numerical model introduced in
Pulido (2005). It models the propagation of gravity waves in shear flows by solving
the Taylor–Goldstein equation in the spectral space for each spectral component. The
Taylor–Goldstein equation is solved by transforming it to two first-order differential
equations, which are solved using the fourth-order Runge–Kutta scheme with adaptive
step size (Press et al. 1992). For the numerical experiments in this work, the
Taylor–Goldstein equation that we solve is (2.2). Finally, spectral components that are
the solution of the Taylor–Goldstein equation are Fourier-transformed to the physical
space. The amplitude of spectral components which are given approximately by (2.12)
goes as (Ω2 − f 2)−3/4 so that it is infinite at the critical levels of the component,
i.e. ω/k − u0(z)∓ f /k = 0. Each spectral component has a different critical level, so
that there is a height range with critical levels, which we call the critical region.
However, destructive interference between the components in the general solution
(2.16) leads to a finite amplitude at the critical region for the transient inertio-gravity
wave. Thus, the numerical model requires very high resolution in both the physical
and spectral spaces to give a good approximation close to the critical levels where
strong destructive interference between spectral components occurs. The standard
number of points that we use in the vertical is 20 000, which gives a height resolution
of about 1z= 2 m, and also 20 000 points in the spectral space centred around the
central absolute frequency ωc. The main computational cost of solving numerically the
full integral representation (2.16) is because of this required high spatial and spectral
resolution. The computation involves solving the Taylor–Goldstein equation (2.2) (or
evaluating the WKBJ solution, (2.12)) in height with a high vertical resolution for
each of the 20 000 spectral components, which are then superposed to give (2.16).

The Gaussian beam solution gives directly the wave field in the physical space,
(2.19). The computation involves a single evaluation of the function (2.19) in the
vertical. Because the interference effects do not need to be represented in this case,
only a relatively low vertical resolution is enough. The output of the numerical
model is then compared with the wave field of the Gaussian beam approximation.
We first show the propagation of wavepackets in a linear background flow for
which the Gaussian beam approximation gives analytical results. In this context, the
dependences with all the parameters of the wave field and the background flow can
be obtained analytically. The application of the Gaussian beam approximation in a
realistic environment is shown in § 3.5; for this case a straightforward numerical
height integration is required.

3.1. Evolution of the wave amplitude in a flow with constant shear
Figure 2(a) shows the zonal velocity perturbation evolution of an inertial wavepacket
with central frequency ωc = 0.10N0 and spectral width σω = 0.15ωc that propagates
in a background flow with Ri0 = 100 and f̃ = f /ωc = 0.05. The reference height
is taken as zi = 0; this is the height at which the wavepacket is launched initially.
The height of the central critical level of an internal gravity wavepacket is given by
zcl = ωc/(kdzU). In what follows the vertical coordinate is non-dimensionalized as
z̃= z/zcl, so that the critical level height of the internal gravity wavepacket is z̃cl = 1.
The lowest central inertial critical level will be at a height slightly lower than zcl,
(ωc − f )/(kdzU) = 0.95zcl. The critical region, where each (non-negligible) spectral
component (2.12) has its own critical level, goes from z= (ωc−σω− f )/(kdzU)=0.8zcl
up to z= (ωc + σω − f )/(kdzU)= 1.1zcl.

The packet propagates upwards with large vertical group velocity at short times;
then the vertical group velocity goes to zero as the packet gets closer to the central
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FIGURE 2. (a) Zonal velocity perturbation evolution of an inertial gravity wavepacket.
Vertical straight lines represent ωct= 0 (dashed), ωct= 21.6 (solid) and ωct= 144 (dotted).
(b) Vertical profiles of the zonal perturbation at ωct = 0 (dashed), ωct = 21.6 (solid)
and ωct = 144 (dotted). The wavepacket width is σ = 0.1ωc; the background flow is
characterized by Ri0 = 100.

critical level. As the wavepacket propagates towards the central critical level, the
central vertical wavenumber of the packet increases because of Doppler shifting. The
vertical width of the wavepacket is broad at the initial time, then reaches a minimum
at about ωct= 100.8 and finally goes to an asymptotic constant value for long times
(ωct� 100). The amplitude of the wavepacket increases at short times, it achieves a
maximum and then at long times it decreases asymptotically towards a constant (see
also the evolution of the wavepacket envelope amplitude in figure 3a). The evolution
of the wavepacket envelope amplitude is discussed below. Figure 2(b) shows the
vertical profile of the zonal velocity perturbation at the initial time, at the time of
maximum amplitude (ωct = 21.6) and when the packet is close to the asymptotic
behaviour (ωct = 144). The amplitude, width and vertical wavenumber dependences
already mentioned are clearly identified in these profiles. Note that, as the packet gets
closer to the critical level, the envelope is composed by several vertical wavelengths,
which is the assumption of both ray tracing and Gaussian beam approximations.

