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Abstract 

Volcanic ash deposits affect buildings, vegetation, and population. After a volcanic eruption, it is 

critical to detect the areas affected by ash deposits to achieve an advisable management of the 

emergency. Optical sensors have been widely used to carry out this task, but they are limited by 

solar illumination and weather conditions. As an alternative, Synthetic Aperture Radar (SAR) data 

is not affected by those limitations. Recently, a Temporal Decorrelation Model (TDM) that uses 

SAR data was proposed for detecting and mapping ash deposits, but it has only been applied to 

L-band data. Today there is available a huge quantity of C-band data acquired by the Sentinel-1 

constellation. In this study we applied the TDM to Sentinel-1 data in order to assess its 

performance for detecting volcanic ash deposits after an eruption. We selected the eruption of 

Taal volcano in The Philippines on January 12, 2020, as our case study. We computed more than 

4,000 interferometric pairs from a dataset of 93 images acquired before, during, and after the 

eruption. Our results show that TDM can be applied to C-band data, despite the higher temporal 

decorrelation suffered by them. Our final probability map is consistent with the field evidence 

reported by the Philippines Institute of Volcanology and Seismology (PHILVOLCS) and the 

isopachs map reported in the literature. This new application provides a novel framework for the 

coherence exploitation of C-Band data. Also, this approach could be applied to detection and 

monitoring of other natural disasters. 

 

Keywords: Ash deposits; Change Detection; InSAR; Sentinel-1; Temporal Decorrelation Model; 

Volcanic Ash.  

 

1. Introduction 

Detection of ash deposits after a volcanic eruption is important to assist the emergency’s 

management. The ash deposits could lead to indirect hazards, such as secondary lahars or debris 

flows (Martí and Ernst, 2005). Therefore, spotting affected areas by ash deposits is crucial for 

generation of hazard maps. A powerful tool to generate hazard maps is satellite images, which 

can collect data from large areas.  

 

Jo
urn

al 
Pre-

pro
of

mailto:camilo.naranjo@comahue-conicet.gob.ar


2 
 

Remote sensing of ash deposits has been traditionally based on optical-infrared data captured by 

passive sensors using several methods, such as visual interpretation and analysis (Harris et al., 

1997; Sato et al., 1997; Tanaka et al., 1981; Tucker and Matson, 1985). Quantitative approaches 

were based on examination of ash deposits reflectance and albedo changes (Möller et al., 2014; 

Urai et al., 2001). A more recent strategy has used NDVI (Normalized Difference Vegetation Index) 

(Easdale and Bruzzone, 2018; Orynbaikyzy et al., 2023). Those methods based on satellite data 

from passive sensors have provided satisfactory results. However, this kind of sensor is limited by 

the presence of meteorological clouds and ash plume during a volcanic eruption.  

 

On the other hand, active sensors, such as Synthetic Aperture Radar (SAR) can acquire Earth 

surface data independently of solar illumination and weather conditions. Therefore, SAR 

instruments would constitute an interesting alternative for the identification of volcanic ash 

deposits  (Euillades et al., 2021; Massonnet and Feigl, 1998). The detection of ash deposits using 

SAR images has been addressed in previous works by means of a broad spectrum of data 

processing and analysis techniques, such as: (a) Visual interpretation of backscatter intensity. The 

intensity values are strongly modified because of accumulation of ash on the ground (Canisius et 

al., 2003). And visual interpretation of multi-temporal RGB compositions where the pre-eruption 

image is assigned to the red channel, whereas the post-eruption image is assigned to green and 

blue channels (Sasaki et al., 2012). (b) Change detection that uses the image difference of pre- 

and post-eruption images (Nakano et al., 2010; Terunuma et al., 2005). (c) SAR polarimetry that 

includes direct- and cross-polarized data analysis and Pauli decomposition (Sasaki et al., 2012; 

Solikhin et al., 2015). (d) SAR interferometry (InSAR) and change detection combination. This 

combination is based on the difference between digital elevation models (DEMs) and 

interferograms. It aims to get information about a ground surface deformation caused by ash 

deposits (Canisius et al., 2003; Terunuma et al., 2005). (e) Change detection that uses 

interferometric coherence maps. Coherence maps are a by-product of differential SAR 

Interferometry (DInSAR) processing (Canisius et al., 2004; Terunuma et al., 2005).  

 

These methods attempt to detect areas affected by ash deposits focusing on identifying changes 

between satellite data acquired before, during and after an eruption. However, changes could be 

related not only to volcanic ash deposits but also to natural, random, or seasonal effects. 

Therefore, these methods’ results might be ambiguous.  

 

An alternative methodology has been proposed by Jung et al (2016). They proposed a Temporal 

Decorrelation Model (TDM), which intends to discriminate changes related to ash deposits from 

changes due to other phenomena, based on a time series of interferometric coherence maps. A 

recent assessment has shown that the TDM has better performance than traditional methods, 

such as change detection using backscatter intensity or coherence difference (Jung and Yun, 

2020). However, the first and unique TDM study reported in literature aimed to survey the ash 

deposits, was applied to the Shinmoedake volcano (Japan) eruption in January 2011 (Jung et al., 

2016). This experiment used a series of 22 SAR images acquired by the Phased-Array L-band 

Synthetic Aperture Radar (PALSAR) aboard the ALOS satellite. 

