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a b s t r a c t

In this paper a new finite element formulation for numerical analysis of diffused and localized failure
behavior of saturated and partially saturated gradient poroplastic materials is proposed. The new finite
element includes interpolation functions of first order (C1) for the internal variables field while classical
C0 interpolation functions for the kinematic fields and pore pressure. This finite element formulation is
compatible with a thermodynamically consistent gradient poroplastic theory previously proposed by
the authors. In this material theory the internal variables are the only ones of non-local character. To ver-
ify the numerical efficiency of the proposed finite element formulation, the non-local gradient poroplastic
constitutive theory is combined with the modified Cam Clay model for partially saturated continua.
Thereby, the volumetric strain of the solid skeleton and the plastic porosity are the internal variables
of the constitutive theory. The numerical results in this paper demonstrate the capabilities of the pro-
posed finite element formulation to capture diffuse and localized failure modes of boundary value prob-
lems of porous media, depending on the acting confining pressure and on the material saturation degree.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Gradient-based constitutive formulations are widely used in
mechanical modeling of strain softening materials. Since the pio-
neer work by Vardoulakis and Aifantis [1], the strain gradient
material theory gained relevant echo in the international scientific
community. Amount others, proposals [2–7] demonstrate both the
extensive use of gradient theory in solid materials and its effective-
ness to limit the severe mesh size dependency of the so-called
smeared crack approach.

From the predictive capabilities stand point, strain gradient
based constitutive models lead to appreciable diffusions of the
failure modes. This is due to the intrinsic well-posedness of the
governing equations in case of gradient theory that are able to
suppress the loss of strong ellipticity in the form of discontinuous
bifurcation of the related local constitutive equations. Nevertheless,
the strong diffusion of failure modes predicted by gradient-based
models is a relevant disadvantage of this non-local material theory
in case of failure behavior of cohesive-frictional materials like rocks,
concretes and partial saturated soils, when loaded in the low con-
finement or tensile regimes [8,9]. In these cases the shortcomings
of classical gradient constitutive models to reproduce the localized
ll rights reserved.

Mroginski), getse@herrera.
failure modes of quasi-brittle materials strongly affect the numeri-
cal prediction accuracy despite the mesh objective solutions their
provide.

The constitutive theory for partially saturated porous media re-
cently proposed by Mroginski et al. [10] is oriented to solve this
deficiency. By considering a selective level of gradient non-locality
this material theory is able to reproduce diffuse and localized fail-
ure modes of partially saturated porous media.

From the finite element (FE) stand point, strain gradient consti-
tutive formulations require special provisions for the approxima-
tion of the Laplacian to the plastic multiplier in the element
domains and on their boundaries. Pioneer contributions in FE tech-
nology related to gradient formulations in non-porous media are
[11,12] who proposed C1 continuity elements to approximate the
non-local strain gradient fields, and [13], who proposed a four node
FE with one integration point for large strain and strain gradients.
FE formulations with C0 continuity based approximation fields for
gradient constitutive models of non-porous media were proposed
in [14–18]. The proposal by De Borst and Pamin [14] considers
penalty functions to avoid additional iterations in the solution pro-
cedure for the non-local gradient strain fields. This FE formulation
includes rotation as nodal variable. It should be noted that the
overall numerical performance of this FE is not efficient, as can
be observed in [19]. In the others C0-continuous FE for gradient-
based continua [6,20], the non-local effects are considered to be re-
stricted to the internal variables while their numerical approaches

http://dx.doi.org/10.1016/j.compgeo.2012.11.003
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for the variable fields involves additional iterative procedures to
solve for the plastic multiplier Laplacian.

Regarding the strain localization problem in saturated soils
Stankiewicz and Pamin developed a FE formulation for non-local
Cam Clay model based on the strain gradient theory by [11]. It con-
siders, on the one hand, a one-phase approach under fully drained
and undrained hydraulic condition [21,22] while, on the other
hand, a two-phase approach to take into account the permeability
and, therefore, the stabilizing role of the fluid phase [23]. Despite
the similarities in the numerical approach between present gradi-
ent plasticity formulation and those proposed by Stankiewicz and
Pamin [21,22] there are two important differences. On the one
hand, in this proposal the internal variables are the only ones of
non-local character while in classical formulations of gradient
plasticity [11,12,20,21] the non-local variables are the strains. On
the other hand, in present gradient-based poroplastic formulation
there are two characteristic lengths involved, one for the skeleton
and the other for the porous phase.

