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Abstract: Infections due to vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA
(hVISA) represent a serious concern due to their association with vancomycin treatment failure.
However, the underlying molecular mechanism responsible for the hVISA/VISA phenotype is
complex and not yet fully understood. We have previously characterized two ST100-MRSA-hVISA
clinical isolates recovered before and after 40 days of vancomycin treatment (D1 and D2, respectively)
and two in vitro VISA derivatives (D23C9 and D2P11), selected independently from D2 in the
presence of vancomycin. This follow-up study was aimed at further characterizing these isogenic
strains and obtaining their whole genome sequences to unravel changes associated with antibiotic
resistance. It is interesting to note that none of these isogenic strains carry SNPs in the regulatory
operons vraUTSR, walKR and/or graXRS. Nonetheless, genetic changes including SNPs, INDELs
and IS256 genomic insertions/rearrangements were found both in in vivo and in vitro vancomycin-
selected strains. Some were found in the downstream target genes of the aforementioned regulatory
operons, which are involved in cell wall and phosphate metabolism, staphylococcal growth and
biofilm formation. Some of the genetic changes reported herein have not been previously associated
with vancomycin, daptomycin and/or oxacillin resistance in S. aureus.
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1. Introduction

Staphylococcus aureus is a relevant pathogen with an extraordinary ability to evolve
and acquire resistance to several antibiotics. Over the last decades, the large spread of
antimicrobial-resistant (AMR) strains, including methicillin-resistant S. aureus (MRSA),
vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA), have raised an
alarm worldwide as declared by the World Health Organization in 2017 [1]. hVISA/VISA
isolates are associated with persistent infections, vancomycin treatment failure and poor
clinical outcomes [2].

Although the prevalence of hVISA and VISA is relatively low worldwide [3–5], a
recent review and meta-analysis revealed that it has been increasing since 2010 (especially
in Asia and America) [3]. This highlights the importance of understanding the resistance
mechanism in order to define adequate control measures.
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It has been twenty-five years since the first hVISA/VISA strains were reported [6,7].
However, the underlying molecular mechanism responsible for the hVISA/VISA phe-
notype is not yet fully understood. Moreover, the reduced susceptibility to vancomycin
is often accompanied by concomitant changes in the susceptibility to oxacillin [8,9] and
other last-resort antibiotics such as daptomycin [10], making it more difficult to establish a
correct treatment for infections caused by these strains. Whole genome sequencing (WGS)
of hVISA/VISA strains has been essential for detecting genetic changes associated with
their phenotype. Despite the evidence showing modifications in peptidoglycan metabolism
in hVISA/VISA, associated genetic changes seem to implicate a diverse set of mutations
and chromosomal rearrangements. Non-synonymous single nucleotide polymorphisms
(SNPs) in vraSR, yvqF/vraT, walKR, graXRS (involved in peptidoglycan metabolism and cell
wall stress stimulon) or rpoB were amongst the first and most frequently reported genetic
changes in hVISA/VISA [11–13]. Mutations in those genes have been experimentally
tested to be responsible for promoting vancomycin resistance in VISA. In addition, some re-
searchers reported IS256 insertions disrupting different genes implied in cell wall synthesis
(tcaA, walKR) that lead to the VISA phenotype [14–17] and daptomycin resistance [18].

IS256 is an insertion sequence that has been detected in multiple copies in the genome
of Staphylococcus spp. strains recovered from humans and animals [19,20]. IS256 can
be found flanking the ends of transposon Tn4001 [21], and it has been prevalently de-
scribed in MRSA clones belonging to CC8 (ST239, ST247, ST8) and CC5 (ST5, ST100,
ST228) [16,18,22–24]. The transposition of IS256 in S. aureus is a copy-and-paste mecha-
nism [25] and can result in a variety of genetic modifications that affect the expression of
genes involved in virulence and antimicrobial resistance [26–29]. Our results highlighted
that vancomycin treatment increased IS256 transposition and showed that different VISA
phenotypes could be selected from the same parental ST100-hVISA strain [24,30].

In this follow-up study, our aim is to further characterize these isogenic strains and to
obtain their whole genome sequences in order to unravel genetic changes associated with
antibiotic resistance.

We herein describe novel mutations and genetic rearrangements developed after
vancomycin pressure (in vivo treatment and in vitro selection), some of which (as far as we
know) have not been previously reported in the literature as associated with vancomycin,
daptomycin and/or oxacillin resistance in S. aureus.

