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ABSTRACT. We briefly review the notion of second order constrained (continu-
ous) system (SOCS) and then propose a discrete time counterpart of it, which
we naturally call discrete second order constrained system (DSOCS). To il-
lustrate and test numerically our model, we construct certain integrators that
simulate the evolution of two mechanical systems: a particle moving in the
plane with prescribed signed curvature, and the inertia wheel pendulum with
a Lyapunov constraint. In addition, we prove a local existence and uniqueness
result for trajectories of DSOCSs. As a first comparison of the underlying
geometric structures, we study the symplectic behavior of both SOCSs and
DSOCS:s.

1. Introduction. Discrete Variational Mechanics originated in the 60’s, motivated
by the construction of variational numerical integrators for the equations of motion
of (continuous) mechanical systems. Since then, significant progress has been made
in the study of discrete time versions of unconstrained systems and systems with
holonomic constraints. The advantage offered by the resulting integrators, com-
pared to other numerical methods, is that they take into account the underlying
geometric structure present in the mechanical problem and, therefore, can be de-
signed to respect, in some way, the momentum, energy, or symplectic structure
(see [26] and the multiple references therein). The discrete dynamics in the more
general case of nonholonomic constraints' was introduced more recently, in 2001,
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IClassical references for (continuous) nonholonomic systems are [17, 28]. More recent ones
are [3, 13].
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by J. Cortés and S. Martinez in [12]. Nonholonomic integrators have become of
interest mainly because of their good performance in numerical experiments (see,
for instance, [27, 5]). Still, they are less understood theoretically than the preceding
ones.

Even broader than the continuous nonholonomic case, we have mechanical sys-
tems with higher order constraints, which have been studied in [7, 8, 19]. They are
Lagrangian systems with constraints involving higher order derivatives of the po-
sition. They have been considered for describing some simplified models of rolling
viscoelastic bodies and systems with friction [8, 7]. They have also appeared in
applications to the control of underactuated mechanical systems [19, 21, 22] (see
Section 4.2). Such applications consist in finding constraints that ensure the desired
behavior of the system under consideration and, then, taking the related constraint
force as the control law (see also [25, 6, 30]). It is a general fact that every control
signal can be obtained by this procedure using second order constraints [21]. For ex-
ample, for asymptotic stabilization of underactuated systems, Lyapunov constraints
can be used (see [22] and Section 4.2).

It is worth remarking that the constraints appearing in most of the interest-
ing applications, like those previously mentioned, involve, at most, second order
derivatives, i.e. positions, velocities and accelerations. For this reason, we will only
consider systems with (at most) second order constraints in this work.

The practical difficulty of solving the equations of motion of (continuous) me-
chanical systems with nonholonomic constraints leads to the numerical integrators
mentioned above. The aim of this paper is to propose a discrete time counterpart
of the (continuous) second order constrained Lagrangian systems. We study some
basic properties of those discrete time systems and use them to construct numerical
integrators for the continuous ones.

The plan for the paper is as follows. In Section 2 we review the notion of (contin-
uous) second order constrained Lagrangian system. In addition, we prove a result
characterizing the evolution with the flow of the natural Lagrangian symplectic
structure of such a system. In Section 3 we introduce the discrete second order
constrained Lagrangian systems, their dynamics and their equations of motion. In
Sections 4.1 and 4.2 we apply the discrete formalism just developed to two ex-
amples. There we find numerical integrators and test their quality by comparing
against either the exact solution or a well known integrator of the corresponding
continuous system. On the other hand, in Section 5 we prove some results about
the dynamics of the discrete systems: the existence of a well defined local flow and
a discrete analogue of the evolution of the symplectic form studied in Section 2.
Last, in Section 6, we comment on some directions of future work.

Finally, we would like to thank the referees for their suggestions and remarks
that have contributed to make this work more complete.

Notation. Throughout the paper 7x is the projection of the tangent bundle T X
onto X.

2. Second order constrained Lagrangian systems. In this section we review
the notion of higher order constrained system such as it appears in [7, 20]. In
particular, we shall only consider first order Lagrangian functions (this partially
excludes the systems studied in [24]). The focus of our exposition is on systems
with constraints of order at most 2 for the reason explained in Section 1. Recall
that 7(2)Q denotes the second order tangent bundle of the manifold Q (see [14, 15]).
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Definition 2.1 (SOCS). A second order constrained Lagrangian system is a quadru-
ple (@, L,Ck, Cy) where

@ is a finite dimensional differentiable manifold, the configuration space,

. L:TQ — R is a smooth function on the tangent bundle of @, the Lagrangian,
. Cx € T®Q is a submanifold, the kinematic constraints, and

. Cy cTRQ xq T'Q (where X denotes the fiber product on @) is such that
for every ¢ € Q and n € Tq(z)Q, the set Cv |, := Cy N ({n} x T,Q), naturally
identified with a subset of T,(Q), is either empty or a vector subspace, the
virtual displacements or variational constraints.