In conclusion: despite the considerable progress made in FE for-
mulation for gradient based materials, there is still a need of effi-
cient FE technologies for thermodynamically consistent partially
saturated porous media, in which the kinematic fields of the skel-
eton interact with the hydraulic and pressure fields of the porous
phase.

In this work a new C1 continuity based FE formulation is pro-
posed for gradient-based constitutive formulation of saturated
and partially saturated porous media with the capacity to repro-
duce both localized and diffuse failure modes that characterized
quasi-brittle materials like concrete and soils. A distinguish aspect
of this FE formulation is the inclusion of interpolation functions of
first order continuity (C1) only for the internal variables field while
the kinematic fields remain with the classical C0-continuous inter-
polation functions. This FE technology is particularly appropriated
to be used with the thermodynamically consistent non-local gradi-
ent theory by the authors in [10], and involve one single iteration
loop for the plastic multiplier an its Laplacian. This strongly re-
duces the computational time. Similarly to [6,20] present FE for-
mulation considers gradient material models with internal
variables being the only ones of non-local character. This reduces
the involved complexity of the FE formulation.

After a brief summarization of the main features of the thermo-
dynamic material theory for porous materials [10] in Sections 2
and 3, the paper focuses in the formulation of the proposed four
node FE for gradient-based porous media in Section 4. In Section
5, the numerical analyses illustrate the predictive capabilities of
the proposed FE in combination with the considered constitutive
theory to reproduce the different failure modes of partially satu-
rated porous materials depending on the stress state and hydraulic
conditions.
2. No local gradient plasticity for porous media

In this section the thermodynamically consistent gradient
plasticity theory for porous media by Mroginski et al. [10] is
summarized.
2.1. Dissipative stress in porous media

Based on previous studies developed by [24,25], it is assumed
that arbitrary thermodynamic states of the dissipative material
during isothermal processes are completely determined by the
elastic strain tensor ee = e � ep, and the internal variables qa with
a = s, p for solid or porous phase, respectively, which are consid-
ered here as scalars. When considering poroplastic materials the
elastic variation of fluid mass content me = m �mp needs also to
be included as a thermodynamic argument of the free energy,
see [25]. It is further assumed that internal variables are the only
one of non-local character and, therefore, the spacial gradients
rqa are also included in the formulation, see [10,26,27]. The exten-
sion to more than two scalar internal variables is straightforward.
Hence, both qa and rqa together with ee and me will appear as
arguments in the Helmholtzs free energy

W ¼ Wðee;me; qa;rqaÞ ð1Þ

while the Clausius–Duhem inequality (CDI) resultsZ
X

1
h

"
ðr� q@eeWÞ : _eþ ðp� q@me WÞ _mþ q@ee W : _ep þ q@me W _mp

�
X

a
q@qaW _qa �

X
a

q@rqaWr _qa

#
dX P 0 ð2Þ

where r is the stress tensor, p the pore pressure, q the mass density,
and the compact notation @xð�Þ ¼ @ð�Þ

@x was adopted for partial deriv-
atives. By integrating the gradient term by parts and using de Diver-
gence Theorem resultsZ

X

1
h
½ðr� q@ee WÞ : _eþ ðp� q@me WÞ _mþ q@eeW : _ep þ q@meW _mp

þ
X

a
Qa _qa�dXþ

Z
@X

X
a

Q ðbÞa _qa d@X P 0 ð3Þ

where the dissipative stresses Qa and Q ðbÞa are defined as

Qa ¼ �q@qaW�r � ðq@rqaWÞ in X ð4Þ
Q ðbÞa ¼ �q@rqaWn on @X ð5Þ

In the standard local theory it is postulated that the inequality
(3) must hold for any choice of domain and for any independent
thermodynamic process. As a result, Colemans equation are for-
mally obtained like in local plasticity

r ¼ q@ee W ð6Þ

p ¼ q@me W ð7Þ

D ¼ r : ee þ p _mp þ
X

a
Qa _qa P 0 in X ð8Þ

DðbÞ ¼
X

a
Q ðbÞa _qa P 0 on @X ð9Þ

In case p = 0, above equations take similar form to the formula-
tions by [26,27] for non-porous media. Also, from Eqs. (8) and (9) it
can be concluded that the dissipative stress Qa can be decomposed
into the local and non-local components

Qa ¼ Qloc
a þ Q nloc

a ð10Þ

with

Qloc
a ¼ �q@qaW ð11Þ

Qnloc
a ¼ �qr � ð@rqaWÞ ð12Þ
2.2. Thermodynamically consistent gradient-based elastoplastic
constitutive relationship

Following [26,27], the free energy density of non-local gradient
poroplastic materials can be additively expressed as

Wðee;me; qa;rqaÞ ¼ Weðee;meÞ þWp;locðqaÞ þWp;nlocðrqaÞ ð13Þ

with the elastic energy density,

qWe ¼ r0 : ee þ p0me þ 1
2
ee : C0 : ee þ 1

2
MðB : ee �meÞ2 ð14Þ
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and the local and non-local plastic energy densities Wp,loc and
Wp,nloc, respectively, expressed in terms of the internal variables
qa and their gradients rqa.