2. Results
2.1. Antimicrobial Susceptibility

ST100 strains D1, D2, D23C9 and D2P11 differed not only in their susceptibility to
vancomycin, but also to oxacillin (Table 1). A deeper analysis revealed that D2, recovered
after arthrotomy and surgical cleaning after 40 days of vancomycin treatment, significantly
increases its oxacillin susceptibility when compared to D1, rendering a phenotype that
resembles a heteroresistant behavior (Figure 1). In addition, VISA derivatives D23C9 and
D2P11 presented a 4–16-fold and 1.31–2.63-fold increase in oxacillin and daptomycin MIC
relative to parental strain D2, respectively (Table 1).

2.2. General Genomic Features

The assembled draft genomes of the four strains yielded the following results: total
genome length of 2,785,355–2,795,159 pb; GC content of 32.79–32.81%; 31–40 contigs > 1 kb
in length; and N50 of 148,220–337,832 bp. (Table 2). All strains harbor the mecA gene
within the class B mec gene complex of a truncated SCCmec with no ccr genes (Table 3).
An overview of mobile genetic elements and AMR determinants found is summarized in
Supplementary Table S2.
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Table 1. Antimicrobial susceptibility profile of the bacterial strains used in this study. MICs (µg/mL),
inhibition zone diameter obtained after daptomycin (DAP) pre-diffusion method (mm), and van-
comycin (VAN) population analysis profile and area under the curve (PAP-AUC) ratio. The AUC
was measured for each sample and the ratio of test isolate AUC/mean Mu3 AUC was calculated.
Mu3 was used as hVISA control strain. The criteria to define hVISA and VSSA were a PAP-AUC
ratio ≥ 0.90 and a PAP/AUC ratio < 0.90, respectively.

D1 D2 D23C9 D2P11 Reference

MIC (µg/mL)
VAN 0.5 1 4 8 [24]
OXA 128 2 8 32 [24]
DAP 0.094 0.38 0.5 1 This Study

DAP Pre-diffusion method (mm) 30 30 22 18 This Study
VAN PAP-AUC ratio 0.98 1.48 2.81 5.7 [24]

Phenotype hVISA hVISA VISA VISA [24]
MIC: Minimal inhibitory concentration, VAN: vancomycin, OXA: oxacillin, RIF: rifampin, DAP: daptomycin,
PAP-AUC: Population analysis profile and area under the curve.
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Figure 1. Oxacillin population analysis profile and area under the curve (PAP-AUC) of bacterial
strains included in this study. Serial 10-fold dilutions of cultures were plated onto Mueller–Hinton
agar with oxacillin (OXA). Each point represents the viable count (log10 CFU/mL) after 48 h against
increasing concentrations of OXA.

Table 2. Accession numbers, genome coverage and assembly metrics of genomes included in this
study. # Contigs is the total number of contigs in the assembly. # Contigs (≥x bp) is the total number
of contigs of length ≥ x bp. Largest contig is the length of the longest contig in the assembly. Total
length is the total number of bases in the assembly. Total length (≥x bp) is the total number of bases in
contigs of length ≥ x bp. GC (%) is the total number of G and C nucleotides in the assembly, divided
by the total length of the assembly. N50 is the length for which the collection of all contigs of that
length or longer covers at least half (50%) the total base content of the assembly. N90 is used for the
same purpose but the length is set at 90% of total base content instead of 50%. L50 is the number of
contigs equal to or longer than the N50 length. L90 is used for the same purpose in reference to the
N90 length. # N’s per 100 kbp is the number of ambiguous bases (Ns) per 100 kbp.

Assembly D1 D2 D2P11 D23C9

Assembly accession JAPZAH000000000 JAPZAI000000000 JAPZAJ000000000 JAPZAK000000000
Genome coverage 286.77 246.87 277.45 256.49
# Contigs (≥0 bp) 45 45 35 47

# Contigs (≥1000 bp) 38 38 31 40
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Table 2. Cont.

Assembly D1 D2 D2P11 D23C9

Total length (≥0 bp) 2,795,159 2,795,155 2,785,355 2,787,646
Total length (≥1000 bp) 2,789,975 2,789,971 2,782,204 2,782,459

# Contigs 45 45 35 47
Largest contig 567,081 567,084 567,084 419,127

Total length 2,795,159 2,795,155 2,785,355 2,787,646
GC (%) 32.79 32.79 32.8 32.81

N50 334,617 334,619 337,832 148,220
N90 36,723 36,723 39,437 33,617
L50 4 4 4 5
L90 17 17 16 19

# N’s per 100 kbp 0 0 0 0

Table 3. Summary of genomic features shared by all strains. Genotypic features (MLST and SCCmec
type), and the presence of full/complete genetic determinants (mobile genetic elements, antimicrobial
resistance and restriction modification systems) detected in the genomes included in this study.