The analytical calculations for the Gaussian beam approximation are conducted for
a background flow with constant vertical shear, du0/dz = Γ . The evolution of the
maximum amplitude of the wave envelope under the Gaussian beam approximation
in a flow with constant shear using (2.22) is

a(t)= ûω
(1+ γcRi−1/2

0 t)1/2[γ 2
c + f 2(1+ γcRi−1/2

0 t)2]1/2

ωc

{
1+ σ 4

ω

Ri0

γ 6
c

[ωc − (γ 2
c + f 2(1+ γcRi−1/2

0 t)2)1/2(1+ γcRi−1/2
0 t)2]2

}1/4 , (3.1)

where γ 2
c =ω2

c − f 2. Equation (3.1) collapses for f =0 to the amplitude evolution found
for internal gravity waves in Pulido & Rodas (2008).
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FIGURE 3. Amplitude evolution of an inertial wavepacket. (a) Wavepacket widths of
σ = 0.1ωc and σ = 0.17ωc and Ri0 = 100. (b) Background flow characterized by Ri0 =
100 and Ri0 = 400 and a wavepacket width of σ = 0.1ωc. For each case, three curves
are shown: Gaussian beam approximation for inertial waves (solid), Gaussian beam
approximation for internal waves (dashed) and the numerical integration for inertial waves
(triangles). The asymptotic values for inertial waves are shown with dotted straight lines.

Figure 3(a) shows the evolution of the maximum envelope amplitude of a transient
wavepacket under the Gaussian beam approximation (continuous line) that propagates
in a background flow with Ri0= 100 and f̃ = f /ωc= 0.05. The evolution of two waves
with different spectral widths, σ = 0.1ωc and σ = 0.17ωc, is shown. In both cases,
the amplitude increases for short times up to when it achieves a maximum and then
it goes asymptotically to a constant value. The amplitude of the wave field depends
on two factors (see (2.22)). One factor is the two terms that depend explicitly
on the frequency in (2.22); these terms represent the changes in the amplitude
because of refraction. The other factor is the last term in (2.22), which could be
interpreted as the inverse of the square root of the vertical width of the packet, and
so it depends on dispersion effects. The refraction terms are in the numerator in
(3.1), while the dispersion effects are represented in the denominator of (3.1). At
short times, the vertical width of the packet reaches a minimum. The wavepacket
compacts vertically because the highest components of the wavepacket find a stronger
background flow so that their vertical group velocity diminishes with respect to the
components that are in the lower part of the envelope. At the same time, the intrinsic
frequency decreases as the wavepacket propagates upwards in short times. These two
effects produce the maximum amplitude at short times (see figure 3a). Then, the
components of the wavepacket are dispersed and so the amplitude starts to decrease.
The asymptotic tendency for long times of the refraction terms (numerator of (3.1))
and the denominator of (3.1) are equal, so that the amplitude decreases asymptotically
to a constant value.

From figure 3(a), the narrower the frequency spectrum, the larger the wave
amplitude maximum. This is coherent with a monochromatic inertio-gravity wave
that has an unbounded amplitude at the critical level. The amplitude during the decay
period is also larger for a narrower frequency spectrum. Figure 3(a) also compares the
behaviour of the inertio-gravity wave with the corresponding internal wave (dashed
lines) for each case. There are practically no differences in the amplitude during
the growth period. However, inertial effects in gravity waves during the decay period
produce larger amplitudes than without them. Indeed, the amplitude for inertio-gravity
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waves tends to a constant value for long times, while the amplitude of internal waves
tends to zero. The asymptotic behaviour for the amplitude of inertio-gravity waves is

at→∞ = ûω(1− f̃ 2)3/4 f̃ 1/2β−1, (3.2)

where β = Ri1/4
0 σωω

−1
c . This non-dimensional parameter β is directly proportional

to the frequency width of the wavepacket, so that it represents a measure of how
transient is the disturbance, i.e. highly transient waves are characterized by a large β.
This constant asymptotic amplitude (3.2) for long times is also obtained with spatial
ray tracing. On the other hand, the amplitude of an internal gravity wave that
propagates towards the critical level decays as t−1/2. Therefore, during the decay
stage of transient waves in a rotating frame, the inertial effects must always be
considered to represent properly the wave field for any initial condition.