2.3. Non-local plastic flow rule

The hardening rule and the non-associated flows of both plastic
strains and fluid mass content are formulated in rate form as

_ep ¼ _k@rU
� ¼ _kmr; _mp ¼ _k@pU

� ¼ _kmp;

_qa ¼ _k@QaU
� ¼ _kmQa ð15Þ

being U⁄ the plastic dissipative potential.
To complete problem formulation in X, the Kuhn–Tucker com-

plementary conditions are introduced

_k P 0; Uðr;p;QaÞ 6 0; _kUðr;p;QaÞ ¼ 0 ð16Þ

In the undrained condition, when the additive decomposition of
the free energy potential in Eq. (13) and the flow rules of Eq. (15)
are considered, the following expressions of _r and _p are obtained

_r ¼ C : _e� _kC : mr �MB _mþ _kMBmp ð17Þ
_p ¼ �MB : _eþ _kMB : mr þM _m� _kMmp ð18Þ

being M the Biot’s module, B = bI with b the Biot coefficient and I the
second-order unit tensor, and C = C0 + MB � B. Thereby is C0 the
fourth-order elastic tensor.

After multiplying Eq. (18) by B and combining with Eq. (17), a
more suitable expression of the rate of the stress tensor for drained
condition is achieved

_r ¼ C0 : _e� B _p� _kC0 : mr ð19Þ

while the evolution laws of the local and non-local dissipative stres-
ses in Eq. (10) result

_Q loc
a ¼ � _kHloc

a mQ ð20Þ
_Q nloc

a ¼ l2ar � Hnloc
a r _kmQa þ _kHnloc

a � rQam2
Q

� �
ð21Þ

where m2
Q ¼ @

2U�=@Q2. Thereby, the local hardening/softening

module Hloc
a have been introduced as well as the non-local harden-

ing/softening tensor Hnloc
a as defined in [26]

Hloc
a ¼ q

@2Wp;loc

@q2
a

; Hnloc
a ¼ q

1

l2
a

@2Wp;nloc

@rqa@rqa
ð22Þ

with Hnloc
a a second-order positive defined tensor. For the character-

istic length la three alternative definitions can be given, see
[19,28,29]. On the one hand, it can be defined as a convenient

dimensional parameter so as Hloc
a and Hnloc

a will get the same dimen-
sion. On the other hand, la can be interpreted as an artificial numer-
ical stabilization mechanism for the non-local theory. Alternatively,
as a physical entity that characterizes the material microstructure.
In this last case, and for calibration purpose, specific numerical
analysis on the representative volume element (RVE) need to be
performed at micro scale level.
3. Modified Cam Clay constitutive model for gradient plasticity

The modified Cam Clay plasticity model was originally pro-
posed by [30] for normally consolidated clays. Due to its good pre-
dictions of consolidated clay mechanical behavior and to the
reduced number of involved parameters the Cam Clay material
theory has been extended to a wide range of soils including unsat-
urated ones [31,32] and cyclic external actions [33].

The yield function is defined by
Uðr0; s;QaÞ ¼ r0 þ s2

m2r0

� �
� Qa ð23Þ

where r0 = I1/3 � bp is the effective hydrostatic stress, s ¼
ffiffiffiffiffiffiffi
3J2

p
the

shear stress, m the Critical State Line (CSL) slope and Qa the thermo-
dynamically consistent dissipative stress equivalent to the precon-
solidation pressure pco. Also I1 and J2 are the first and second
invariants of the stress tensor and the deviator tensor, respectively.

To avoid overestimation of the volumetric compressibility coef-
ficient K0 by the conventional critical state model a non-associated
flow rule was introduced by [21,34]. Thereby, the following plastic
potential is proposed

U�ðr0; s;QaÞ ¼ gðr02 � r0QaÞ þ
s
m

� �2
ð24Þ

gis a coefficient that limits the influence of the volumetric pressure
during softening regime.