Feature

MLST ST100
SCCmec type NT

AMR determinants aac(6′)-aph(2”), blaZ, mecA, rpoB H481N
Insertion sequences IS256, IS1181, IS431, ISSau6

Transposon Tn4001
RM systems S.Sau N315 I–M.Sau N315 I, S.Sau N315 II–M.Sau N315 II, SauUSI

Plasmidic rep genes rep21.13_SAP101A (GQ900495.1), rep20.3_pTW20 (FN433597.1)
NT: Non-typeable. MLST: Multilocus sequence type. AMR: Antimicrobial resistance. RM systems: Restriction
modification systems.

2.3. Mutations Associated with hVISA/VISA

All 4 strains shared 20 non-synonymous SNPs in genes related to cell wall metabolism
and/or the hVISA/VISA phenotype (Table 4) when compared to S. aureus N315 (listed in
Supplementary Table S3). It is worth noting, none of the strains carried SNPs in vraTSR,
walKR and/or graXRS operons.

Table 4. Non-synonymous SNPs related to peptidoglycan metabolism or vancomycin reduced
susceptibility shared among all strains analyzed in this study, after mapping the reads to the S. aureus
N315 reference genome. All changes are expressed in reference to the S. aureus N315 genome.

Chromosome Position Gene Name Product Predicted Amino Acid Change

46,301 mecA Penicillin-binding protein 2 prime Gly246Glu
297,502 tarF_1 CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase Asn236Ser
581,060 rpoB DNA-directed RNA polymerase subunit beta His481Asn
583,428 rpoC DNA-directed RNA polymerase beta’ chain protein Pro41Ala

1,595,731 rpoD RNA polymerase sigma-70 factor RpoD Val253Ile
687,696 tagG Teichoic acid ABC superfamily ATP-binding cassette transporter Val220Ala
732,508 cydD ABC superfamily ATP-binding cassette transporter Asn174Asp

902,157 dltD D-alanine lipoteichoic acid and wall teichoic acid esterification
secreted protein Ile264Lys

993,796 murE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate–2 Ala436Ser
1,157,903 ftsL Cell division and chromosome partitioning protein Asp78Asn
1,203,919 pknB_2(stk1) Non-specific serine/threonine protein kinase Lys512Asn
1,487,245 pbp2 Glycosyl transferase family protein Cys197Tyr
1,487,506 pbp2 Glycosyl transferase family protein Thr284Ile
1,758,442 ezrA Septation ring formation regulator Val545Ala

2,009,774–2,009,775 ami N-acetylmuramoyl-L-alanine amidase Ala250Val
2,010,074 ami N-acetylmuramoyl-L-alanine amidase Asn150Lys
2,010,079 ami N-acetylmuramoyl-L-alanine amidase Ile149Val
2,138,921 murF Putative UDP-N-acetylmuramoylalanyl-D-glutamyl-2 Ser126Asn
2,171,885 rho Putative methicillin resistance expression factor Ile48Leu
2,412,317 tcaA Teicoplanin resistance-associated membrane protein TcaA protein Leu218Pro
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Hence, comparative genomic analyses between D1 and D2, and between D2 and its
in vitro-derived mutants were performed to unravel the genetic differences associated with
their AMR profiles.

Seven SNPs and four INDELs distinguish D2 and its derived mutants (D23C9, D2P11)
from D1 (recovered before vancomycin treatment) (Table 5). INDELs affected genes stp1,
braS, sagB and era, related to cell stress and envelope metabolism [31–35] and possibly
related to the different oxacillin and vancomycin phenotypes observed (Table 1, Figure 1).

Table 5. Genetic changes differing between strains analyzed in this study after mapping the reads to
the S. aureus D1 genome. All changes and positions are expressed in reference to the S. aureus N315
reference genome except otherwise stated. Genes without an annotated name are in reference to the
CDS of N315 (or D1 genome if not present in the latter) by their locus tag.

Chromosome
Position Gene Name Product Type

Predicted Aminoacid Change

D1 D2 D23C9 D2P11

1,506,816 Intergenic (upstream
aroC) - SNP C63217A * wt wt wt

1,003,592 Intergenic (upstream
comK) - SNP T19402C * wt wt wt

170,209 cap5D Capsular polysaccharide
biosynthesis protein Cap5D SNP Thr215Ile wt wt wt

1,201,763 stp1 Protein phosphatase 2C
domain-containing protein INDEL Gly41_Lys43dup wt wt wt