If the transient inertio-gravity wavepacket propagates in a background flow without
shear, the evolution of the amplitude is given by (3.1) for Ri0→∞, which results in

a(t)= ûω[
1+ σ

4
ω

γ 4
c

(2ω2
c + f 2)2

ω2
c

t2

]1/4 , (3.3)

so that the dependence of the amplitude with the changes in the intrinsic frequency
disappears (refraction effects) and the term that remains is related to the width of
the packet. The amplitude of the wavepacket diminishes with time because of the
dispersion of the components of the wavepacket. At long times, the amplitude of the
wavepacket decays as t−1/2 for waves in background flows without shear, while in
a background flow with shear the amplitude of an inertio-gravity wave tends to a
constant value because the effects of refraction in wave amplitude balance dispersion
effects in wave amplitude, as mentioned above.

The Gaussian beam approximation is evaluated against the numerical experiment
in figure 3(a). The maximum amplitude of the wave envelope in the numerical
experiment is determined from the numerical complex wave field for each time frame
as the maximum of the absolute value. Figure 3(a) shows a close agreement between
the numerical solution and the Gaussian beam approximation, only slight differences
being found for long times. These differences, a small oscillation of the numerical
amplitude around the Gaussian beam solution, are produced by the numerical
algorithm (Pulido & Rodas 2008). As already mentioned, the numerical modelling of
transient gravity waves propagating towards the critical level is particularly difficult
since each spectral component finds its own critical level where the amplitude of the
spectral component is unbounded there, so that the numerical model must be able
to capture the strong destructive interference that occurs in those critical regions. On
the other hand, the Gaussian beam approximation is expected to be convergent to the
exact solution, like the spatial ray path approximation, for very long times. At short
times, in particular when the maximum of the amplitude occurs, the Gaussian beam
approximation is very close to the numerical solution.

Figure 3(b) shows the evolution of a transient inertio-gravity wave with a spectral
width of σ = 0.15ωc that propagates upon background flows with different Ri0. The
asymptotic behaviour depends on the Richardson number for inertio-gravity waves. On
the other hand, the decay of internal gravity waves (dashed lines in Figure 3b) is
independent of the Richardson number.
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3.2. Convective instability
One of the main mechanisms of gravity wave breaking is the convective instability
(e.g. Hodges 1967; Lindzen 1981) produced by the differential advection induced by
gravity waves of heavier air over lighter air. The convective instability threshold occurs
when the buoyancy frequency of the flow becomes zero. Under linear theory, the
background flow and the perturbation contribute to the buoyancy frequency,

N2 ≈N2
0 + g∂z

(
θ1

θ0

)
, (3.4)

where θ0 is the background potential temperature and θ1 its perturbation. Using the
polarization relations, the minimum of the buoyancy frequency is given by

min(N2)≈N2
0

(
1− ka

Ω

)
, (3.5)

so that when the wave amplitude reaches

ka
Ω
= 1 (3.6)

the overturning condition is met.
The asymptotic behaviour for long times of the minimum buoyancy frequency can

be obtained analytically,

min(N2)t→∞→N2
0

[
1− ũ

(1− f̃ 2)3/4

f̃ 1/2β

]
, (3.7)

where ũ= ûω(k/ωc) is the non-dimensionalized initial wave amplitude. The asymptotic
constant value, (3.7), depends on the inverse of the quartic root mean Richardson
number, i.e. Ri−1/4

0 , and the inverse of the frequency width σω.
From the asymptotic buoyancy frequency values (3.7), we deduce that inertial waves

with an initial amplitude smaller than

ũ<
f̃ 1/2

(1− f̃ 2)3/4
β (3.8)

never reach the convective instability. The equality is satisfied for inertial waves that
attain the convective instability condition at t→∞ at the inertio-critical level.