 

Jo
urn

al 
Pre-

pro
of



3 
 

Today there is a huge amount of SAR data available from other sensors like Sentinel-1, among 

others. Sentinel-1 is a constellation of two polar-orbiting satellites with C-Band SAR instruments 

on board, that belongs to the Copernicus Programme and European Space Agency (ESA). 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-1). It is attractive because it provides 

worldwide open access SAR data with a revisit time of 6-12 days. Furthermore, the Sentinel-1 

mission has been active since October 2014; so, it has a steady and long-term data archive. 

However, C-band data suffer higher temporal decorrelation than L-band data, particularly in areas 

with vegetation (Hagberg et al., 1995; Orynbaikyzy et al., 2023; Wei and Sandwell, 2010; Zebker 

and Villasenor, 1992), which could potentially impair the TDM methodology to properly detect and 

map ash deposits. The purpose of this study is to assess the TDM methodology performance for 

detecting and mapping ash deposits profiting the Sentinel-1 C-band SAR dataset. This novel 

application may expand not only the methodology to other datasets but also provides insights of 

its robustness. 

 

We selected the January 2020 eruption of Taal volcano, located in the Philippines, as our case 

study. The eruption generated large ash deposits reaching an area of around 8600 km2 (Balangue-

Tarriela et al., 2022). The area surrounding the volcano is interesting for our experiment because 

they have dense coverage of thick vegetation. Our results were assessed using the official field 

evidence reported by the Philippines Institute of Volcanology and Seismology (PHILVOLCS) and 

the isopachs map reported in the literature (Balangue-Tarriela et al., 2022). This paper is 

organized as follows: Section 2 introduces readers to a review of the decorrelation phenomenon, 

the concepts of TDM and its model parameters calculation, and the basics of probability 

calculation. Section 3 describes the study area and the Taal Volcano eruption in 2020; this section 

also details the dataset and techniques used to compute the interferometric coherence maps. 

Section 4 shows the results of the implementation of TDM and probability calculation. Finally, 

sections 5 and 6 report the discussion and conclusions of the study, respectively. 

 

2. Temporal Decorrelation Model 

2.1. Interferometric Decorrelation  

In a coherent radar system, two signals are correlated when each one results from the same 

interaction with scatterers located in the area illuminated. If the signal-target interaction is different, 

they will be uncorrelated, leading to the phenomenon called decorrelation. Decorrelation between 

Synthetic Aperture Radar (SAR) signals has been extensively studied in the past by Zebker and 

Villasenor (1992). They demonstrated that decorrelation phenomenon in SAR data can be 

generated by four factors, such as orbital separation (geometric), thermal noise, illuminated 

volume, and time. 

 

Geometric decorrelation is related to the distance between the antennas that acquire the image 

pair known as spatial baseline (Gatelli et al., 1994; Hanssen, 2001). Thermal decorrelation is 

related to the hardware system noise. It can be considered negligible for the currently operating 

sensors. Volume decorrelation depends on the penetration of the radar waves, which is related to 

the wavelengths and the scattering medium (Hanssen, 2001; Weber Hoen and Zebker, 2000). 

Temporal decorrelation is introduced by changes in the illuminated area between the images 

acquisition. The signal received by the sensor is a random process, which is determined by the 
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dielectric and physical structure of the individual scatterers. As the location and physical properties 

of a scatterer might vary in time, the signal is time-variant too. Hence, the temporal decorrelation 

is related to the type of land cover present in the scene (Hagberg et al., 1995; Wei and Sandwell, 

2010). The temporal decorrelation implies that two images will not be highly correlated if the 

changes over time between acquisitions are faster than the sensor-data acquisition cycle. Thus, 

the amount of decorrelation allows us to characterize surface changes that occur at time scales 

of sensor-data acquisition cycle, such as vegetation growth or disruption, soil moisture-induced 

effects, ash deposits, snow cover, and so on (Wei and Sandwell, 2010; Zebker and Villasenor, 

1992). 

 

The degree of correlation between two SAR images is quantified through a metric known as 

interferometric coherence. Coherence is defined as the amplitude of the complex cross-correlation 

coefficient, as expressed by the following equation (1) (Hanssen, 2001): 

 

𝛾 =  
𝐸{𝑆1 ⋅ 𝑆2

∗}

√𝐸{|𝑆1|2} ⋅ 𝐸{|𝑆2|2}
 , 0 ≤ 𝛾 ≤ 1          (1) 

 

where 𝑆1 and 𝑆2  are the images and 𝐸{∙} is the expectation operation. It takes values between 0, 

meaning no correlation and 1, perfect correlation. Coherence is retrieved from the pair of co-

registered images with dimensions 𝑛 𝑥 𝑚 pixels. Therefore, a coherence value is assigned to each 

pixel generating coherence maps.  

 

2.2. Model rationale  

TDM tries to represent the evolution of temporal decorrelation in time. So far, most models 

developed in literature focus on retrieving information on vegetation structure (Fabio, 2007; 

Lavalle et al., 2012; Lombardini and Cai, 2014; Zebker and Villasenor, 1992). Those models are 

based on the hypothesis that temporal decorrelation is due to random motion of the scatterers’ 

elements.  