The thermodynamic consistency is achieved by assuming the
following expression for the dissipative part of the free energy in
Eq. (13)

qWpðep;repÞ ¼ qWp;locðepÞ þ qWp;nlocðrepÞ

¼ � 1
vp0

co expðvepÞ � 1
2

l2aHnlocr � rep ð25Þ

where the coefficient v is defined by

v ¼ � bð1þ e0Þ
c� j

ð26Þ

being b an adjustment coefficient (assumed b = 1 in this work), e0

the initial void ratio, c a hardening parameter and j the swelling in-
dex (obtained from the odometry test).

The volumetric plastic strain of the continuous porous media,
ep, is expressed as a function of the internal variables in order to
describe the plastic evolutions of the porous and solid phases, in
terms of the plastic porosity /p and the volumetric plastic strain
of soil grain ep

s , respectively [25]

ep ¼ /p þ ð1� /0Þep
s ð27Þ

From Eqs. (11) and (12) the following expressions for local and
non-local dissipative stresses are obtained

Qloc
a ðepÞ ¼ �q@epW ¼ p0

co exp v /p þ ð1� /0Þep
s

� �� �
ð28Þ

Qnloc
a ðrepÞ ¼ �qr � ð@repWÞ ¼ l2

s Hnloc
s r2ep

s þ l2pHnloc
p r2/p ð29Þ

where ls and lp are the internal characteristic lengths for solid skel-
eton and porous phase, respectively.

In the present formulation the combination between both inter-
nal characteristic lengths, the one for the solid skeleton ls and the
other for the porous phase lp, defines the width of the shear band
where the degradation of the material located in between active
cracks occurs.

In quasi-brittle porous materials like soils and concrete the
strength degradation process in the post-peak regime may be con-
trolled by two independent variables, the acting confining pressure
during softening process and the pore water content. This depen-
dence can be mathematically described though the expression
defining the internal characteristic length.

From Vrech and Etse [27] the internal characteristic length for
solid phase takes the following form (see Fig. 1)

lsðr0Þ ¼

0 for r0 6 0

ls;m
2 1þ sin p

Qa=2 r
0 � p

2

� �h i
for 0 < r0 6 Qa=2

ls;m for r0 > Qa=2

8>>>>>><
>>>>>>:

ð30Þ



Fig. 1. Internal characteristic length of solid phase vs. r0 .
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The internal characteristic length of the porous phase is gov-
erned by the saturation degree Sw or, indirectly by the acting pore
pressure. As the soil specimen dries, lp tends to zero, and brittle
failure behavior is expected. On the other hand, when the water
content increases, lp tends to its maximum value lp,m, and ductile
failure response is expected.

The saturation degree of the porous medium can be associated
with the pore pressure (or suction) by a logarithmic expression
[35,36] which depends on different experimental coefficients, i.e.
the soil–water characteristic curve. Another option to describe
the relationship between the saturation degree and the pore pres-
sure is an hyperbolic function as proposed by [37]. This function
can be easily inverted, while no further algorithm for the solution
of the root is required. Then,

p ¼ 1
2 b

ln
aþ Sw

a� Sw

� �
ð31Þ

being a and b two setting parameters. In Fig. 2a Eq. (31) is plotted,
being p100 the pore water pressure corresponding to a fully satu-
rated specimen.

Thus, the following expression for the internal characteristic
length of the porous phase is proposed (see Fig. 2b)

lpðpÞ ¼
0 for p 6 0
a lp;m tanhðb lpÞ for 0 < p 6 p100

	
ð32Þ
Fig. 2. (a) Saturation degree vs. pore pressure. (b) Internal c
4. Finite element formulation

In this section the finite element formulation is presented to-
gether with its iterative algorithm to solve the field variable incre-
ments of boundary value problems (BVP) related to gradient-based
poroplastic media. The solution of the BVP should enforce the equi-
librium, fluid mass balance and yield conditions, at the end of each
increment by considering the hydro-mechanical coupling.
4.1. Incremental formulation

At the end of the j + 1 iteration of current load step, the incre-
mental equilibrium condition, the fluid mass balance, and the yield
condition are studied in a weak form as follows,Z

X
deT : rjþ1 dX�

Z
@X

duT tjþ1 d@X ¼ 0 ð33ÞZ
X

dp _mjþ1 dX�
Z

X
rdp �wjþ1 dXþ

Z
@X

dpwjþ1 � n d@X ¼ 0 ð34ÞZ
X

dk Uðr;p;QaÞjjþ1 dX ¼ 0 ð35Þ

being w = �k � rp the generalized Darcy’s law for porous media
[25,36,38].