The evolution of the minimum of the buoyancy frequency obtained with the
Gaussian beam approximation for internal and inertial waves is shown in figure 4(a).
Two cases are shown for σ = 0.1ωc and σ = 0.17ωc (the same wave fields as
those shown in figure 3a). The inertial wave with broader frequency spectrum never
reaches the convective instability, contrary to internal waves, which always reach
the convective instability. Indeed, the initial amplitude of this broad frequency wave
spectrum satisfies (3.8). The quasi-monochromatic inertial waves, for small β, do
reach the convective instability.
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FIGURE 4. Evolution of (a) the minimum normalized buoyancy frequency and (b) the
minimum Richardson number at each time. The Gaussian beam approximation for inertial
waves is shown as a solid line and for internal waves as a dashed line. The wavepacket
widths are σ = 0.1ωc and σ = 0.17ωc and the background flow is characterized by Ri0 =
100 and f̃ = 0.05.

3.3. Dynamical instability
Inertio-gravity waves may reach saturation through dynamical instability induced by
the strong velocity shear of the wave field. The dynamical instability threshold may
occur at a lower height than the convective instability (e.g. Dunkerton 1997) so
that the breaking mechanism may differ from the characteristic wave overturning of
internal gravity waves. In the last case, the convective instability occurs at regions
of minimum shear (Hodges 1967). Howard (1961) and Miles (1961) showed that
the necessary condition for the dynamical instability in an inviscid shear flow is
that the Richardson number must be smaller than 1

4 . In this work, we take the 1
4

threshold for the instability assuming it is also a relevant reference value for gravity
waves in a rotating frame. In the turbulence onset by an inertio-gravity wavepacket
propagating upwards, Achatz (2007) have identified non-modal perturbations with
rapid growth even when the amplitude of the wave is not large enough to produce Ri
numbers smaller than 1

4 . Thus, the threshold we use may be considered a (slightly)
conservative value.

The Richardson number of the flow is defined as

Ri= gθ−1∂zθ

(∂zu)2 + (∂zv)2
, (3.9)

where θ is the potential temperature of the flow, and u and v are the x and y
components of the velocity of the flow.

We assume the flow is given by a background flow plus a perturbation, θ = θ0+ θ1
and (u, v)= (u0,0)+ (u1, v1). The perturbation is given by the solution of the Gaussian
beam approximation for an inertio-gravity wave that propagates in a background flow.
Then the Richardson number, (3.9), is

Ri=

[
1+

(
k
Ωc

a
)

cosψc

] (
1− f 2

Ω2
c

)
[

Ri−1/2
0

(
1− f 2

Ω2
c

)1/2

+
(

k
Ωc

a
)

sinψc

]2

+
[

f
Ωc

(
k
Ωc

a
)

cosψc

]2
. (3.10)
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The phase ψc that is taken in (3.10) is the one that gives the minimum Richardson
number for each time. This determines the first time that the Richardson number
threshold is reached in the wave field. In what follows, we always evaluate the
Richardson number at the phase that gives the minimum value.

Figure 4(b) shows the evolution of the Richardson number for two wavepackets
of different spectral widths, for the same cases as in figure 4(a). The inertio-gravity
wave with σω = 0.1ωc reaches the dynamical instability at a similar time as the
corresponding internal wave (the same wavepacket but in a medium without rotation)
also attains the instability, which is expected to be a convective instability in this
case (Hodges 1967). The inertio-gravity wave with σω = 0.17ωc only attains the
dynamical instability. In the case of an internal gravity wave with this spectral width,
it destabilizes the flow convectively at a later time than the inertial wave destabilizes
the flow dynamically. These results show that Coriolis effects favour the development
of the dynamical instability against the convective instability, particularly when the
instability occurs at long times and close to the critical levels. This is in agreement
with previous studies (Fritts & Rastogi 1985).

3.4. Height of the wave breaking
The height of the wave breaking is a critical parameter for gravity wave
parametrizations (e.g. Alexander & Dunkerton 1999). We thus examine the dependence
of the breaking height on the wave and background flow parameters using the
Gaussian beam approximation. The height of the threshold for convective instability
zs is non-dimensionalized as z̃s = zs/zcl, where zcl is the height of the central critical
level of an internal gravity wave (so that the results can be compared directly between
inertial and internal waves).

Using the convective instability condition, (3.6), with the wave amplitude given by
(3.1), and then expressing it as a function of z by means of (2.20), the threshold for
convective instability z̃s is constrained by

β4 = ũ4(1− f̃ 2)3 − [(1− z̃s)
2 − f̃ 2]3

[
(1− z̃s)

2 − f̃ 2

1− f̃ 2

]3/2

− (1− z̃s)


2 . (3.11)

Equation (3.11) gives the convective threshold height as a function of the transient
wave parameters β, f̃ and ũ. For f̃ → 0, the convective threshold height given for
internal waves in Pulido & Rodas (2008) is recovered from (3.11).