 

The TDM implemented in this work is represented by equation (2) and considers that the temporal 

decorrelation is produced by three different processes (Jung et al., 2016): (1) the random motion 

of the vegetation structure, (2) the temporally correlated dielectric changes like seasonal changes, 

and normal decrease of the coherence along time, and (3) the temporally uncorrelated dielectric 

changes (i.e., random). 

 

𝛾𝑡 =
1

1 + 𝜇
𝛾𝑑,𝑡𝑖𝑚𝑒

𝑣 ⋅ 𝛾𝑟𝑎𝑛𝑑
𝑣 +

𝜇

1 + 𝜇
𝛾𝑑,𝑡𝑖𝑚𝑒

𝑔
⋅ 𝛾𝑑,𝑟𝑎𝑛𝑑

𝑔
          (2) 

 

For each pixel within a coherence map computed from scenes 𝑆1 and 𝑆2  , the temporal coherence 

(𝛾𝑡) is modeled as the sum of two terms: one related with the volume interactions (mainly 

vegetation, 𝑣) and the other one related to the ground interactions (𝑔). The sum is normalized by 

the parameter 𝝻, which represents the ground to volume ratio. 
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The volumetric and ground random contributions are represented by 𝛾𝑟𝑎𝑛𝑑
𝑣  and 𝛾𝑑,𝑟𝑎𝑛𝑑

𝑔
, 

respectively. Note that those variables are pair-variant, meaning that they will take a different value 

for each interferometric pair, even if they are composed of scenes separated by the same time 

span.  

  

The non-random decorrelation, again volumetric and ground related (𝛾𝑑,𝑡𝑖𝑚𝑒
𝑣  and 𝛾𝑑,𝑡𝑖𝑚𝑒

𝑔
, 

respectively), are computed from equations (3) and (4), where 𝛥𝑇 is the time span (or temporal 

baseline) between scenes 𝑆1 and 𝑆2, 𝜏𝑔 is a characteristic time for the ground-signal interactions 

and 𝜏𝑣 is the corresponding characteristic time for the volume-signal ones. They are modeled as 

negative exponential functions, i.e., the coherence decreases over time at a rate regulated by the 

parameters, which is different for ground and volume. Note that the non-random decorrelation is 

pair-invariant, so it depends only on the temporal baseline between both scenes, meaning that 

two different pairs spanning the same time will present the same result. 

 

𝛾𝑑,𝑡𝑖𝑚𝑒
𝑣 = 𝑒

−(
𝛥𝑇
𝜏𝑣

)
          (3) 

𝛾𝑑,𝑡𝑖𝑚𝑒
𝑔

= 𝑒
−(

𝛥𝑇
𝜏𝑔

)
          (4) 

 

2.2.1. Model parameters estimation  

Model parameters estimation is in order. Let’s consider an area of interest where we count on a 

number 𝑁 of coherence maps computed from scenes acquired during a given time period. The 

area was not affected by abnormal events, in terms of interferometric coherence, during the time 

span. For example, within it there was no volcanic eruption with related ashfall which would have 

provoked an abnormal coherence decrease. Based on the coherence maps, let’s estimate the 

model parameters relevant for one pixel.  

 

The parameters to be estimated are three pair-invariant ones (𝜇, 𝜏𝑔 , 𝜏𝜈 ) and two pair-variant ones 

for each map (𝛾𝑟𝑎𝑛𝑑
𝑣  and 𝛾𝑑,𝑟𝑎𝑛𝑑

𝑔
). 

 

In order to estimate the invariant parameters, we assume that, for each temporal baseline, there 

is at least one pair representing the coherence drop due to the temporally correlated changes. In 

other words, there are pairs where the random components are not present. As those random 

components impose an additional coherence drop, the maximum coherence for each temporal 

baseline represented in the dataset, is a good estimate of the uncontaminated natural coherence. 

Fig. 1.1. displays the coherence vs. temporal baseline (𝛥𝑇) at a selected pixel for over 4000 

coherence maps covering a given area. For each 𝛥𝑇, the coherence takes values within a range 

due to the random components. The maximum coherence is highlighted by blue points. 

Considering them, we can rewrite the model of equation (2) as:   

 

𝛾𝑡
ℎ𝑖𝑔ℎ

=
1

1 + 𝜇
𝑒

−(
△𝑇
𝜏𝑣

)
+

𝜇

1 + 𝜇
𝑒

−(
△𝑇
𝜏𝑔

)
          (5) 
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and the parameters 𝜇, 𝜏𝜈 and 𝜏𝑔 can be estimated using curve fitting techniques for non-linear 

equations, like Newton’s, Secant, Levenberg-Marquardt methods, among others (Dennis et al., 

1981; Dennis and Schnabel, 1996). 

 

To apply the TDM some steps must be followed. These steps are summarized in Fig. 1. 

 

 
Figure 1. Temporal Decorrelation Model (TDM) workflow. Procedure is applied at pixel-scale 

within the coherence maps. (1) Analyze the coherence behavior as a function of the 𝛥𝑇. Then, 

select the maximum coherence values for each 𝛥𝑇. (2) Using the maximum values from step 1), 

estimate pair-invariant parameters (μ, τν and τg) using non-linear fitting techniques for the highest 

temporal coherence (𝛾𝑡
ℎ𝑖𝑔ℎ

) equation. (3) Calculate the ratio of ground (αg) and volume (αv) 

contributions to the total coherence with non-random components (γd,time
v  and γd,time

g
) based on 

pair-invariant parameters estimated in step 2). 4) Calculate the random components (γrand
v  and 

γd,rand
g

) according to the three possible value ranges of αg. For more details see the section 2.2. 