For every system of this type, the action functional is defined by S(v) :=
j;tol L(+'(t)) dt, where v : [tg,t1] = Q is a smooth curve in @ and ~/(t) € TQ is its
velocity (in what follows, v(2) : [to, 1] — T Q will denote its 2-lift). An infinites-
imal variation of 7y is a smooth curve &7 : [t, t1] — T'Q such that 7o (5v(t)) = v(t)
Vi, and it is said to have vanishing end points if 6(tp) = 0 and d+(t1) = 0. The
dynamics of a SOCS is determined by the following Principle.

Definition 2.2 (Lagrange—d’Alembert’s Principle for SOCSs). A smooth curve 7 :
[to, t1] — @ is a trajectory of the SOCS (Q, L, Ck, Cy) if

1. it satisfies the kinematic constraints: () (t) € Ck Vt € [to, t1]; and
2. it is a critical point of S for the admissible variations: dS(y)(d7y) = 0 Vo~
with vanishing end points and such that §v(t) € Cv |y ) Vt € [to, t1].

Remark 2.3. All holonomic and nonholonomic systems, i.e. constrained systems
that satisfy d’Alembert’s Principle, can be seen as SOCSs. Indeed, if we have a
system (@, L) with constraints given by a distribution D C T'Q (with D integrable
in the holonomic case), defining Cx := (1(?))~1(D) and Cy := T?)Q x o D, where
7(12) . T)Q — TQ is the canonical projection, then (Q, L,Ck,Cy) is a SOCS
whose dynamics recovers the dynamics of the original system. With the same idea,
generalized nonholonomic systems (see [25, 20, 6]) can also be seen as SOCSs.

Systems with (at most) second order constraints satisfying the natural gener-
alization of Chetaev’s Principle [10], as those appearing in [24] (with first order
Lagrangians, as in [31]), define a particular subclass of SOCSs.

On the other hand, second order vakonomic systems, as considered in [1], are not
SOCSs because they are purely variational —that is, their trajectories are critical
points of the action restricted to the admissible paths— and they allow Lagrangians
that depend on higher order derivatives of the path.

When Cy |, is nonempty for all n € Cx, and Cy is a submanifold, Theorems 17
and 19 in [7] prove that v is a trajectory of the system if and only if, V¢ € [tg, t1],

Y@ (t)eCx  and  DprL(y? (1)) € Fylye ), (1)

where Dpp L : T Q — T*Q is the well known Euler-Lagrange map (see [9], Thm.
2.2.3) and Fy|, := (Cv|,)° for all n € T Q is the space of constraint forces.
Notice that for nonholonomic systems, given ¢ € @ and n € Tq(z)Q, we have that

Fy|, = Dy (see Remark 2.3), that is, the constraint forces vanish on the allowed
velocities, which is the content of d’Alembert’s Principle.
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Under some conditions, it is possible to define the flow? Fy, : TQ xR — T'Q of the
system. We are interested in studying the symplecticity of the map F} : TQ — TQ
corresponding to flowing for a fixed time ¢t. Recall that the Legendre transform of
Lis FL:TQ — T*Q defined by

d
FL(vg)(wy) := e (L(vg + 2z wg)), Vug,wg € T,Q.
z=0
Next, define the Lagrangian 1-form 67, € QY(TQ) by
01(vg)(Vo,) := FL(vg)(D7q(vg)(Va, ),  VVo, € 1o, (TQ),
and the Lagrangian 2-form Qp € Q*(TQ) by
QL = —d@L,

which is symplectic for regular Lagrangians. It has been shown in [12] (Sect. 5.1)
and in [16] (Sect. II) that, for nonholonomic systems, the symplectic form Q, is
preserved by the corresponding flow F, up to an additive exact form. Our next re-

sult extends this property to SOCSs and, in particular, to generalized nonholonomic
systems.

Theorem 2.4 (Evolution of Q). Let (Q,L,Ck,Cyv) be a SOCS with flow F, :
TQ xR —=TQ and t be any fixed time. Then,

(FL)*(90) = O+ dv,
for v € QYTQ) defined by

t
v(q,q)(0q,8q) ::/ DrL(y?(s))(0q(s)) ds,  ¥(3q,64) € T(y,4)(TQ),
0
where v is the trajectory with initial conditions (q,q) and, for s € [0,1],
6q(8) = D(TQ © F[g/)(q7 Q)((Sqa 5(]) € T’y(s)Q

Proof. The proof is based on [26] (Sect. 1.2.3). Given a smooth curve v : [0,t] — Q
and any variation 6 of v (not necessarily with vanishing end points),

dS(v)(67) :/O DprL(v'?(5))(67(s)) ds + 0.7 (5))(67(s), #)[5

where * is arbitrary but such that (dv(s), *) € T/ (5)(T'Q). We define the restricted
action functional S : TQ — R by