The height at which the transient wavepacket reaches the threshold of dynamical
instability, z̃d = zd/zcl, is defined as the height obtained from (2.20) evaluated at the
(minimum) time at which Ri, from (3.10), reaches the value 0.25. This threshold
is taken as a mean reference value, but note that Achatz & Schmitz (2006) and
Fritts et al. (2006) show that turbulence can be produced by gravity waves at larger
Richardson number values. It is not possible to obtain an expression for z̃d analytically,
so that a numerical algorithm is employed to obtain z̃d as a function of the wave
parameters.

Figure 5(a) shows the height where the dynamical (continuous line) and convective
(large dots) instabilities for inertial waves are attained as a function of β (a measure
of the transient effects in the wave). The height of the convective instability threshold
for internal waves is also shown (dotted line, small dots). For inertial waves, the
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FIGURE 5. (a) Height of the dynamical instability threshold z̃d (solid) and of the
convective threshold z̃s (larger dots) as a function of β for different initial amplitudes
ũ = 0.05, 0.15, 0.25. The height of the convective instability threshold for internal
waves is shown with a dotted line. The height at which the maximum amplitude of the
wavepacket is achieved is shown with a dashed-dotted line. The shaded contours represent
the time difference between the dynamical instability threshold and the convective
threshold. (b) Vertical wavenumber as a function of height for inertial waves (solid) and
for internal waves (dotted). (c) Plot of f /Ω as a function of height.

case with f̃ = 0.1 is taken. The height of the lowest inertial critical level of the
central component of the wavepacket for this case is 0.9zcl. The shaded contours
represent the time difference between the time that the wave requires to reach the
dynamical instability threshold and the time for the convective threshold. The time
required to develop the dynamical instability depends on the growth rate. Therefore,
the time required for the wave to reach the dynamical instability threshold plus
the time required for the instability development must be shorter than the time
required to reach the convective threshold if the dynamical instability mechanism is
dominant. A long time difference between the dynamical instability threshold and the
convective threshold shows that the dynamical instability mechanism is more likely
to be dominant for the same growth rate.

Figure 5 gives a general picture of the importance of inertial effects for wave
breaking. Waves that reach the instability threshold far from the critical level are
not affected by the inertial effects. Specifically, far from the inertial critical level,
the inertial waves for small β attain the convective instability practically at the
same height as the internal waves. We identify the transition roughly at z̃s < 0.7.
An extensive analysis of the wave breaking mechanisms for internal waves in the
same context is given by Pulido & Rodas (2008). The present results show that the
analysis for internal waves is also valid for inertial waves with small β that break
far from the critical level. In particular, given the agreement found between the
internal and inertial waves, these waves for z̃s < 0.7 are expected to break through
convective overturning for small β. Note that Ri also becomes zero when N2 attains
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the convective overturning, but in this case the height of the threshold is close to the
wave phase of minimum shear for internal waves (Hodges 1967).

Figure 5(b) shows that the central vertical wavenumber is relatively the same for
internal and inertial waves at the height of the breaking for z̃s < 0.7. Both the central
vertical wavenumber and the central intrinsic frequency only depend on height, so
that waves that attain the threshold at a given height for any combination of the
parameters β and ũ break with the same central vertical wavenumber and central
intrinsic frequency. From figure 5(c), the central intrinsic frequency at the breaking
height, Ωb, for z̃s < 0.7 is f /Ωb < 0.35, in agreement with the results found by
Dunkerton (1997). For any practical application, e.g. gravity wave parametrizations,
waves in the atmosphere that break with f /Ωb< 0.35 and small β are well represented
by the non-rotating assumption.

On the other hand, the breaking threshold for inertial waves that reach the instability
close to the critical level z/zcl> 0.7, which corresponds to f /Ωb> 0.35 (see figure 5c),
occurs at lower heights than for internal waves. For these cases, the dynamical
instability threshold for inertial waves is attained at lower heights than the convective
instability condition. Therefore, there are two effects that act jointly to give a lower
breaking height for highly transient inertial waves with respect to internal waves: the
appearance of the inertio-critical level at a height lower than the classical (non-inertial)
critical level; and that the dynamical instability condition is met at a lower height
than the convective instability condition. The height and time differences between the
dynamical and convective breaking thresholds increase for larger β.