Differently to the local plasticity algorithm, Eq. (35) is not satis-
fied strictly but in a weak form. Furthermore, it is only fulfilled
when the convergence is reached and not necessarily during the
iterative process.

Considering the decomposition of stress tensor in the j + 1 iter-
ation as rj+1 = rj + Dr, where D the increment of the field variable
at the end of iteration j + 1 and iteration j, and replacing in Eq. (33)
resultZ

X
deT : Dr dX ¼

Z
@X

duT tjþ1 d@X�
Z

X
deT : rj dX ð36Þ

replacing Dr in the last equation by the linearized form of Eq. (19),Z
X

deT : ðC0 : De� BDp� C0 : mrDkÞdX

¼
Z
@X

duT tjþ1d@X�
Z

X
deT : rjdX ð37Þ

It can be observed that Eq. (37) is very similar to the incremen-
tal equilibrium condition of classical plasticity as it does not in-
clude an explicit dependence on the Laplacian of the plastic
multiplier.

Considering the incremental decomposition of the infiltration
vector wj+1 = wj + Dwj+1 and the rate of the fluid mass content _m
haracteristic length of porous phase vs. pore pressure.
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obtained from Eq. (18), the governing Eq. (34) can be reformulated
asZ

X
dp

Dp
M
þ B : De� ðB : mr �mpÞDk

� �
dX

¼ �Dt
Z

X
rdp � k � rpj dX� Dt

Z
X
rdp � k � rDp dX� Dt

�
Z
@X

dpwjþ1 � n d@X ð38Þ

Following [19] the yield function U can be approximated with
sufficient accuracy by means of a linear Taylor series around
ðrj; pj;Qaj

Þ as

Uðr;p;QaÞjjþ1 ¼ Uðr; p;QaÞjj þ nr : Drþ npDpþ nQaDQa ð39Þ

When all state variables are spatially homogeneous it can be as-
sumed that the dissipative stress gradient is negligible, then
rQa = 0, see [26,39–41].

From the additive decomposition of the dissipative stress in Eq.
(10) follows

_Qa ¼ _Q loc
a þ _Qnloc

a ¼ �Hloc
a mQa

_kþ l2
aHnloc

a mQar2 _k ð40Þ

by replacing Eqs. (19) and (40) in Eq. (39) the weak form of the yield
condition is obtainedZ

X
dk Uðr; p;QaÞjjþ1 dX ¼

Z
X

dk Uðr;p;QaÞjj dX

þ
Z

X
dk nr : C0 : De dXþ

Z
X

dk ðnp � nr : BÞDp� nr : C0 : mrDk
h

þ nQa �Hloc
a mQaDkþ l2aHnloc

a mQar2Dk
� �i

dX ¼ 0 ð41Þ
Table 1
Gradient-plasticity algorithm for C1-continuous FE.

(1) Compute matrices of Eq. (51) according to Appendix A
(2) Solve the algebraic system of Eq. (51) in terms of the increments D�u;D�p

and D�k
(3) Update primary variables D�ujþ1 ¼ D�uj þ D�u, D�pjþ1 ¼ D�pj þ D�p and

D�kjþ1 ¼ D�kj þ D�k

(4) On each integration point compute:

Dejþ1 ¼ B D�ujþ1

Dkjþ1 ¼ H D�kjþ1

r2ðDkjþ1Þ ¼ P D�kjþ1

qajþ1
¼ qa0

þmQaDkjþ1

r2qajþ1
¼ r2qa0

þmQar2ðDkjþ1Þ

rt ¼ r0 þ C0 : Dejþ1 � BNpD�pjþ1

IF Uðrt ; qa;r2qaÞjjþ1 > 0

rjþ1 ¼ rt � Dkjþ1C0 : mr

ELSE
rjþ1 ¼ rt

END

(5) Check convergence criterion, i.e. balance between internal and external
energy. If it is not achieved go to 1
4.2. Galerkin discretization