S(a,4) = S(4),
where 4 is the trajectory of the system with initial conditions (g,¢). For all
(¢,q) € TQ, and all (0q,0q) € T(4,4(TQ), we define a smooth curve in T(T'Q)
by (0q(s),04(s)) := D(F3)(q,¢)(dq,d¢), whose first component is an infinitesimal
variation d4 of 4. We compute

dS(q,d)(6¢,89) = dS(3)(5%)
t
B / DerL(7® (5))(64(s)) ds + 0r(7(s))(5a(s), 5d(s))[5,
0
2In this section we shall ignore issues related to global versus local flows. For SOCSs, there are

certain conditions of existence and uniqueness of trajectories when Cy = (7(12) x idpg) = (CY,)
for some C{, C TQ xq TQ (see [19], Sect. IV).
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where we have chosen * to be d¢(s) conveniently. Rewriting the second term in the
last equality as

((FL)*(0r) = 0r)(a, 9)(dq, 84),

we find that the 1-form v of the statement is dS — ((F%)*(81) — 61), which is well
defined on T'Q. Finally,

dv = d (dS = ((Ff)"(00) = 0)) = d5 — ((F£)"(d0s) — ddz) = (Ff)* () — Q.
O

Remark 2.5. The flow Fp, is a symplectomorphism if dv = 0. When a SOCS
is unconstrained, which, in the context of Remark 2.3, means that D = TQ, we
have that DgyL(7?(s)) = 0 in the definition of v. Hence, in this case, Fy, is a
symplectomorphism.

In the holonomic case, i.e. D is an integrable distribution, if ¥ is an integral
submanifold of D, the flow F, preserves ¥ and is a symplectomorphism with respect
to the restriction of Qy, to it. Indeed, when (dq,d¢) € T(TY), we have that dq(s)
remains in T'Y, so that the term Dy L(7(?(s))(d¢(s)) in the definition of v vanishes.

3. Discrete second order constrained Lagrangian systems. Just as SOCSs
are an extension of the notion of nonholonomic system, in this section we introduce
a discrete time counterpart of SOCSs that is an extension of the notion of discrete
nonholonomic system introduced in [12]. Later, in Section 5, we study the existence
and uniqueness of trajectories and the symplectic behavior of the discrete time
evolution.

Notation. p;"; is the projection on the i-th, j-th, and so on, variables of Q™
onto Q.

Definition 3.1 (DSOCS). A discrete second order constrained Lagrangian system
is a quadruple (Q, Lq, Di, Dy) where
1. @ is as in Definition 2.1,
2. Lg:Q x Q — R is a smooth function, the discrete Lagrangian,
3. Dx C Q x Q x @Q is a submanifold, the discrete kinematic constraints, and
4. Dy C (pg)* (T'Q) (where (pg)* (TQ) is the pullback bundle under p3) is such
that for every (¢,¢',q") € Q* the subset Dy | .41 := Dv N ({(¢,4¢',¢")} x
Ty @), naturally identified with a subset of T, @, is a vector subspace, the
discrete variational constraints.

The discrete action functional is defined by S4(q.) := ZkN:_Ol La(qk, qr+1) where
g :{0,...,N} — @ is a discrete path in Q. An infinitesimal variation of q. consists
of a map d¢g. : {0,..., N} — T'Q such that dg; € T,, Q Vk, and it is said to have
vanishing end points if dgo = 0 and dgy = 0. The following Principle determines
the dynamics of DSOCSs.

Definition 3.2 (Discrete Lagrange-d’Alembert Principle for DSOCSs). A dis-
crete path ¢. : {0,...,N} — @, with N > 2, is a trajectory of the DSOCS
(QaLdaDKvDV) if

1. it satisfies the discrete kinematic constraints:

(%—1,%7%-&-1) S DK Vk € {1a s '7N - 1}7 and
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2. it is a critical point of Sy for the admissible variations: dSg(q.)(dq.) = 0, Vdq.
with vanishing end points and such that

6q;€EDV\( Vke{l,...,N —1}.

Qk—1,9kqk+1)

Let X be a manifold and X" its m-th Cartesian product. When F : X" — R"
is a smooth map, its derivative DF is, in a natural way, a differential form on X™
with values in R™. On the other hand, if i; : (p*)*(T'X) — T'(X™) is the inclusion

’LJ((SLL']) = (07 .. ,07 5{Ej ,0, N ,0),
~~
J
we define
When ¢. is a trajectory of a DSOCS, it follows from the arbitrariness of the
admissible variations that, Vk € {1,..., N — 1},

o

D1 La(qr; qrr1) + DaLa(qr—1,1) € (Dvlige_1.qe.0041))
Inspired by [27] (Prop. 3), we define the section 3 of D}, by

Blak—15 Gk Ge1) = gy arrqesr) F Lalgh-1,a%) = F~ Lalar, qrr1)),  (3)
where the discrete Legendre transforms F~ Ly and FT Ly : Q x Q — T*Q are such
that F~L4(q,q") := (q¢,—D1La(q,q')) and F*Ly(q,q) := (¢', D2La(q,q")) for all
(¢,¢') € Q x Q, and where i. : Dy|. — ((p%)* (TQ)) |. is the inclusion and ! is the
transpose map. The following result is straightforward.