Waves with large β that reach the instability threshold for z/zcl> 0.86 in figure 5(a)
satisfy the condition (3.8), so that they do not attain the convective instability and
they break through dynamical instability. This is shown in figure 5(a) with the
dark shading contour. Transient effects are important for inertial waves that reach
the instability criterion at a higher altitude than the maximum amplitude height
(dashed-dotted line in figure 5a). In this case the amplitude of the wavepacket is
expected to be small and the time difference between the time required to meet the
dynamical instability and the convective instability time increases for larger β. For
instance, for z̃s = 0.8 the time difference is less than 1 h for small β while it is 4 h
for large β, indicating that these highly transient waves are likely to break through
dynamical instability instead of convective instability. Therefore, while the (upper)
threshold for the dynamical instability is z̃s > 0.86 for medium-range β, the (upper)
threshold is expected to be somewhat smaller, say z̃s > 0.75, for highly transient
waves, large β, considering the height and time differences between the dynamical
and convective instabilities.

For waves that propagate close to the inertio-critical level, dissipation by viscosity
and thermal conductivity becomes a dominant factor. A readily performed calculation,
assuming a constant kinematic viscosity of ν= 10−3 m2 s−1, which is a representative
value in the atmosphere at 33 km height, gives that the waves have lost 10 % of
their amplitude at a height of z/zcl = 0.88. For altitudes higher than z/zcl = 0.88, the
dissipative effects should be considered.

Figure 6(a) shows the breaking regions as a function of β and ũ for f̃ = 0.1 for
which the convective or dynamical instability criteria are satisfied. Three regions are
identified in the figure.

(i) For waves with a small ũ/β ratio, as specified in (3.8) and shown in figure 6(a)
with dark grey shading, the convective instability is never met. Thus, an
inertio-gravity wavepacket that propagates towards its critical level in this region
is expected to produce a dynamical instability with characteristics similar to the
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FIGURE 6. Instability regions for transient inertio-gravity waves as a function of ũ and
β for (a) f̃ = 0.1 and (b) f̃ = 0.05. Wavepackets that reach instability for f /Ωb =
0.2, 0.35, 0.7 and 0.9 are represented with solid lines. The shaded dark grey region
(region I) represents wavepackets that only reach dynamical instability. The light grey
region (region III) represents wavepackets for which the inertial effects, even close to
the convective instability threshold, may be considered negligible. The intermediate region
(region II) represents wavepackets that do not have a dominant criterion, so that a hybrid
convective–dynamical instability may be expected in this regime.

instabilities found by Lelong & Dunkerton (1998a). The limit of this region is
a straight line with a slope of f̃ 1/2/(1− f̃ 2)3/4, which coincides with f /Ωb = 0.7
except for small β. This limit for f̃ = 0.1 corresponds to z̃s = 0.86, except for
small β.

(ii) There is an intermediate region, which is composed of inertio-gravity wavepackets
with intrinsic frequency in the range 0.35 < f /Ωb < 0.70. The instability to
be initiated by the wave in this region is a hybrid between convective and
dynamical instabilities (Dunkerton 1997). The dominant behaviour will depend
on the growth rate of the dynamical instability, so that the time needed by the
dynamical instability to be developed occurs before the convective instability
criterion is reached.

(iii) In the large-amplitude extreme, for transient inertial waves with ũ and β located
in the region above the f /Ωb= 0.35 curve (the light shaded region in figure 6a),
these waves have similar propagation characteristics to internal waves, so that we
expect the breaking of these waves to be dominated by convective instability.

If f̃ is diminished (wavepackets with higher central frequency), as shown in
figure 6(b), the slope of regime I limit is diminished, see (3.8), but the breaking
frequency does not change, f /Ωb = 0.70. The hybrid regime, region II, is narrower.
The convective instability is dominant (region III) in this small f̃ case for smaller wave
amplitudes ũ. Figure 6(a,b) also shows that the dynamical instability is more likely
to be developed for transient waves with broader spectral width. In other words,
wavepackets with larger β and the same initial amplitude ũ attain the dynamical
instability with larger f /Ωb so that the inertial effects are more important.
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FIGURE 7. (a) Background zonal wind as a function of height and (b) background
Richardson number.