This formulation was originally proposed by [11] for solid mate-
rials. As it can be observed in Eqs. (37), (38) and (41) at most first
order derivatives of the displacement and pore pressure fields ap-
pear as well as second order derivative of the plastic multiplier.
Therefore, displacement and pressure field discretizations require
C0-continuous shape functions that are indicated as Nu and Np,
respectively. However, C1-continuous shape functions, called H,
are required for the plastic multiplier discretization. Then, FE
approximations can be expressed as

u ¼ Nu �u ð42Þ
p ¼ Np �p ð43Þ
k ¼ H �k ð44Þ

where �u; �p and �k are the nodal displacement vector, the pore pres-
sure and the plastic multiplier, respectively. Hence considering
e ¼ rsu ¼ rsNu �u ¼ B �u and replacing the above entities in Eqs.
37, 38 and 41 the following set of integral equations is obtainedZ

X
d�uT BT : C0 : B dX

	 

D�u�

Z
X

d�uT BT : BNp dX
	 


D�p

�
Z

X
d�uT BT : C0 : mrH dX

	 

D�k ¼

Z
@X

d�uT NT
utjþ1d@X

�
Z

X
d�uT BT : rjdX ð45Þ

Z
X

d�p NT
pB : B dX

	 

D�uþ

Z
X

d�p
NT

pNp

M
þ DtðrNpÞT � k � rNp

" #
dX

( )

D�pþ
Z

X
d�pNT

p mp � B : mr
� �

H dX
	 


D�k ¼ �fDt
Z

X
d�pðrNpÞT � k�

rNp dXg�pj � Dt
Z
@X

d�pNT
pwjþ1 � n d@X ð46Þ
Z
X

d�kHT nr : C0 : B dX
	 


D�u

þ
Z

X
d�kHT ½np � nr : B�Np dX

	 

D�p

þ �
Z

X
d�kHT nr : C0 : mr þ Hloc

a

h i
Hþ l2

aHT Hnloc
a P dX

	 

D�k

¼ �
Z

X
d�kHT Uðrj;pj;Qaj

Þ dX ð47Þ

where

r2ðDkÞ ¼ r2ðHÞD�k ¼ PD�k ð48Þ
Hloc

a ¼ nQa Hloc
a mQa ð49Þ

Hnloc
a ¼ nQa Hnloc

a mQa ð50Þ

Eqs. (45)–(47) must hold for any admissible variation of d�u; d�p
and d�k. Thus, the algebraic equation in matrix form of the proposed
FE for gradient-dependent poroplastic media can be expressed as

�Kss Q sp Q sk

Q ps Kpp þ DtHpp Q pk

Q ks Q kp �Kkk

2
64

3
75

D�u
D�p

D�k

2
64

3
75 ¼ Fint

s � Fext
s

�Fp

�Fk

2
64

3
75 ð51Þ

Submatrices of Eq. (51), presented in Appendix A, were obtained
from Eqs. (45)–(47).

In Table 1, the solution algorithm of the BVP is summarized.
The main difference between this C1-continuous FE formulation

and the one based on C0 continuity approximations for gradient
plasticity proposed by [6,20] is the solution procedure. While pres-
ent formulation requires only the solution of Eq. (51) the FE ap-
proaches proposed by the aforementioned authors require an
additional global iteration to obtain the plastic multiplier.

Another meaningfully characteristic of present FE approach for
gradient-poroplasticity as compared to standards classical plastic-
ity related formulations is that the return mapping algorithm for
the plastic multiplier is not longer required, since this state param-
eter is obtained from Eq. (51).
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4.3. FE stability and boundary conditions

In this section the stability requirements of the proposed FE are
analyzed.

As previously discussed, the thermodynamically consistent gra-
dient-plasticity formulation for porous media proposed by the
authors [10] which is particularized here for saturated soils, in-
volves the Laplacian of the plastic multiplier in its variational form.
Therefore, C1-continuous shape function are needed in order to
appropriately describe the plastic multiplier field in the element
domain as well as on its boundary.

Consolidation problems in saturated soils require the fulfilment
of the Babuska–Brezzi condition [37,42] to avoid instabilities in
their numerical solution procedures. This is particularly necessary
when approaching the undrained limit state, where the permeabil-
ity matrices turn zero. In this case, the system to be solved turns
similar to those corresponding to incompressible elastic solids
and, therefore, no real solution of Eq. (51) may arise. Nevertheless,
if the undrained limit state can never be achieved the choice of fi-
nite element shape functions is wide.
Fig. 3. 8-Node quadrilateral FE for gra

Fig. 4. Hermitian shape function for node 1: (a) for plasti
In present formulation the isoparametric 8-node quadrilateral
FE for 2D problems is adopted. This element was sufficiently tested
in several problems regarding multiphasic fluid flow in porous
media [36,37,42–46]. The Babuska–Brezzi condition is properly
satisfied by considering shape functions for the displacement field
Nu that are of higher order than the one considered for the pressure
field Np. This FE was also extensively used in gradient-plasticity
problems [19,47] related to non-porous materials with very accu-
rate results. Actually, this type of FE behaves as the combination
of three separated elements. On the one hand, two elements based
on C0 approximations for the displacements (eight-node FE) and
the pore pressure (four-node FE), respectively. On the other hand,
a four-nodes rectangular element with hermitian shape functions
to approximate the plastic multiplier.