 

The random coherence components (𝛾𝑟𝑎𝑛𝑑
𝑣  and 𝛾𝑑,𝑟𝑎𝑛𝑑

𝑔
), as seen in the model equation (Equation 

2), represent a unique level of randomness for each pixel, which depends on the nature of the 

scatterers. As pixels with predominant ground scatterers generate less random outcomes, in terms 

of coherence, than pixels with vegetation, it is useful to estimate a ratio of ground (𝛼𝑔) and volume 

(𝛼𝑣) contributions to the total coherence. Based on the already estimated pair-invariant 

parameters, one can compute the non-random decorrelation components using equations (3) and 

(4). Then, the ratios 𝛼𝑔 and 𝛼𝑣 are computed as in equations (6) and (7). 
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𝛼𝑔 =
𝛾𝑑,𝑡𝑖𝑚𝑒

𝑔

𝛾𝑑,𝑡𝑖𝑚𝑒
𝑔

+ 𝛾𝑑,𝑡𝑖𝑚𝑒
𝑣

          (6) 

 

𝛼𝑣 = 𝛼𝑔 − 1          (7) 

 

The random coherence components are computed differently according to the value of 𝛼𝑔. There 

are three cases: (i) 𝛼𝑔 ≥ 0.9: pixels where the ground contribution is dominant, (ii) 0.9 > 𝛼𝑔 ≥ 0.5: 

pixels where there is some volumetric contribution but the ground one is more important, and (iii) 

𝛼𝑔 < 0.5: pixels where the volumetric contribution is dominant. Using the equation (2), replacing 

𝛾𝑡 by the observed coherence for the pair and pixel under investigation and operating, we obtain 

equations for the random components under the three scenarios (equations 8-10). 

 

∀ 𝛼𝑔 ≥ 0.9:     𝛾𝑑,𝑟𝑎𝑛𝑑
𝑔

=
𝛾𝑜𝑏𝑠

𝑒
−(

△𝑇
𝜏𝑔

)
          (8) 

 

∀ 0.9 > 𝛼𝑔 ≥ 0.5:    𝛾𝑑,𝑟𝑎𝑛𝑑
𝑔

=
𝛾𝑜𝑏𝑠

𝜇
1 + 𝜇

𝑒
−(

△𝑇
𝜏𝑔

)
          (9) 

 

∀ 𝛼𝑔 < 0.5:    𝛾𝑟𝑎𝑛𝑑
𝑣 =

𝛾𝑜𝑏𝑠

1
1 + 𝜇

𝑒
−(

△𝑇
𝜏𝑣

)
          (10) 

 

Random coherence terms, provide useful information regarding the natural variability of the 

coherence at a given pixel characterized by its ground coverage. A pixel dominated by ground 

scattering will present less variability than a pixel with vegetation cover, due to the movement and 

growing of leaves and small branches. Note that we computed a random coherence value at a 

pixel for every coherence map, so we can characterize the random behavior of the coherence 

using those values to compute a probability density function (PDF). Fig. 2 shows the PDF of the 

random components for a pair of typical pixels during a time period within and without abnormal 

events, respectively. 

 

2.3. Probability Calculation  

Let’s call the computed PDF as “reference” one because it characterizes the normal coherence 

behavior. Next, we must compute another PDF using coherence maps which span an event of 

interest, for example a volcanic eruption and its associated ashfall covering a region around the 

volcano. We’ll call it as “event” PDF. The coherence behavior in pixels affected by the event will 

be different than the behavior shall the event did not occur. In order to compute the PDF of the 

event-affected random coherence, we use maps spanning the event only and employ the already 

described technique for estimating the model parameters. 

 

The result is another PDF, which can be compared with the reference one. Fig. 2 shows both 

PDF’s for a pair of representative pixels. Note that, in one case (Fig 2a) both PDFs are different, 
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being the event related one (green bars) notably displaced towards lower values. That pixel is 

showing that the coherence behavior significantly differs when using maps spanning the event, so 

we can conclude that it was affected. If the event is an ashfall, the pixels would have been ash 

covered. Conversely, in the case of the pixel represented in Fig. 2b, both PDFs do not differ, 

meaning that the pixel was not affected. 

 

One way for quantifying the probability of a pixel being affected by the event is computing the 

inverse Cumulative Distribution Function (CDF) for the reference (no event) dataset. The CDF 

represents a proxy of the probability of a pixel with given random coherence to be affected by the 

event (see red curve in Fig. 2). The mean of the event pairs distribution is projected onto the 

reference dataset CDF, giving a metric that indicates if both distributions represent the same 

behavior. This metric is called probability in the original formulation by Jung et al (2016), but note 

that it should not be interpreted as a classic probability. It is more a relative measure of difference 

between distributions, where higher value means that random coherence in the event dataset is 

significantly lower than random coherence in the reference one. The threshold for deciding if a 

pixel was affected by the event or not is then arbitrary.   

 

In summary, the whole procedure has to be extended to all the imaged pixels, which allows 

generating a probability map. Pixels with probability greater than an arbitrarily selected threshold 

are interpreted as being affected, whereas pixels under the threshold were either not affected or 

the coherence loss in reference conditions is so fast that there is no additional decorrelation 

detectable. 