3.5. Propagation in a realistic environment
The performance of the Gaussian beam approximation is evaluated in a realistic
environment. We examine the propagation of a Gaussian wavepacket in a background
wind that is a realistic smoothed zonal wind profile characteristic of high latitudes in
winter in which the subpolar and the stratospheric nocturnal jet are both present. The
zonal background wind profile is shown in figure 7(a). This is a particularly difficult
case since the zonal wind is non-monotonic. The background buoyancy frequency
and Coriolis parameters are typical values, N0 = 0.02 s−1 and f = 10−4 s−1. The
background Richardson number as a function of height is shown in figure 7(b). A
wavepacket with initial parameters σω = 0.1ω, ω = N0/10 and ω/k = 55 m s−1 is
launched in this environment. The evolution of the normalized amplitude is shown in
figure 8(a). The amplitude of the wavepacket achieves two local maxima. Both peaks
in amplitude are achieved when the wavepacket is in the height ranges where the
background zonal wind increases with height. These two maxima are produced due
to refraction and dispersion effects. In altitudes where the background zonal wind
increases with height, refraction effects produce an increase of the amplitude. At the
same time, the highest components of the wavepacket are in a stronger background
wind so that their group velocity diminishes with respect to the components that are in
the lower part of the envelope. Therefore, the dispersion effects are weaker in regions
where the background zonal wind increases. The amplitude given by the Gaussian
beam approximation shows a close agreement to the numerical integration (figure 8a).
Indeed, the oscillation that appears in the numerical integration at long times is an
artifact, so the Gaussian beam approximation probably gives a better field than the
numerical experiment (see Pulido & Rodas (2008) for a discussion of this numerical
error). The evolutions of the Richardson number and buoyancy frequency are shown
in figure 8(b). The case has only dynamical instability, while convective instability is
never reached. A close agreement between the Gaussian beam approximation and the
numerical solution is found particularly for the buoyancy frequency evolution.

4. Conclusions
The instabilities developed by inertio-gravity waves that propagate in a shear flow

towards the critical level as a function of wave and background parameters have
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FIGURE 8. (a) Amplitude evolution of an inertial wavepacket with σ = 0.1ω that
propagates in the background zonal wind shown in figure 7 for the Gaussian beam solution
(solid line) and the numerical experiment (triangles). (b) Minimum Richardson number
(same curve convention as amplitude) and the minimum normalized buoyancy frequency
for the Gaussian beam solution (dashed line) and the numerical experiments (diamonds).

been studied in previous works under the steady-state assumption. In this work,
the propagation of transient inertio-gravity waves that propagate in a shear flow
towards the critical level is examined using the Gaussian beam approximation. This
approximation permits one to obtain a general picture of the propagation and the
triggering of breaking mechanisms of transient inertio-gravity waves as a function
of the wave and background parameters. We prove that inertial effects are enhanced
for transient waves compared to steady-state waves. We have first considered a
flow configuration that is simple but important: a constant vertical shear. For this
case, results with the Gaussian beam approximation may be obtained analytically.
The Gaussian beam approximation is also useful for realistic wind profiles, for
which a simple numerical vertical integration is needed that evaluates (2.19). The
approximation in this realistic case gives very close agreement compared with an
expensive high-resolution numerical model (which gives a noisier solution).

Inertio-gravity wavepackets that propagate towards the critical level and attain the
instability threshold with the same Ωb (the central intrinsic frequency at the breaking
height) may have different dominant instabilities depending on the spectral width of
the packet. In particular, the time separation between the convective and dynamical
instabilities depends on the frequency width. Wavepackets with small initial amplitude
reach their instability threshold close to the inertio-critical level, so that they require
a very long time to arrive and viscous diffusion may be dominant in the dissipation
of those small-amplitude and highly transient wavepackets as found in numerical
simulations by Winters & D’Asaro (1994).

Mountain waves that propagate in a horizontal background flow that is rotating
with height also find critical levels at different heights for different components of
the horizontal wavenumber spectrum. In this case, the wave energy density decays
asymptotically to zero when the mountain waves propagate in a rotating background
flow towards the critical levels (Shutts 1998; Broad 1999). Therefore, some similarity
is expected in the breaking mechanism of mountain waves that propagate in a flow
that rotates with height with the breaking of transient gravity waves in a shear flow.



The breaking of transient inertio-gravity waves 697

The Gaussian beam approximation has been applied to orographic waves by Tanushev
et al. (2007) and Pulido & Rodas (2011).