2,713,713 nsaS/braS
Integral membrane sensor

signal transduction histidine
kinase

INDEL Gln63del wt wt wt

1,832,949 sagB Beta-N-
acetylglucosaminidase INDEL Wt His142fs His142fs His142fs

12,058(NODE_18) *2 SAD1_02353 Bacteriophage tail tape
measure protein SNP Wt Asp1737Gly Asp1737Gly Asp1737Gly

27,119(NODE 19) *2 SAD1_02404 GNAT family acetyl
transferase SNP Wt Tyr158Tyr Tyr158Tyr Tyr158Tyr

24,307(NODE 21) *2 ccrB Cassette chromosome
recombinase B SNP Wt Asn10Ser Asn10Ser Asn10Ser

1,728,074 phoR
Alkaline phosphatase

synthesis sensor protein
PhoR

SNP Wt wt Arg200 * STOP wt

1,603,348 era GTP-binding protein Era INDEL Wt wt wt Asn81fs

* Intergenic change. wt: wild-type related to the N315 genome. *2 Position in D1 genome.

In addition, in vitro-derived VISA strains D23C9 and D2P11, harbor mutations leading
to premature stop codons in two genes linked to staphylococcal growth (phoR and era,
respectively) (Table 5) [35,36]. Along with these genetic changes, both VISA strains showed
a lower median cell diameter, longer latency growth phase and slower growth (slopes in
the logarithmic exponential growth phase were significantly different, p < 0.0001), when
compared to parental strain D2 (Figure 2).

2.4. IS256-Mediated Genomic Rearrangements

Changes in IS256 transposition after vancomycin selective pressure for this set of
strains [24] were also detected by WGS bioinformatic analysis performed in this study
(Tables 6 and 7).

Comparative genomic analysis of paired S. aureus strains showed evidence of ge-
netic rearrangements after the IS256 transposition-mediated antibiotic treatment. In total,
11 different IS256 insertions sites (4/11 disrupting genes) were shared by the 4 strains
(Table 7), while both in vitro-derived mutants (D23C9 and D2P11) showed modifications
in the IS256 copy number and position (Table 5). We did not find genetic changes in the
sigB and rsbU genes, known global regulators of IS256 transposition [26,37]. In addition,
no change in the copy number and/or location of other staphylococcal IS elements was
evident.
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bars show significant differences between individual groups detected by Dunn’s multiple compar-
ison test. ** p < 0.001; *** p < 0.0001. (C) Growth curves. Each point represents the mean and standard 
error from three independent assays. 
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Figure 2. (A) Transmission electron microscopy (TEM) of representative cells; images obtained at
50,000×. A: D1; B: D2; C: D23C9; D: D2P11. (B) Cell diameter measured by TEM (30 cells per strain).
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Table 6. Number of insertion sequences from Staphylococcus sp. per genome detected by ISseeker in
the genomes included in this study. ISseeker identifies the termini of IS (>97% of identity) at contig
edges and annotate flanking regions based on alignment of IS flanks with a reference genome.

IS D1 D2 D23C9 D2P11

IS256 14 14 17 13
IS1181 7 + 1 * 7 + 1 * 7 + 1 * 7 + 1 *
IS1182 0 0 0 0
IS1272 1 * 1* 1 * 1 *
IS431 1 1 1 1

ISSau1 0 0 0 0
ISSau2 3 * 3 * 3 * 3 *
ISSau3 10 * 10 * 10 * 10 *
ISSau4 0 0 0 0
ISSau5 1 * 1 * 1 * 1 *
ISSau6 6 6 6 6
ISSau8 2 * 2 * 2 * 2 *
ISSau9 0 0 0 0
ISSep1 1 * 1 * 1 * 1 *
ISSep2 1 * 1 * 1 * 1 *
ISSep3 0 0 0 0
ISSha1 0 0 0 0

* Partial IS sequence inside a Contig, >97% Identity.
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Table 7. IS256 insertion sites detected with ISseeker software after annotating IS256 flaking regions
against the S. aureus N315 reference genome. Type was considered “intergenic” if IS256 was found
between two different genes, and “disrupting gene” if both annotated flanking regions were found in
a single (same) gene.