 

 
Figure 2. Random coherence distributions of two pixels: (a) high probability (affected by the 

event) and (b) low probability. The blue and green histograms constitute the distributions of the 

reference and event pairs datasets, respectively. The red line is the inverse cumulative density 

function from reference dataset distribution. 
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3. Study Area and Dataset 

3.1. Case Study 

We used the January 2020 eruption of Taal volcano, as case study. It was selected due to the 

diversity of land cover types within the area, magnitude of the eruption, volume and distribution of 

ash deposits (Balangue-Tarriela et al., 2022), and availability of satellite data. 

 

Taal Volcano is an island in Taal lake within a 25 x 30 km caldera, located South of Manila in The 

Philippines. This volcano is one of the lowest volcanoes in the world and the country’s second one 

by activity level (Global Volcanism Program, 2020; PHIVOLCS-DOST, 2013). Recent reports of 

activity include 34 historical phreatic eruptions that occurred between 1572 and 2020, with 

Volcanic Explosivity Index (VEI) (Newhall and Self, 1982)  between 1 and 6, although most of 

them have been of low explosivity (i.e., VEI = 2) (Delos Reyes et al., 2018; Global Volcanism 

Program, 2020).  

 

The volcano is composed of more than 40 craters formed during several eruption events that 

resulted in the accumulation of ashfall and lava flows (Delos Reyes et al., 2018). According to the 

land cover map shown in Fig. 3 the area is covered by closed forest, cropland, and slightly 

herbaceous wetlands. Herbaceous wetland corresponds to a lava flow deposit from the eruption 

that occurred in 1969 (Delos Reyes et al., 2018). Within the processed area (white square shown 

in Fig. 3) the predominant type of land cover is vegetation: 66.2% of the surface, cropland 19.6%, 

urban areas 13.4% and others 0.8%. Coverage is relevant because the expected interferometric 

coherence over vegetation and cropland areas is low. 
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Figure 3. Reference map. This figure is composed by a location map (left bottom), a land 

cover map of the study area (source: Copernicus Service Information 2019 - 

https://lcviewer.vito.be/2019) and a footprint of processed SAR images. Also, there are pixels of 

interest (POIs) labelled with letters as follow: Affected by ash deposits = (a) Lava flow deposits, 

(b) Urban, (c) Closed vegetation, (d) Open vegetation. Unaffected by ash deposits = (e) Urban, (f) 

Closed vegetation, (g) Open vegetation.  

 

3.1.1.  The January 2020 eruption  

On January 12, 2020, at 17:30H (LT) Taal volcano generated a steam-laden tephra column that 

rose to 15 - 17 km above sea level (PHIVOLCS-DOST, 2020a). The eruption was classified with 

a VEI 4 and PHIVOLCS reported ashfall at cities located North and Southwest off the main crater 

(PHIVOLCS-DOST, 2020b, 2020c). The volcano island and areas within a 14 km radius were 

evacuated and flights suspended at Manila airport (Global Volcanism Program, 2020; PHIVOLCS-

DOST, 2020a).  

 

During the first hours, the volcanic ash cloud was dispersed towards the North of the main crater 

as shown in Fig. 4a.  On January 13, the eruption lowered intensity with ash emissions dispersed 

towards the Southwest of the main crater at around 1 km altitude (PHIVOLCS-DOST, 2020d) (see 

Fig. 4b.). Emissions continued towards the West and Southwest until January 22, when they 

ended. On January 22, ash deposits in Taal caldera were remobilized and dispersed towards the 

Southwest direction by a strong low-level wind (PHIVOLCS-DOST, 2020e). This phenomenon 

was captured by the astronauts in the International Space Station (ISS) as shown in Fig. 4c. 
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Figure 4. (a) Volcanic ash cloud (red contour) on 12 January at 16:50 (LT). True-color 

composition, image acquired by the AHI-Himawari-8. (b) Volcanic ash plume from the main crater 

moving towards the Southwest direction on 13 January at 10:20 (LT). Natural-color composition 

inspired in a report of Manila Observatory (Flordeliza P. et al., 2020). Image acquired by MSI-

Sentinel-2B. (c) Ash remobilization phenomenon taken by the astronauts in the International 

Space Station (ISS) on 22 January. Image (ISS061-E-138244) courtesy of the Earth Science and 

Remote Sensing Unit, NASA Johnson Space Center.  

 

3.2. Dataset and processing 

The dataset is composed of 93 SAR images acquired in ascending pass (Path 142, Frame 39) by 

the Sentinel-1 constellation between January 2, 2017, and February 16, 2020. The area of interest 

is completely within sub-swath 2 and bursts 5-8. The dataset is divided into a subset of 89 images 

acquired before the eruption and another one composed only of 4 scenes acquired after the 

eruption. Fig. 5 shows the acquisitions timeline in the context of the eruption. In order to 

characterize the coherence behavior for a long time period we use all the available scenes. It is 

possible that similar results could be achieved by using fewer scenes, but we prefer to not 

unwittingly skew the model by arbitrarily picking some images from the available ones. The pre-

eruptive subset was used to compute 3916 interferometric pairs, named reference pairs using all 

possible combinations. The second subset was used for composing 362 co-eruptive 

interferometric pairs using all possible combinations of pre-eruptive and post-eruptive images, 

named event pairs. 
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Figure 5. Data-acquisition timeline of SAR images.  