Fig. 3 shows proposed FE for porous media with the correspond-
ing degrees of freedom of each element node. In Fig. 4 the Hermi-
tian shape functions of element node 1 that are considered for the
plastic multiplier interpolation are plotted.

The additional degrees of freedom in the proposed FE formula-
tion for porous media require their corresponding boundary condi-
dient-plasticity in porous media.

c multiplier k, (b) for @xyk, (c) for @xk and (d) for @yk.



Table 2
Soil material parameters.

Material parameters Value

CSL slope, M 1.00
Preconsolidation pressure, pco 100.00 MPa
Initial porosity, /0 0.4
Bulk compressibility coefficient, K0 1000.00
Solid compressibility coefficient, Ks 1500.00
Fluid compressibility coefficient, Kfl 500.00
Biot coefficient, b = 1 � K0/Ks 0.33
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tions. Following [48–51] we adopt Eq. (52) for the non-standard
boundary condition. This is the natural and most appropriated
choice, since the averaged strain measure itself cannot be con-
strained to zero on the boundary, in order to avoid the FE stiffness
matrix to turn singular.

@nk ¼ 0 and @nmk ¼ 0 ð52Þ

where n and m denote the normal and tangential directions to the
model boundary, respectively.
Young module, E 20000.0 MPa
Poisson ratio, m 0.2

Local hardening/softening module, Hloc
s ¼ Hloc

p
�0.1 � E
5. Numerical result

In this section numerical evaluations of the proposed FE formu-
lation for gradient-based poroplasticity are presented. The main
objective is to evaluate the robustness of the numerical tools and
the predictive capabilities of the constitutive theory proposed by
the authors [10] when combined with the non-associated Cam Clay
model as described in Section 3. The influence of the gradient char-
acteristic length on the ductility in post-peak regime is also
evaluated.

A plane strain specimen under biaxial state of loading is con-
sider in order to evaluate localized failure mode of porous media.
Fig. 5 shows geometry and displacements boundary conditions of
the specimen while material parameters are given in Table 2. The
dimensions assumed are B = 60 mm and H = 120 mm. Drained con-
ditions for the porous phase are also considered in this numerical
example.

To create an inhomogeneous loading state and to induce local-
ized failure mode a weakened region of d = 10 mm in the bottom
left-hand corner of the specimen was considered by assigning an
initial preconsolidation pressure which is 10% reduced as com-
pared to the material outsides this weakened zone (see Fig. 5).

The supplementary boundary conditions considered in this
analysis due to the additional degrees of freedom of the problem
are: @xk = 0 on left and right boundaries, @yk = 0 on top and bottom
boundaries, and @xyk = 0 along the whole boundary.

Four different meshes (three structured, Fig. 6a, c and d, and one
non-structured, Fig. 6b) were considered in this analysis in order to
evaluate the FE mesh size and orientation sensitivities of the
numerical predictions. Therefore, the characteristic length of the
saturated soil is assumed constant ls = 3.5 mm. As can be observed
in Fig. 6 the localization band width remains practically constant in
all meshes when the gradient length is set constant, w = 2 pls -
Fig. 5. Geometry and boundary conditions.
ffi 20 mm. This result demonstrates the capability of the proposed
FE formulation to capture the considered non-local effects through
the additional degrees of freedom.

The mesh objectivity or softening regularization capabilities of
the numerical predictions can also be demonstrated by observing
the good agreement between the load–displacement curves for
the four different meshes in Fig. 7. Also the stress path of the mate-
rial point where the plastic process initiates is illustrated in Fig. 8.

A second set of analyses of this test was performed with three
different gradient characteristic lengths and totally drained condi-
tions. Only the 12 � 24 regular mesh of Fig. 6 was used in this case.
Fig. 9 shows FE predictions considering ls = 3.0 mm, ls = 3.5 mm and
ls = 4 mm, being its localization band width w ffi 15 mm,
w ffi 20 mm and w ffi 25 mm, respectively. It can be clearly ob-
served in these results that the proposed FE formulation is able
to reproduce the model sensitivity to the characteristic length. A
significant improvement of the ductility takes place under increas-
ing ls.