Genomic Location Type D1 D2 D23C9 D2P11

mecR1 Disrupting gene + + + +
SA0142 (hypothetical protein) Disrupting gene + + + +

SA0084 (hypothetical protein)—SA0085 (tRNA dihidrouridine sintase) Intergenic + + + +
SA0516 (tRNA specific adenosine deaminase)—SA0517 (ABC superfamily

ATP-binding cassette transporter) Intergenic + + + +

vraG (ABC transporter permease)—SA0618 (pitR, putative phosphate uptake
regulator) ** Intergenic + + + * + *

SA0621 (integral membrane protein) **—rbf (AraC type transcription regulator) ** Intergenic + + - -
sarX (staphylococcal accessory regulator protein X) **—SA0624 (putative

transcriptional regulatory protein) Intergenic + + + * + *

SA0625 (hypothetical protein)—SA0626 (hypothetical protein) Intergenic - - + -
SA0742 (clfA, clumping factor A) Disrupting gene - - + -

SA0954 (hypothetical protein)—SA0955 (hypothetical protein) Intergenic + + + +
SA0185 (putative membrane protein YfhO)—rbgA (GTP-binding protein) Intergenic + + + +

SA1176 (hypothetical protein)—tkt (transketolase) Intergenic + + + +
SA1232 (lysA, diaminopimelate decarboxylase)—SA1233 (msaC, modulator of sarA) *** Disrupting gene + + + +

SA1639 (hypothetical protein) Disrupting gene + + + +
SA1648 (enterotoxin seO)—tRNAser Intergenic + + + +

agrB (accesory gene regulator B) Disrupting gene - - + -
SA2019 (hypothetical protein)—SA2010 (hypothetical protein) Intergenic + + + +

SA2414 (hypothetical protein)—SA2415 (braE, ABC superfamily ATP-binding cassette
transporter membrane protein) Intergenic - - + -

+ Presence of IS256 in the genomic location. - Absence of IS256 in the genomic location. * IS256 insertion site was
detected but one of the genes in the flanking region is not present in the analyzed assembly, ** Genomic region
encompassing pitR and sarX genes, absent in D23C9 and D2P11 (8 kb deletion), *** The annotated msaC gene was
found deleted in all genomes analyzed in this study.

It is worth noting that both VISA derivatives are characterized by the absence of
a ≈ 8 kb region encompassing genes pitR (phosphate uptake regulator), pitA (low affinity
inorganic phosphate transporter), SA0620 (secretory antigen ssA-like protein—CHAP
domain peptidoglycan hydrolase), SA0621 (integral membrane protein interacts with ftsH-
like protein), rbf (araC type transcriptional regulator) and sarX (transcriptional regulator).
This was confirmed by the lack of raw reads mapping to the corresponding region in
the assembled genome of parental strain D2, and by PCR–Sanger sequencing (Figure 3,
Supplementary Table S1).

The presence of IS256 insertion sites between vraG-pitR, SA0621-rbf and sarX-SA0624,
in the D1 and D2 genomes, suggests that genetic rearrangements between neighboring
IS256 elements might be responsible for this region deletion in the in vitro-derived VISA
strains.

We further evaluated if the ≈8 kb deletion and/or IS256 insertion sites present in its
genetic environment were shared by other strains. No other public genomes were found
with the ≈8 kb deletion carried by D23C9 and D2P11 (BLAST searches against the NCBI
Refseq complete S. aureus genomes database, last accessed 20 January 2023).

In line with previous results [24], IS256 transposition was higher in D23C9. The
genome of this strain contains four additional IS256 insertion sites: one interrupting the
agrB gene (already reported), and three newly reported (Table 7).

2.5. Biofilm Formation

Knowing that rbf, sarX and agrB are involved in biofilm regulation [38,39], we stud-
ied the biofilm phenotype in these strains. D23C9 showed a significantly higher biofilm
formation compared to parental strain D2 (Figure 4), and we speculated this is possibly
due to both agrB disruption and extracellular DNA (product of D23C9 increased autol-
ysis [24,30]. Moreover, D2P11 did not differ significantly from D2 in its ability to form
biofilm despite the deletion of rbf and sarX genes but tends to display lower OD 570 nm
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values. However, small differences are not always detected on polystyrene microplates [40];
hence, microscopic changes affecting the three-dimensional biofilm structure should not be
disregarded.
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shows a representative microtiter plate of the biofilm assay for each strain.

3. Discussion

Several single nucleotide polymorphisms (SNPs) have been described in hVISA/VISA
strains since their first report, and new studies are still trying to understand their genetic
basis [41,42]. Our findings reinforce the diversity of the genetic patterns observed [11,12,41],
but also highlight the important role of INDELs and genomic rearrangements mediated by
insertion sequences, particularly IS256 in the emergence of these complex phenotypes.