 

Coherence was computed using a rectangular window of 4 pixels in azimuth by 20 pixels in range, 

resulting in a ground resolution of ~60 and ~70 m in azimuth and range respectively considering 

plain terrain. All coherence maps (reference and event pairs) in our study have a dimension of 

1250x1100 pixels. 

 

The coherence maps were no compensated for geometric decorrelation because of the orbit of 

the two satellites from Sentinel-1 constellation are kept within a stringent Earth-fixed orbital tube 

with a deviation of +/- 100m (European Space Agency (ESA), 2018; Prats-Iraola et al., 2015). The 

rigorous orbit control is under the care of the Copernicus precise orbit determination (POD) which 

guarantees the maximum orbit accuracy (Peter et al., 2017), minimizing the geometric 

decorrelation. 

 

4. Results 

4.1. The Implementation of TDM 

Let’s now estimate the model parameters of the study case relevant for the Taal volcano eruption, 

following the step-by-step procedure depicted in Fig. 1.  

 

First, let’s see the evolution of coherence in time at selected points. Fig. 6 shows the coherence 

computed from reference pairs as a function of ∆𝑇 at four representative points of interest (POIs) 

characterized with different land cover: 1969 eruption’s lava flow (Fig. 6a), urbanized area (Fig. 

6b), closed forest (Fig. 6c) and open forest (Fig. 6d). As expected, coherence presents an 

exponential decrease which is in accordance with temporal coherence equation (2). Note that over 

former lava flows and urbanized areas the coherence remains high even for time spans longer 

than 1000 days. Dispersion for pairs with same ∆𝑇 is greater in the lava flows than in cities, maybe 

because the environment in the former areas supports the growing of lower vegetation. In fact, 

they are classified in Fig. 3 as herbaceous wetlands. By contrast, vegetated areas show low 

coherence for all temporal baselines. This behavior is in agreement with previous studies 
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(Hagberg et al., 1995; Orynbaikyzy et al., 2023; Wei and Sandwell, 2010; Zebker and Villasenor, 

1992).  

 

 
Figure 6. Coherence as a function of temporal baseline for the four representative pixels. (a) 

Lava. (b) Urban. (c) Closed Forest. (d) Open Forest. 

 

Then, aiming to estimate the pair-invariant parameters (𝜇, 𝜏𝜈 , 𝜏𝑔 ) we must get the values less 

affected by randomness.  The maximum coherence for each ∆𝑇 is represented by blue dots in 

Fig. 6, but they still present some variability which prevents characterizing the long term coherence 

decline. This is more notorious in the natural environment (lava flows, vegetated areas), when 

possible seasonal vegetation related effects are present.  Subsequently, we filtered that variability 

by identifying the local maximums (red dots in Fig. 6) and using them for fitting a curve that 

represents the time evolution of coherence not affected by randomness, i.e., 𝛾𝑡
ℎ𝑖𝑔ℎ

 of equation (5). 

We used a robust non-linear least squares curve fitting algorithm which implements the 

Levenberg-Marquardt method (Dennis et al., 1981; Dennis and Schnabel, 1996). To guarantee 

the parameters’ convergence we established the following empirical constrained bounds: 

{𝜇  |  0.1 ≤ 𝜇 ≤ 10}, {𝜏𝑣  |  1 ≤ 𝜏𝑣 ≤ 200}  and {𝜏𝑔  |  400 ≤ 𝜏𝑔 ≤ 6000}. 

 

Figure 7 shows the pair-invariant parameters distribution in the processed area. The ground to 

volume ratio (𝜇) can be interpreted as the normalized incidence of ground to volume scattering in 

the observed coherence. It is expected to be higher in areas where ground scattering mechanisms 

are dominant over volume scattering ones. In our case, 𝜇 takes higher values (>6) in urban areas, 

intermediate ones (between 4 and 6) over low vegetation areas and old lava flows, and low values 

(<4) over forested areas, which is consistent with its meaning.   
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Figure 7. Maps of estimated pair-invariant parameters (a) 𝜇 map. (b) 𝜏𝑔 map. (c) 𝜏𝜈  map. 

 

Parameters 𝜏𝑔 and 𝜏𝑣  can be interpreted as the characteristic times for the ground and volume 

scattering mechanisms, respectively. They represent the number of days that produce a temporal 

coherence decrease of approximately 63%. Ground scattering is characterized by long term 

coherence (Fig. 7b) whereas volume scattering is responsible for fast coherence drop (Fig. 7c). 

Note that for a given pixel, the temporal coherence is explained by a combination of both scattering 

mechanisms, i.e., ground and volume, in a relation governed by the parameter 𝜇 (equation 2). So, 

pixels covered by vegetation are affected by more proportion of volume scattering, causing a 

coherence loss faster than pixels covered by more stable structures.   

 

Next, we calculated the ratio 𝛼𝑔 using equation (6). Note that it is dependent on 𝛥𝑇, so we 

computed 𝛼𝑔 map for each time span in the reference dataset. In consequence, there are 92 𝛼𝑔 

maps for 𝛥𝑇 ranging between 12 and 1104 days. These maps were used for estimating the 

random coherence components of each reference pair (𝛾𝑑,𝑟𝑎𝑛𝑑
𝑔

 and 𝛾𝑟𝑎𝑛𝑑
𝑣 ) with equations (8) to 

(10). Random coherence is the key of TDM to discriminate changes caused naturally from 

changes caused by the presence of ash deposits. This discrimination is possible because random 

coherence provides statistical information about how often each pixel is affected by natural or 

random changes.    