The equivalent plastic strain distribution at residual strength of
the numerical analysis can be observed in Fig. 10. The increment of
the plastic dissipation zone with increasing internal characteristic
length can be clearly recognized.

The third set of analysis was carried out varying the confine-
ment pressure in the soil specimen. As explained before, the inter-
nal characteristic length of the solid skeleton ls is a function of the
acting confining pressure (see Fig. 1).

In this third set of analysis three different confining pressure
were applied, 5, 13 and 21 MPa, and the extreme value of the inter-
nal characteristic length of the solid phase is ls, m = 7 mm. Fig. 11
shows the transition from quasi-brittle to ductile behavior of the
considered soil specimen. Also, for a better understanding of the
results in Fig. 11, the stress path of the material point where the
plastic process initiates is depicted in Fig. 12.

Finally, a numerical example of the previous test was performed
considering three different levels of initial pore pressure: p = 20,
p = 40 and p = 60. Also the coefficients of the Eq. (32) are a = 1.0,
b = 0.02 and the extreme value of the internal characteristic length
of the porous phase is lp,m = 7 mm. In Fig. 13 the equivalent plastic
strain in the soil specimen is depicted. As in previous set of analy-
sis, it can be easily recognize in this case the transition from ductile
to brittle failure mode as the pore pressure level reduces.

6. Conclusions

In this paper a thermodynamically consistent finite element for-
mulation for gradient-based poroplasticity with non-local effect
restricted to the internal variables was proposed. The element
formulation includes C0 continuous approximations for both the
pore pressure and the displacements fields, while a C1-continuous
interpolation function for the internal variable. These Hermitian
functions need to be considered to approximate the gradient fields



Fig. 6. FE mesh dependence.

Fig. 7. Normalized load–displacement curves for different mesh size and orientation.

Fig. 8. Stress path and yield surface evolution.
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Fig. 9. Normalized load–displacement curve for variable ls.

Fig. 10. Equivalent plastic strain for different constant values of ls, (a) ls = 3.0 mm, (b) ls = 3.5 mm and (c) ls = 4 mm.

Fig. 11. Equivalent plastic strain considering ls as a function of confining pressure, (a) 5, (b) 13 and (c) 21 MPa.
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Fig. 12. Stress path and yield surface evolution corresponding to three confining pressures, (a) 5, (b) 13 and (c) 21 MPa.

Fig. 13. Equivalent plastic strain considering lp as a function of pore pressure, (a) p = 20, (b) p = 40 and (c) p = 60.
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that are included in the variational problem due to the non-local
gradient formulation assumed at the constitutive level.

The numerical analyses in this work demonstrate the capabili-
ties of the proposed FE formulation to reproduce failure behaviors
of saturated porous media under different boundary conditions
and material features. Particularly, it is shown that the proposed
FE is able to reproduce model sensitivity regarding the gradient
characteristic length while assuring mesh objectivity.

Appendix A. Matrix expressions of Eq. (51)

The matrix expressions of the FE stiffness matrix for gradient-
plasticity Eq. (51) are

Kss ¼
Z

X
BT : C0 : B dX ðA:1Þ

Kpp ¼
Z

X

NT
pNp

M
dX ðA:2Þ

Kkk ¼
Z

X
HT nr : C0 : mr þ Hloc

a

h i
Hþ l2

aHT Hnloc
a P dX ðA:3Þ

Hpp ¼
Z

X
ðrNpÞT � k � rNpdX ðA:4Þ
Q sp ¼
Z

X
BT : BNp dX ðA:5Þ

Q ps ¼
Z

X
NT

pB : B dX ðA:6Þ

Q sk ¼
Z

X
BT : C0 : mrH dX ðA:7Þ

Q ks ¼
Z

X
HT nr : C0 : B dX ðA:8Þ

Q pk ¼
Z

X
NT

p ½mp � B : mr�H dX ðA:9Þ

Q kp ¼
Z

X
HT ½np � nr : B�Np dX ðA:10Þ

Fint
s ¼

Z
X

BT : rjdX ðA:11Þ

Fext
s ¼

Z
@X

NT
utjþ1d@X ðA:12Þ

Fp ¼ DtHpp�pj þ Dt
Z
@X

NT
pwjþ1 � n d@X ðA:13Þ

Fk ¼
Z

X
HT Uðrj;pj;Qaj

Þ dX ðA:14Þ
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