The genetic changes found here could have resulted from the antibiotic selective
pressure (in vivo and in vitro), but not all of them may necessarily have a direct correlation
with the observed phenotypes. Evidence showed modifications in the peptidoglycan
metabolism for hVISA/VISA strains and those analyzed in this study [11,30]. Mutations in
genes rpoB, rpoC, rpoD, pbp2, stk1 and tcaA, shared by the four strains, were also reported
in clinical strains with vancomycin reduced susceptibility [11,12,43]. Nonetheless, we
identified novel mutations in genes related to peptidoglycan metabolism (Tables 4 and 5) in
clinical hVISA strains (D1, D2). These novel mutations or other additional mutations related
to different cellular processes (Supplementary Table S2) could have cumulative effects that
contribute to hVISA/VISA, and/or oxacillin and daptomycin resistances, and should be
experimentally investigated in future studies. However, mutations shared by all strains do
not explain the phenotypic differences observed among them (Table 1, Figure 5) [30].

It is worth noting that two INDELs were exclusively found in hVISA strain D1. The
stp1 gene was associated with the reduced susceptibility to vancomycin, and the braS gene
(alternatively named nsaS or bceS) is part of the braRS two-component system responding
to cell envelope stress, which is referred to as graS ortholog (involved in hVISA/VISA
phenotype) [34,44]. The in-frame deletion found in D1 (Gln63del) is located on the BraS
cytoplasmic domain, next to the HisKA domain in charge of signal transduction and
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gene expression. We assume the hypothesis that these two genetic changes (Table 3),
together with non-synonymous SNPs in genes related to cell wall metabolism (Table 2),
could be involved in the vancomycin heteroresistance phenotype of D1. Nonetheless,
these two INDELs are absent in the isogenic strain D2, possibly reflecting that different
hVISA populations can be selected after vancomycin treatment. However, we recognize
that as we sequenced just one colony from each clinical sample, we may have found a
small proportion of all possible genetic changes, considering that hVISA strains are non-
homogeneous populations. Nonetheless, our results show genetic changes that might
contribute to antimicrobial resistance.
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Figure 5. Genes harboring genetic changes in hVISA/VISA strains analyzed in this study and their
relationships with cellular processes (lines). Blue boxes: Genes with mutations related to hVISA/VISA
shared by D1, D2, D23C9 and D2P11. Yellow boxes: Genes with mutations differing between D2
and D1. Red boxes: Genes differing between the in vitro-selected mutants (D23C9 and D2P11) and
their parental strain (D2). ∆ ≈8 kb IS256-mediated deletion. * SNP/INDEL. Purple boxes: Key
regulatory operons related to vancomycin resistance in hVISA/VISA (not mutated in these strains).
R: Resistance. VAN: vancomycin. OXA: oxacillin. DAP: daptomycin.

While the increase in oxacillin susceptibility was already reported in VISA strains [8,9],
changes observed in this study are not due to mecA/blaZ mutations or deletions as described
before. The sagB gene codes for the major glucosaminidase in charge of glycan chain
processing in S. aureus (248aa) [33,45]. Its function, non-redundant despite the presence of
other autolysins, is critical for cellular enlargement [33]. The frame-shift insertion shared
by D2-D23C9-D2P11 generates a premature stop codon, and the predicted translated
protein (148aa) lacks most of the glucosaminidase domain. SagB in vitro-selected mutants
were described to display diminished resistance to oxacillin and increased resistance to
vancomycin [45,46] as observed in D2 when compared to D1 (Table 1) [24].

No other mutations related to peptidoglycan metabolism/regulation were found
between the D1 and D2 (mecA, pbps, blaZ operon and/or cell wall stimulon). Hence,
it is most likely that genetic changes in cap5D, stp1, braS and/or sagB genes (related to
peptidoglycan metabolism, Table 5) might play a role in the modification of cell wall
thickness, pbp2 expression, oxacillin and vancomycin susceptibility [24,30] between these
two isogenic strains (Figure 5). As far as we know, this would be the first report on the
acquisition of genetic changes in braS and sagB after the in vivo treatment with vancomycin,
and its association with the hVISA phenotype and changes in oxacillin susceptibility in
clinical strains.
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Furthermore, one genetic change seems to be linked to the hVISA to VISA conversion.
Both VISA strains selected in independent in vitro assays share not only the increase in
oxacillin, vancomycin and daptomycin resistance, slower growth rate and reduced cell
diameter (Table 1, Figures 1 and 2), but also the IS256-mediated deletion of a ≈ 8 kb chro-
mosomal region including regulatory genes related to metabolism (pitRA, SA0620, SA0621)
and virulence (rbf, sarX) (Figures 3 and 5). Genes related to the inorganic phosphate (Pi)
metabolism (including pitRA and phoR) were previously associated with or reported to play
a role in the development of vancomycin and daptomycin resistance [47–50], as changes
in the intracellular Pi concentrations can affect the metabolism of DNA, phospholipids,
cell envelope (including net positive surface charge), intracellular signalling and stress
response [47,51]. Moreover, the expression of pitRA, SA0620, SA0621 and sarX is regulated
by walKR and/or graSR operons involved in cell wall metabolism [43,52–55], and the devel-
opment of vancomycin resistance in S. aureus [11]. The rbf gene was also frequently mutated
in daptomycin-resistant S. aureus [56]. Together, all these findings highlight a potential
relevance of the deleted genomic region for the development of oxacillin, vancomycin and
daptomycin resistance in the ST100 genetic background.