Theorem 3.3. A discrete path q. : {0,...,N} = Q, with N > 2, is a trajectory of
the DSOCS (Q, L4, Dk, Dv) if and only if, Vk € {1,...,N — 1},

(@k—1,4k, qr+1) € D and  B(qr—1, 4k, qr+1) = 0. (4)

Remark 3.4. A discrete nonholonomic system as introduced in [12] is a discrete
Lagrangian system (@, L) with discrete constraint space Dy C @ x @ (we say first
order) and allowed variation distribution D C T'Q) (we say zeroth order). In partic-
ular, a discrete holonomic system, in the sense of Remark 3.3 of [12], corresponds
to the case where D is an integrable distribution and Dy = U, N, x N,., where N,
are the integral submanifolds of D.

In both cases, their trajectories q. = (qo, ..., gn) are the solutions of

D1 La(qr, qx+1) + D2La(qr—1,qr) € Dy, ,
(qk> qrt1) € Dy

for all k = 1,...N — 1 and that, additionally, satisfy (go,q1) € Dg4. Notice that
these conditions are equivalent to

D1 La(gk, qk+1) + DaLa(qr-1,qx) € Dy, ,

(@ @r+1) € Da,

(@k-1,9%) € Da
forall k =1,..., N —1. In order to ensure the existence of trajectories, it is usually
assumed —and we will do so— that the projection p? : Q x Q — Q restricted to Dy

is a submersion (see [27], Prop. 3). This last condition is trivially satisfied in the
holonomic case.
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DSOCSs extend the discrete holonomic and nonholonomic systems as follows.
Given a distribution D and a submanifold Dy as above, a DSOCS (Q, Ly, Dk, Dy')
can be constructed by defining

Dk :=(Q@xDg)N(Pax Q) and Dy :=(p3)*(D).

Notice that Dp is indeed a submanifold of Q x @ x ) because it is a transversal
intersection of two submanifolds; the transversality condition follows from p?|p,
being a submersion. It is easy to see that both systems, the discrete nonholonomic
system and the related DSOCS, have the same trajectories.

Remark 3.5. Other “higher order” discrete mechanical systems have been consid-
ered in the literature. One such example is that of higher order discrete Lagrangian
mechanics [2], consisting of unconstrained systems with Lagrangians that may de-
pend on more than two points. Also, discrete higher order vakonomic systems have
been considered in, for example, [11]. These are constrained systems where the La-
grangians also depend on more than two points and the trajectories correspond to a
purely variational problem, just as in the continuous case mentioned in Remark 2.3.

Remark 3.6. From a theoretical point of view, one could be interested in a discrete
analogue of the higher order constrained systems (in the sense of [8, 19]). Such
an analogue can be obtained following ideas similar to the ones introduced in this
section for order 2. For instance, a discrete kinematic constraint of order k£ would be
a submanifold of @Q**! and the variational constraints of order k would be contained
in the pullback bundle by p?“ s QFL — Q of TQ for a choice of j € {1,...,k+1}.

4. Examples. In this section we discuss how to apply DSOCSs to construct nu-
merical integrators for two (continuous) systems with second order constraints. In
each case, we picked simple discretizations to associate a discrete system to the
continuous one. Our main objective is to show how the numerical integrator is con-
structed and some characteristics of its behavior. Other discretizations and details
can be found in [4].

In this section, all angles are expressed in radians.

4.1. Particle in the plane with prescribed signed curvature. Consider a
particle in R? forced to move with a given signed curvature, k : R? — R, by the
effect of a force orthogonal to its velocity. For example, if the particle is electrically
charged, this could be achieved using a magnetic field orthogonal to the plane.

4.1.1. Continuous case. We first describe the system in terms of Definition 2.1 (see
Figure 1 to visualize the meaning of the following variables).
1. Q := R?, with coordinates ¢ = (z,y).
2. L((z,y), (¢,9)) == 2m(i* 4 §*), where m is the mass of the particle.
3. Kinematic constraints: the submanifold Cx C T(Q)Q is defined by ‘;—z =
k(z,y), where 6 is the polar angle of the velocity of the particle and ds is the
element of the arc length. Explicitly, the equation becomes

= k(a.y). (5)
(@, )]
4. Variational constraints: for each 7 = ((z,y), (%,7), (,7)) € T®Q, the sub-
space Cy [, is defined as the span of (&,7) in T, ,)Q.