 

Finally, the same procedure, i.e., pair-invariant parameters estimation, 𝛼𝑔 calculation and random 

coherence estimation, was applied to the 362 event pairs. As a result, we have two sets of random 

coherence components for each pixel, one characterizing the not disturbed coherence evolution, 

and the other characterizing the coherence affected by eruption related ashfall. 

 

4.2. Random coherence analysis 

Now, we use the obtained random coherence distribution for estimating the probability of a given 

pixel being affected by the “event”, which in our case is ashfall. For each pixel, we compute two 

PDFs using 3916 reference and 362 event random coherence values respectively. Fig. 8 shows 

them for selected points within the processed area, labeled also in the land cover map of Fig. 3. 
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Figure 8. Probability density functions (PDFs) for pixels with different land cover and 

contrasting results. Labels correspond to: Pixels affected by ash deposits = (a) Lava flow deposits, 

(b) Urban, (c) Closed vegetation, (d) Open vegetation. Not affected pixels = (e) Urban, (f) Closed 

vegetation, (g) Open vegetation. 
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Pixels affected by ash deposits are presented in Fig. 8(a-b), located at positions with former lava 

flows and urban coverage respectively. The reference PDFs have means of 0.69 and 0.70, typical 

of a point where coherence remains high for longer time spans. The event PDFs are clearly shifted 

towards lower coherence values, indicating a change in coherence behavior that can be 

interpreted as the result of the studied event. The probability of these pixels being affected by ash 

deposits, computed as detailed in section 2.3, gives 99%. By contrast, the point represented in 

Fig. 8e is an urban pixel not affected by ash deposits. Note that both reference and event PDFs 

have roughly the same mean (0.72 and 0.79, respectively). In consequence, the probability that 

this pixel is affected by ash deposits is 25%. 

 

Fig. 8c and 8d show pixels covered by vegetation and affected by ash deposits. Both reference 

and event PDFs are shifted towards low random coherence values and probability at the observed 

points is slightly higher than 50%. Pixels not affected by ash deposits, shown in Fig. 8f and 8g 

present similar PDFs, also shifted to low random coherence values. In those cases, the 

probabilities are 42% and 29%, respectively. In general, at vegetated positions the coherence loss 

is so fast that for most cases the additional loss due to an event is not detectable. 

 

4.3. Probability map 

The probability for every processed pixel is shown in the map of Fig. 9a. There, we superimposed 

sample points where the Philippine Institute of Volcanology and Seismology (PHIVOLCS) reported 

ashfall, and isopachs from Balangue-Tarriela et al. (2022). Points in reddish colors are pixels with 

probability of being affected by ash deposits higher than 60%. Note that they are aligned in 

Northeast direction, in coincidence with ash deposits revealed by the isopachs and with the plume 

orientation observed during the eruption from Himawari-8 and Sentinel-2B data (see Fig. 4) (Leung 

et al., 2020).   

 

Although high probability pixels are oriented in the correct direction, there are also many points of 

low probability intertwined between them. See, for example, the pattern within the 1.5cm isopach. 

This result is related to areas with extremely low random coherence where both the reference and 

event PDFs are shifted to low random coherence values, so no detection is possible. We adopted 

the following criteria: at pixels where average coherence, computed from the reference pairs, is 

smaller than 0.2 any additional event-related coherence loss cannot be observed. This is 

consistent with the observation made by Touzi et al. (1999), where they demonstrate that the 

coherence estimator is biased towards higher values when coherence is lower than 0.2, a value 

that slightly changes depending on the number of processing looks. So, we consider that the 

coherence value obtained at those points is unreliable and mask them out from the probability 

map. 
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Figure 9. Probability map. a) All pixels (no filter applied). b) Unmasked pixels (pixels with an 

averaged coherence greater than 0.2). Black stars are the locations where Philippine Institute of 

Volcanology and Seismology (PHIVOLCS) reported ashfall. 

 

Applying the mask, we obtained the probability map displayed in Fig. 9b. We masked 64% of the 

total number of processed points. The number of masked points by land cover is shown in Table 

1. As expected, the class with more unreliable pixels is the closed forest one (around 73.2%), 

whereas the urban areas loss only 35.8% of the original points. 

 

Table 1. Comparison between all pixels and unmasked-reliable pixels. Statistical information for 

each land cover type.  

Land cover 

type* 

All pixels 
Unmasked 

pixels** 
Percentage [%] 

of masked pixels 
Count Count 

Cropland 213.771 105.249 50.8 

Closed Forest 492.725 82.889 83.2 

Open Forest 226.782 101.571 55.2 

Urban 145.716 93.552 35.8 

Others 8.329 3.802 54.4 

Total pixels 1.087.323 387.063  

(*) Land cover types like Permanent water bodies and Open Sea were not included in the analysis. 

(**) 700.260 pixels were masked (64.4% of all pixels). 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



18 
 

5. Discussion 

We profit from the availability of the ashfall isopachs to perform the assessment of the accuracy 

of our results. First, we want to assess if the selected average coherence threshold in the 

reference dataset is enough to filter out unreliable points. We computed the Receiver Operating 

Characteristics (ROC) graphs and the Area Under the ROC Curve (AUC) (Fawcett, 2006) to 

visualize and quantify the model performance for detecting ash within the different isopach levels. 