Nonetheless, other SNPs or IS256 rearrangements distinguishing D23C9 and D2P11
may also possibly contribute to their vancomycin resistance phenotype. In particular,
mutations in genes associated with staphylococcal growth (phoR [36,47] and era [35], Table 5,
Figure 5) may also impact on their growth rate and fitness cost (Figure 2), an already
described feature of VISA isolates [11]. Interestingly, an INDEL in era was already described
as a rare genetic change observed in a laboratory-derived VISA strain belonging to CC5 [50].

WGS is a powerful tool for the detection and surveillance of new AMR genetic de-
terminants, but it has not been widely distributed in clinical laboratories yet, especially
in low–middle income countries. Moreover, those who have access to this technology
cannot depend solely on molecular assays to reliably detect all hVISA/VISA. Because of the
multiplicity of genes involved, genomic approaches trying to establish only a few genetic
markers as predictors of vancomycin heteroresistance will lead to an underestimation of
the real prevalence, leaving behind new, unexplored hVISA phenotypes.

Nevertheless, studies supplementing whole genome sequences, the gold standard
PAP-AUC method and MIC determinations are essential for detecting hVISA/VISA and
other AMR phenotypes [50,57,58] until new approaches are developed.

Comparative omics analyses will help clarify the molecular mechanisms involved in
the emergence of the hVISA/VISA phenotype in future research. Furthermore, the role of
mutations (SNPs and INDELs) and the transposition of insertion sequences on the adaptation
of S. aureus under antibiotic selective pressure should be explored. This work provides
new evidence of the genetic rearrangements mediated by IS256 transposition after antibiotic
treatment, with the potential to impact the AMR and virulence of S. aureus strains.

4. Materials and Methods
4.1. Strains and Culture Conditions

S. aureus strains D1 and D2 were isolated from a patient with bone and joint infection,
before and after 40 days of vancomycin treatment. The in vitro selection of D2-derived
mutants (D23C9, D2P11) was performed in two independent assays by serial passage in
BHI broth (Britania, Argentina) with increasing concentrations of vancomycin. D23C9 and
D2P11 were selected at 9 and 11 µg/mL of vancomycin, respectively. The detailed medical
record and the in vitro selection of D2-derived mutants (D23C9, D2P11) was previously
described [24]. Strains were grown aerobically on Brain Heart Infusion (BHI) broth and
BHI agar (Britania, Argentina) at 37 ◦C.

4.2. Antimicrobial Susceptibility Testing

Minimal inhibitory concentrations (MICs) of vancomycin (VAN) and oxacillin (OXA)
were determined by the broth microdilution method according to CLSI guidelines [59].
Daptomycin susceptibility was evaluated by Etest® and interpreted as per CLSI guide-
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lines [59] and by the pre-diffusion method using Neo-Sensitabs® tablets (Rosco Diagnostica,
Taastrup, Denmark) [60,61]. The oxacillin and vancomycin population analysis profile and
area under the curve (PAP-AUC) was determined as previously described [62]. ATCC
29213 (MSSA, VSSA), Mu3 (MRSA, hVISA) and Mu50 (MRSA, VISA) were used as control
strains. The antimicrobial susceptibility profile is summarized in Table 1.

4.3. DNA Extraction and Whole Genome Sequencing

Genomic DNA was extracted from overnight BHI cultures using the Epicentre Master-
Pure Complete DNA and RNA Purification Kit according to the manufacturer’s instructions,
with the addition of lysostaphin (0.03 µg/µL) in the lysis step with an incubation time of
at least half an hour at 37 ◦C. Shotgun gDNA libraries were prepared and whole genome
sequencing (WGS) was performed using the Illumina MiSeq platform (paired end, 250 bp).

4.4. Whole Genome Sequencing Analysis

Reads were quality assessed with FASTQC [63], and de novo assembled using SPAdes
(v3.9.0) [64]. Contigs less than 500 bp and 70× coverage were discarded. Remaining contigs
were annotated using Prokka (1.14.5) [65] and a genus-specific database from RefSeq [66],
and they were manually inspected. Mapping and variant calling was carried out using
Snippy v3.2 [67] with the following parameters: minimum quality of 30, minimum coverage
of 15, minimum proportion of reads which must differ from the reference of 0.75. The
genome of S. aureus N315 (CC5, Genebank Accession number BA000018.3) was used as a
reference. Alternatively, the assembled genome of the first clinical isolate, D1 (ST100) was
used as a reference sequence. All variants (SNPs, INDELs) were manually inspected and
visualized with Artemis [68].