At long times, the Gaussian beam approximation gives the same asymptotic
tendency as the standard spatial ray tracing theory. The most important benefit
of the Gaussian beam approximation in this work is that it can detect the maximum
amplitude achieved at short times by the inertial wavepacket that propagates towards
the critical level. This approximation permits a whole treatment of the propagation
of the waves from the initial time up to the achievement of an instability threshold
(beyond this time the linear theory is not valid). This is an important difference
with the standard spatial ray tracing approximation, which can only represent the
asymptotic behaviour of the wave field and therefore the wave maximum amplitude
is not detected. To capture this maximum amplitude of the disturbance is essential
for determining the time and height of the convective and dynamical instabilities
of transient inertio-gravity waves. Alternative methods based on ray tracing theory
like the formulation by Hayes (1970) of the derived ray equation and the integral
representation proposed by Broutman et al. (2001) for the near field (short time in
our context) could also be used to represent the maximum amplitude at short times.

The Gaussian beam formulation is applied in this work to a transient inertio-gravity
wavepacket that is localized in time and characterized by a frequency width. The
treatment of a general disturbance in this formulation can be derived from the
temporally localized wavepacket examined in this work. General disturbances, which
have extended frequency spectra, can be represented through a superposition of
Gaussians in the spectral space. The width of the Gaussians corresponds to the
width of the bins into which the frequency spectrum of the disturbance is divided.
The solution of the disturbance in the physical space is given in this case by
the superposition of the Gaussian beam solutions. This procedure of Gaussian
superposition in the spectral space is explained in detail and applied to orographic
waves generated by a realistic orography in Pulido & Rodas (2011).

The Gaussian beam approximation is a powerful tool that can be implemented as a
ray tracing gravity wave model. Current ray tracing gravity wave models applied to the
atmosphere, such as GROGRAT (e.g. Marks & Eckermann 1995; Eckermann & Marks
1997) and that of Hasha, Bühler & Scinocca (2008), make a strong assumption that
the cross-sectional area of ray tubes is constant along the ray path. This approximation
is taken to avoid the singularities that appear when rays intersect, i.e. at caustics.
Under the assumption of a constant cross-sectional area, the effects of dispersion on
the wave amplitude field, in particular by horizontally varying background winds, are
not considered. The problems of ray tracing in caustics have been extensively treated
in the gravity wave literature (e.g. Broutman 1984, 1986; Sonmor & Klaasen 2000).
One of the techniques proposed to avoid caustics is the Maslov method, in which the
wave field is mapped to the Fourier space at caustics. It has been applied successfully
for mountain waves (Broutman, Rottman & Eckermann 2002). The Gaussian beam
approximation is free of caustics and therefore it is also suitable for detecting and
evaluating realistic ray focusing in the atmosphere and the ocean.

The implementation of the Gaussian beam approximation described in this work
cannot consider the effects of a horizontally non-uniform background flow, except for
the refraction produced by a horizontally non-uniform background flow in the path of
the ray. The focusing and diffraction effects produced by the differential dispersion
of horizontally non-uniform background flows that impact in the determination of the
amplitude of the wave field (say in the last term on the right-hand side of (2.22))
are not captured in the current implementation of the Gaussian beam approximation.
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An Eulerian representation of the Gaussian beams instead of ray centred coordinates
may be essential to represent these effects.

In this work, we have achieved a generalization to the full frequency range
of gravity waves with respect to a previous work (Pulido & Rodas 2008), a
necessary step towards our main aim, which is the development of a gravity wave
parametrization for atmospheric models based on the Gaussian beam approximation.
This approximation applied to inertio-gravity waves may account for the long
horizontal propagation found for inertio-gravity waves observed in high latitudes and
in particular in South America (Dunkerton 1984; Sato et al. 2012; Pulido et al. 2013).
An important further step in the development of such a gravity wave parametrization
based on the Gaussian beam formulation is the consideration of time-dependent and
horizontally varying background winds, effects that can give more realistic momentum
depositions (Dunkerton & Butchart 1984; Senf & Achatz 2011).

The application of the Gaussian beam approximation goes beyond the oceanic or
atmospheric gravity waves conducted in this work. It is a powerful tool that can be
applied to other fields. Indeed, it has been applied for a long time in geophysical
problems (see a review by Kravtsov & Berczynski (2007)) and it has been proven to
be useful in optics and quantum mechanics.
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