In this case equation (1) is equivalent to equation (5) together with m& = Ay
and my = —Az, where A is an unknown Lagrange multiplier.
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(X7y) 0

/

/ X

FIGURE 1. Scheme of the particle in the plane with prescribed
signed curvature. The polar angle 6 of the particle’s velocity and
the variational constraints at ((z,v), (Z,9), (#,4)) are indicated

4.1.2. Discrete case. We now associate a DSOCS to this SOCS in order to approxi-
mate its trajectory ¢(t) by a discrete one, ¢., in such a way that go =~ ¢(0), ¢1 =~ q(h),
g2 =~ q(2h), and so on, where h € R is the constant time step. We use the following
particular discretization process.

1. Q = R2.

2. Lg:=Lo gozj where ¢, : TQ — Q? is defined in terms of its inverse by

_ q1 — 4o
@L;(q()aql) = (q()v h ) .

3. Discrete kinematic constraints: Dy := ¢p, (Cx) where ¢p, : T?Q — @Q°
is defined by

-1 . 42— qo q2 — 2q1 + qo
<PDK(CI0,Q1,Q2) =\ 1, .

2h h?
4. Discrete variational constraints: defining ¢p, ‘= ¢p,,

DVl(qo#th) F= CV'WEt(QmQqu)

_ r2—xg O  y2—yo O
= ({(m 5 5 20 50 )

Equation (4) leads to a system of nonlinear equations in xo and ys,

Tog— X0 Y2 —251+Yo _ a2 — 221 +To Y2 — Yo
2h h2 2h

2
b 3 = k(z1,1) (6)
T2 —To Y2 — Yo
| (25, 22|
(z2 = 221 + 20) (22 — 20) + (Y2 — 241 + ¥o)(y2 — Yo) = 0. (7)

To simulate the case for which k£ = 1, 2(0) = y(0) = 0 and #(0) = y(0) = 1,
we took different values of h and solved equations (6) and (7) iteratively (using the
algorithm FindRoot of Mathematica 6.0 at each step) starting with the discrete
initial conditions xg = yg = 0, 1 = x¢ + h and y; = yo + h. In this situation, we
know that the exact solutions of the continuous equations of motion are

T, V2 T, V2
71)77 t— =)+ —.

x(t) = cos(V2t 1 5

and  y(t) = sin(v/2
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FIGURE 2. Simulated evolution of the particle using our numerical
integrator constructed from a DSOCS for k = 1, z(t) = y(¢t) =0
and #(0) = y(0) = 1. Constant time step used: h = 0.1. LEFT:
trajectory on the plane, RIGHT: comparison between our approx-
imation and the exact solutions of x and y over two time intervals

On the one hand, we found our results satisfactory at a qualitative level (see
Figure 2 corresponding to h = 0.1): as expected, the trajectory in the plane is a
circumference of radius 1 which passes through the origin and is tangent to the line
of slope 1 at that point; there are no changes in the amplitude and the frequency of
the oscillations of x and y during the time of simulation [0, 500]. This good behavior
may be partially due to the following property of the system: since each summand
in equation (7) is a difference of squares, (2o —1)?— (21 —20)*+(y2—v1)? — (y1—v0)?
equals zero, so we have that L4(qo,q1) = La(q1,¢2), i.e. our numerical integrator
preserves the (discretized) energy of the system as it occurs in the continuous case.
Apart from that, we can also say our integrator is symmetric [23].

On the other hand, on the right side of Figure 2 we see how the simulated
evolution is slowly left behind by the exact solution. Their maximum difference
occurs near t = 500. This maximum difference over the [0,500] time interval is
what we take for the error of the numerical integrator. Figure 3 shows the error
for several values of the time step h. The slope of the line shown in the graph
(= 1.6) suggests that the integrator is convergent of order 1, according to Section
2.2.2 of [26].

4.2. Inertia wheel pendulum with a Lyapunov constraint. In Reference [22],
a method for asymptotic stabilization of underactuated mechanical systems has been
studied. Tt consists of: (1) impose on the system a second order constraint of the
form

W att),d(0)) = ~Fla(0), (1), 0

the so-called Lyapunov constraints, where F,V : T'() — R are nonnegative functions
with V' proper and vanishing only at the desired equilibrium point; and (2) find the
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F1GURE 3. Plot of the z-coordinate error vs h, using logarithmic scales

related constraint force (to be implemented by the actuators), which would play the
role of the control law. It is clear that, if the system satisfies the previous constraints,
then V(q(t),q(t)) decreases over time, resulting in a Lyapunov function. In order
to ensure the existence of a related constraint force, V' must satisfy a PDE that
depends on the actuators.