The SCCmec type was determined from assemblies using SCCmec Finder [69]. De-
tection of antimicrobial-resistance determinants and MGE was carried out using ARIBA
v2.12.1 [70] and relevant databases. For antimicrobial-resistance determinants we used
databases from Resfinder [71,72], CARD [73], ARGANNOT [74] and a curated database [75].
Plasmid types were defined based on their replicon genes (rep) using the Plasmidfinder
database [76]. Phages types were defined based on their integrase gene, using the 12 described
integrase groups [77]. Thirteen known staphylococcal pathogenicity islands (SaPIs) were
queried based on their integrase (int) gene [78].

ISseeker [79] was used with default parameters to explore the genome in order to detect
differences in insertion sequence (IS) content between parental and mutant strains, and also to
annotate the flanking edges of IS elements in draft genomes. ISseeker identifies the termini
of IS (>97% of identity) at contig edges and annotate flanking regions based on alignment of
IS flanks with a reference genome. IS256-mediated insertions/deletions were confirmed by
PCR with primers designed for that purpose (Supplementary Table S1). The 8 kb deletions
amplified by PCR in VISA strains were sequenced by the Sanger method and analyzed with
SnapGene v6.1.2®. Genomic comparisons were performed using Clinker [80]. The sequence of
the 8 kb deletion was searched against the NCBI Refseq S. aureus complete genomes database
using BLAST. All genomes, MGE and genome comparisons with reference sequences of
interest were additionally visualized in Artemis and/or ACT [68,81].

4.5. Growth Curves

Growth curves were plotted to determine whether the genetic changes were associated
with a fitness cost. These assays were performed by triplicate. Fresh culture of each strain
(dilution 1/1000) was grown in BHI broth (Britania, Argentina) and incubated at 37 ◦C and
180 rpm, and OD 620 nm was measured. A growth curve was constructed plotting the OD
620 nm over time.

4.6. Transmission Electron Microscopy (TEM)

TEM of exponential phase S. aureus cultures was performed as already described [30].
Cell diameter was measured (30 cells for each strain) at the equatorial plane of each cell
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using a 50,000× magnification and images analyzed with ImageJ 1.46r [82]. The results for
each strain were expressed as median and interquartile range.

4.7. Biofilm Production Assay

Biofilm development was assessed by measuring the accumulation of biomass on the
surface of sterile 96-well flat-bottom polystyrene plates (Extragene) following Stepanovic et al.
recommendations [83]. Briefly, 200 µL of a 1/100 dilution of a bacterial suspension adjusted
to an OD 620 nm = 0.2 (≈108 CFU/mL) in TSB supplemented with sterile 1% glucose was
added to wells (6 replicates per strain). Following 24 h incubation at 37 ◦C, the plate was
washed twice with 0.9% NaCl and air-dried for 2 h. The remaining attached bacteria were
fixed with 200 µL of methanol 99% (v/v) per well and after 15 min the plates were emptied
and air-dried. Afterward the plates were stained for 20 min with 200 µL per well of 0.5%
crystal violet. Finally, wells were washed with water, air-dried, the dye was solubilized with
33% acetic acid solution and the OD 570 nm for each well was measured. S. aureus Newman
∆ica (non-ica-dependent biofilm producer) and S. epidermidis NRS101 (prototype biofilm
producer) were included in the assay as control strains. Biofilm production was calculated
as Final OD 570 nm of a tested strain = average OD 570 nm value of the strain—ODc.
ODc = average OD 570 nm of negative control ∆ica + 3SD of negative control.

4.8. Statistical Analysis

Growth rates were compared by slope analysis using linear regression. Biofilm produc-
tion (Final OD 570 nm) and cell diameter values were compared using the Kruskal–Wallis’s
test, and differences between individual groups were detected by Dunn’s multiple compar-
ison test. Analyses were performed using GraphPad prism 5.0 software with a significance
level set at p < 0.05 in all cases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics12020372/s1, Table S1: Oligonucleotides used to confirm
chromosomal deletion and IS256 insertions. Region amplified is referred to the annotation in S. aureus
N315 reference genome. * amplicon was purified and sequenced; Table S2: Genomic features of the
genomes analyzed in this study; Table S3: Core mutations present in the strains analyzed in this
study found by Snippy core (not including INDELs) after mapping the reads to the S. aureus N315
reference genome.
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