The ROC charts display the true positive rate versus the false positive rate, so the detection is 

better for curves above the diagonal.    

 

Fig. 10 shows the ROC curves for different sets of results, masked using average coherence in 

the reference dataset of 0.2, 0.5, and 0.75. Different curves within each chart consider only pixels 

inside the isopachs, for example the red one is representing the performance of the proposed 

methodology for detecting ash thickness greater than 10cm. Using a coherence of 0.2, our first 

guess, seems to leave many unreliable points in the dataset, given the curves near the diagonal 

in Fig. 10a. Instead, a coherence threshold greater than 0.5 enhances only marginally the 

performance, as can be seen by the AUC metrics (Fig. 10b and 10c). Note that the error in the 

classification of ash deposits is related to their thickness. This analysis reveals that the 

methodology performs significantly better for deposits thicker than 1.5cm. 

 

 
Figure 10. ROC charts for masked points using average coherence in the reference dataset 

of 0.2, 0.5, and 0.75. Different curves within each chart consider only pixels inside the specific 

isopach. 

 

Now, we computed the confusion matrix and related metrics. For validation, we consider that all 

pixels within the 1.5cm isopach are ash covered, and that points outside it are either covered by 

an ash thickness too thin to be detected or not covered at all. Furthermore, we filtered out all points 

of average coherence lower than 0.5, according to the analysis of the ROC curves. We performed 

tests for different probability thresholds, i.e., 0.7, 0.75 and 0.8. See in Fig. 11 the maps of pixels 

with ash deposits for the different cases. 
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Figure 11. Ash deposits map for different probability thresholds (PT). (a) PT = 0.70. (b) PT = 

0.75. (c) PT = 0.80. 

 

We focus on the accuracy, that relates the well classified points, positive and negative, to the total 

number of them in the dataset, and the precision, which computes the percentage of true positives, 

i.e., pixels classified as ash covered that were really ash covered, to the number of pixels classified 

as positives by the model. Table 2 shows the computed metrics. 

 

Accuracy is fairly high, higher than 80% for all the analyzed probability thresholds, and increases 

when more stringent conditions are imposed for considering one of them as affected. Precision 

also increases for more stringent conditions, but with significantly lower values than accuracy. 

This metric is particularly affected by the set of positives that are detected outside the area with 

ashfall, i.e., outside the 1.5cm isopach in our case (see maps in Fig. 11). So, the proposed 

methodology is detecting many false positives. 

 

Table 2. Accuracy and precision metrics calculated for different probability thresholds*.  

Probability 

Threshold 

(PT) 

Accuracy 

[%] 

Precision 

[%] 

Number pixels 

classified as 

positive 

0.70 83.79 35.73 8061 

0.75 86.06 43.16 5005 

0.80 87.2 52.19 2995 

*Total number of pixels used in the analysis:  71092 

 

Note that those points are located in high coherence areas, linked to the urban class in Fig. 3. 

They are points where average coherence in the reference dataset is high, and where a coherence 

drop is observed in the event dataset. We assume for this study that any coherence drop is related 

to the studied event, i.e., the volcano eruption. However, given the discussed results, it is probable 

that other changes which affect the coherence are occurring during the time span of the event 

dataset. How to minimize the number of no-event-related changes in the event dataset? Note that 

we formed it by using all available scenes with the sole condition of making co-eruptive coherence 

maps, which then includes time spans of up to three years. Many changes can occur in such a 
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time period, even in stable areas like cities. So, probably a better strategy is to make a smaller 

event dataset by restricting the time span between images.  However, to make the statistical 

analysis work, this dataset should have a significant number of samples. 

 

6. Conclusion 

 

We have shown that the TDM can be successfully applied to C-band data, despite the limitations 

in terms of interferometric coherence when compared with L-band data used to develop the model, 

i.e., higher temporal decorrelation. Our results were compatible with the expected behavior of 

temporal coherence in different land covers. We generated a probability map that is consistent 

with the field evidence, although a deeper study to calibrate some of the model parameters is 

needed. However, the work demonstrates that C-band data might be useful for mapping ash 

deposits generated by a volcanic eruption in a very difficult environment in terms of vegetation 

coverage. This provides a novel framework for the coherence exploitation of C-Band data which 

takes profit from the huge archive data provided by the Sentinel-1 mission.  

 

Future work should focus on comparing the results using L- and C-band data over the same case 

study. Some important questions for future studies are to determine the sensitivity of TDM for 

different SAR data and if it is possible to correlate some parameter to the ash deposits thickness. 

Another interesting question is about the smallest number of images needed to get high-quality 

results.  

 

Finally, this methodology could be useful in helping governments and Civil Protection Authorities 

for the management of emergencies generated by volcanic eruptions. Furthermore, it can be 

applied to detection and monitoring of other natural disasters, such as wildfires, landslides, and 

earthquakes.   
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Highlights 

• Temporal Decorrelation Model improves the change detection with SAR data.  

• Adaptation of a Temporal Decorrelation Model to C-band data.  

• C-band data is useful to detect ash deposits generated by a volcanic eruption. 

• Novel framework for the coherence exploitation of C-Band data. 
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