It can be shown, in general, that the underactuated system (i.e. the mechanical
system and the actuators) together with the Lyapunov constraint define a SOCS.
In the case of the inertia wheel pendulum with one actuator on the wheel (see
Figure 4), if we want to asymptotically stabilize it at the upright position, we can
use the functions V and F found in [22] (Sect. 5.1). The SOCS defined by the inertia
wheel pendulum and the mentioned Lyapunov constraint is described below.

FIGURE 4. Scheme of the inertia wheel pendulum. Some of the
physical parameters associated to its components (masses, lengths
and moments of inertia) as well as the coordinates used are indi-
cated
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4.2.1. Continuous case. We start by adapting the Hamiltonian description of the
system given in [22] to the variational formulation of SOCSs.

1.

Q = S' x S, with coordinates q = (6, 1)).

L(9,v,0,4) = %192+%J(9+1/})2—Mg(l+cos(9)), where g is the acceleration
of gravity and I, J and M are defined in terms of the masses, moments of
inertia and characteristic lengths of the components of the system by I :=
mpc® + mgl® + I, J := I; and M = mpc + mgl.

Kinematic constraints: the submanifold Cx C T?Q is defined by equa-
tion (8) by choosing?®

V(0,,0,9) = o fIT + )+ TP
+ h.]2(0+w) + g J[(I+ )0 + )6 + )

+x[1— cos(ip — nf)] + 21— cos(9))
F(0,v,0,9) := p tanh{g.[(I + J)0 + JY] + heJ (6 +¥)}
Agel(I+ )0 + JY] + heJ (0 + ¥)},

~ 2
where X, p,d,e > 0, M := Mg, he := d255, go := d225h | f = %1° with

a:=1%,b=—7,c:=7+ %, and n € Z is such that nb > c. Note that (8)
becomes a second order differential equation.

. Variational constraints: for n = ((8,1), (6,1)), (6,1)) € T Q, the subspace

Cv |y is defined as the span of %kg’w in T{g,,)Q-

Then, the trajectory conditions (1) become (8) and the system Mg sin(0) — 16—
J(O+ 1) =0, —J(0+ 1) = A, where A is an unknown Lagrange multiplier.

4.2.2. Discrete case. We want to construct a numerical integrator of the equations
of motion of this SOCS to provide an approximation of ¢(¢) as in Section 4.1.2.
From now on, we replace S' x S with its universal covering space R? and adapt all
the elements of our SOCS to this new configuration space, which can be done easily
by letting (0, ) vary over all the plane. Physically, we capture the same dynamics
by doing so but, for practical issues, this allows us to discretize the whole T'Q) space
by using a diffeomorphism onto @ x (). Recalling the discretizations ¢y, and ¢p,
used in Section 4.1.2; we propose the following DSOCS:

1.
2.
3.
4.

Q :=R2.
Ly:=Lo @Z;
Discrete kinematic constraints: Dy := ¢p, (Ck).

Discrete variational constraints: Dy |(49.q1,q.) = CV|¢’B§, (@0:01,2)"

The second condition of (4) leads to

02 — 261 + 6p) (12 — 2901 + 1)
h? +J 72

(I+ J)( — M sin(f;) = 0. (9)

3The choices, explained in detail in [22], are aimed at making V an energy-like function and
F a bounded function satisfying certain relations to guarantee the realization of the system as an
actuated system under a bounded control signal.
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Substituting 12 from (9) into the first condition of (4) leads to a nonlinear equation
involving only 65,

A02 + BO, + C = —ptanh(DOy + E)(Dby + E), (10)

where A equals the constant —W, and B, C, D and E depend on the
system constants, the time step h, and the initial data 6, 61, ¥ and ;.

We used this DSOCS as a numerical integrator and tested it with parameters
I = 3125, J = 2.0772, M = 3798, d = 1, e = 1000, x = 100, n = —154,
p = 2, and initial conditions 8(0) = 0.5, ¥(0) = 0, 6(0) = 0, ¥(0) = 0.5. We took
different values of h and solved (10) iteratively (using the algorithm FindRoot of
Mathematica 6.0 and then calculating 15 using (9)) starting with the discrete initial
conditions 0y = 0.5, Y9 = 0, 8; = 6y and 1 = Py + 0.5h.

160
0.4 1404
120
0.2
1004
0.0+ 80
=) =
60+
-0.2+
40+
-0.4 20
04
0 500 1000 1500 2000 0 500 1000 1500 2000
t t
14000
12000
10000
8000
>
6000+
4000+
2000+
04
0 500 1000 1500 2000

t

FIGURE 5. Simulated evolution of 8, ¥ and V' using our numeri-
cal integrator constructed from a DSOCS for the initial conditions
0(0) = 0.5, 1(0) = 0, 6(0) = 0, ¥(0) = 0.5. Constant time step
used: h = 0.1. The gray area in the first two graphs corresponds
to a fast oscillation
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Solutions of equation (10), whenever they exist, usually come in pairs, but in
order to simulate the evolution of our SOCS we had to choose one. This phenomenon
is a consequence of the equations of motion being algebraic equations —rather than
differential equations— and, so, it is present in all types of discrete mechanical
systems, including DSOCSs. For the present example, we adopted the criterion of
picking the solution that is closer to the previous position 8 in each step. However,
this works as long as the two candidate solutions are sufficiently apart. When this
does not occur, we noticed that the correct behavior is obtained by choosing the
solution that decreases F' and, consequently V', as desired.

To test the behavior of our numerical integrator, we used the output of the
sophisticated algorithm NDSolve of Mathematica 6.0 as the exact solution. Figure 5
corresponds to a time step h = 0.1; the plots obtained with NDSolve are omitted in
there because they are indistinguishable from those coming from our simulations,
at least, for the scales used in the figure. Hence, our simulations are consistent
qualitatively with the one provided by NDSolve. The coordinates 6 and 1 exhibit
damped oscillatory behavior in time associated to the asymptotic stabilization of
the pendulum at its upright position (¢ ~ 1000); as it is required by the kinematic
constraint, the value of the Lyapunov function decreases with time tending to zero
(t = 500).

As in the previous example, we use the maximum difference between the numer-
ical integrator and NDSolve solutions over the [0,2000] time interval as the error
of the numerical integrator. Figure 6 shows the error for several values of the time
step h. The slope of the line shown in the graph (& 1.3) suggests that the integrator
is convergent of order 1, according to Section 2.2.2 of [26].

0.14

0.014

1E-34

FIGURE 6. Plot of the 6-coordinate error vs h, using logarithmic scales

5. Some properties of the discrete flow. In this section we study the evolution
of a DSOCS from the point of view of a discrete flow function. Let (Q, Lyq, Dk, Dy')
be a DSOCS such that Dy is a vector subbundle of (p3)*(TQ). Fix a trajectory
(qo,q1,g2) of the system and an open set U C Q X @ X @ containing it. It is
convenient to choose a smooth map ¢ : D} |y — R™ such that ¢~1({0}) is the
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image of the zero section of D} |y (locally, this imposes no restriction). Then, we
have the following existence result.

Theorem 5.1 (Discrete flow). Assume that the DSOCS described above also sat-
isfies the following conditions.

1. ¢ o Blppnu has constant rank,

2. The restrictions of Ds(¢ o Blv)(qo,q1,92) and D1(¢ o Blv)(qo, q1,q2) to the
subspace T(qy.q,,q2) DK are injective (see (2)).

Then, there exists a diffeomorphism Fr, : Cq — Fp,(Cq), called discrete flow,
between submanifolds of Q x Q containing (qo,q1) and (qi1,q2), respectively, such
that
i. Fr,(qo0,q1) = (q1,92) and

it (o, q1, (P © Fr,)(Go, 41)) s a trajectory ¥(do, 1) € Ca.

Proof. Section f defined in (3) is smooth due to the smoothness of Dy. From
condition 1 in the statement, W := (¢ o0 S|p.nv) " ({0}) is a submanifold of
Dy NU. All the elements of W are trajectories since they are the triples which
satisfy condition (4). On the other hand, as ker(Dp? ,|w (qo,q1,42)) = ker(D(¢ o

Blprnu) (90, q1,492)) N T(qo,ql,qz)({‘IO} X {q1} X @), which vanishes by condition 2 in
the statement, p? ,|w is a local immersion at (go, 1, ¢2). It follows that p? ,|w is a
local diffeomorphism between a neighborhood B € W of (qo, ¢1 , ¢2) and a subman-
ifold of @ x @ containing (qo, q1). Analogously, by condition 2 in the statement,
3 3lw is a local diffeomorphism between a neighborhood B € W of (o, q1, ¢2) and
a submanifold of @ x @ containing (¢1,¢2). Finally, let Cy := p? o(B N B’) and
define

Fr,:Cq—QxQ by Fr,:=p3s0pislpns) "
Then Cy and Fy,(Cq) = p3 3(BNB’) are submanifolds of @xQ, Fy,, : Cq = Fr,(Ca)
is a diffeomorphism and conditions i and ii in the statement are satisfied. O

Remark 5.2. When a DSOCS comes from a discrete holonomic system (see Re-
mark 3.4), we have that

Ca C piz(DK) C Dg = U Ny X N
Let Cy,r := CqgN(N;- xN,.). It is easy to check that Fr,,(Cq,) = Fr,(Cq) (N xN;.).
Let @Q and Ly be as in Definition 3.1. Following the literature (see [12]), we define
the discrete Lagrangian 1-forms 67 . sz € QYQ x Q) by
05, (0,4 (vg,vg) : = F~ Lalq,q')(v)
9&(%(1’)(%%') = F+Ld(Q»q/)(”q’)
for all (vg,vy) € T(q,¢)(Q x Q). In addition, we define the discrete Lagrangian 2-
form Qp, € Q3(Q x Q) as Qp, = —dﬁzd = —dfy, (the last equality is true because
dLg = H}fd —07,)- It can be seen that, under certain conditions of regularity on Lg,
Qr, is a symplectic form.
Theorem 5.3 (Evolution of Qr,). Let (Q, Lq, D, Dy) be a DSOCS with discrete

flow Fr, : Cy = Fy,(Ca). Also, let Q5% € Q2(Cy) and 0“4\ € Q2(Fy,(Cy)) be
the restrictions of Qr, to the corresponding submanifolds of Q x Q. Then,

w (FL (C
(Fr) (2,2 ) = Q1 + e,

(11)
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where &€ € QY (Cy) is defined by

(g0, q1)(6q0,6q1) := (F*La(qo, 1) — F~ La(Fr,(q0,91)))(0q1) (12)
for all (qo,q1) € Ca, and all (0go,q1) € T(4y,q:)Ca-

Proof. The proof is based on [26] (Sect. 1.3.2). Let (go,q1) € Cyq and (dqo,0q1) €
T40,q:)Ca- If g2 := (p3 o F1,)(qo,q1) we can interpret (dqo,dq1) as an infinitesimal
variation of the initial condition inducing the infinitesimal variation dgs := D(p3 o
Fr.,)(q90,91)(0q0,dq1) over go. Define the restricted discrete action functional S,
Cqy—R by

Sa(qo, a1) = Sa(qo, a1, (3 © Fr,)(q0, q1))-
From the definitions of the Lagrangian 1-forms (11) it is easy to see that

dSa(q0,91)(6q0,6q1) = dSa(qo,q1,92)(5q0,8q1, D(P3 © Fr,)(q0, 1) (340, 6q1))
= (F"La(go,q1) — F~ Lalq, (p3 © F1,)(q0,q1)))(6q1)
+ [Gzrd(%,%)((s%,(s‘lz) - Hfd (90, q1)(dq0, 5Q1)] :

The bracketed term in the last sum is
(Fz, (07,2 @) — (07,)9) (g0, 1) (8q0, 51),

where (67 )€ and (ezd)FLd(Cd) are the restrictions of 67 and 0} to Q?(Cy) and
O%(FL,(Cy)), respectively. Since (qo,q1) and (8qo,dq1) are arbitrary, using (12) we
obtain
€= dSq — (Ff,,((0F,)7\94)) — (0,)).
Therefore,
dg = d(dSa — (Ff,,((07,) 7)) = (0,)"))
= d*Sa + Fp, (=d(0F,) () — (=d(67,)°")
x 1FLy(Ca)
= F (57" — i
O

Remark 5.4. The flow Fp, is a symplectomorphism if d¢ = 0. It follows from (12)
that £ vanishes when d¢; € DV|(QU7Q1,FLd(QO7(11))' This situation occurs, for instance,
when a DSOCS comes from an unconstrained system, where Dy |(go,4,,F;, (g0,01)) =
T, Q. It also occurs when it comes from a discrete holonomic system (see Re-
mark 3.4). Indeed if (go,q1) € Ca, (see Remark 5.2) and (dqo,dq1) € Tiq49,q,)Cr
we have that d¢; € T, N, = Dvl(g0,01.F1, (a0.a1))» SO that &(qo, ¢1)(dg0,q1) = 0.
Hence, under these conditions,

x [ Frq(Ca,r) Cad,r
(FLdlcd,r) (QLZd ‘ )ZQLZ ’

so that Fr,|c,, is a symplectomorphism.

6. Future work. It is well known that systems with nontrivial symmetry group
can be reduced and the resulting systems provide a useful way to understand the
“core” dynamics and, in some cases, a practical way of solving their equations of
motion. Therefore, it is a very natural continuation of the current work to introduce
a notion of DSOCS with symmetry group and develop a reduction procedure for
these systems. We intend to tackle this problem following the approach to reduce
discrete nonholonomic systems used in [18].
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Given a numerical integrator of a continuous system, it is very important to know
how well it approximates the actual solution of the original system. In the uncon-
strained case, such analysis can be performed as follows. As a first step, an ezact
discrete Lagrangian is defined: it has the property that its discrete trajectories coin-
cide with the trajectories of the original system (at specific discrete times). Except
in a few trivial cases, such exact Lagrangians cannot be constructed explicitly, so
a second step is to construct discrete Lagrangians that approximate the exact one.
Using this approach, it is possible to give estimates of the goodness of the numerical
integrator (see [26], Part 2). For discrete systems with nonholonomic constraints
the same type of error analysis was started in [16]. However, their work still needs
to be completed after the results of [29]. Perhaps, this could be done by giving an
adequate extension of [29] to the nonholonomic case. Even more, we would like to
extend the whole program to the error analysis of DSOCSs.
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