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Abstract

In Salmonella enterica serovar Typhimurium, the RcsCDB regulatory system controls the expression of genes involved in syn-
thesis of colanic acid, formation of flagella and virulence. Here, we show that activation of the RcsCDB system downregulates 
expression of std, an operon that encodes fimbriae involved in Salmonella attachment to the mucus layer in the large intestine. 
Bioinformatic analysis predicts the existence of an RcsB-binding site located 180 bp upstream to the +1 transcription start site 
of the std promoter, and electrophoretic mobility shift assays confirm that RcsB binds the std promoter region in vitro. This study 
adds RcsB to the list of regulators of std transcription and provides an example of modulation of fimbriae synthesis by a signal 
transduction system.

Introduction
Salmonella enterica, a facultative intracellular pathogen, is 
a ubiquitous bacterium that can respond to changes in the 
environment including the animal host [1–3]. Salmonella 
survival within the host depends on coordinated expression of 
multiple genes, and signal transduction systems are relevant 
to detect specific signals and modulate the expression of genes 
required for adaptation [4, 5]. One such system is RcsCDB, 
which comprises the sensors RcsC and RcsD, the response 
regulator RcsB, and additional ancillary proteins [6–8]. These 
proteins are (i) the co-regulator RcsA; (ii) an outer membrane 
lipoprotein RcsF; and (iii) an integral inner membrane 
protein IgaA [8]. Constitutive activation of the RcsCDB 
system attenuates virulence in S. Typhimurium [9, 10]. The 
attenuated phenotype of Rcs constitutive mutants is partly 
produced by capsule overproduction and by repression of the 
flhDC operon and pathogenicity island 1 (SPI-1) [10–12]. In 
addition, the Rcs system protects Salmonella from oxidative 
stress [13] and controls the acid resistance response [14].

Adhesion of Salmonella enterica to host tissues is mediated by 
fimbrial and non-fimbrial adhesins that recognize and bind-
specific receptor moieties of host cells, often distinguishing 

between different epithelial cell types [15]. Fimbriae are clas-
sified in six types: α, β, γ, κ, π and σ [16]. π-type fimbriae are 
formed by a major fimbrial subunit, an usher protein and a 
chaperone [16]. Members of this group are well-characterized 
virulence factors such as the pyelonephritis-associated (P) 
fimbriae in E. coli and the mannose-resistant/Proteus-like 
(MR/P) fimbriae of Proteus mirabilis [16]. Salmonella Std 
fimbriae belong also to the π-type [16, 17]. Std fimbriae 
contribute to cecal colonization by binding to α- [1, 2] fucose 
residues, which are abundant in the host cecal mucosa [18]. 
Expression of std is bistable, resulting in the formation of 
StdOFF and StdON subpopulations [19]. The difficulty to detect 
std expression under laboratory conditions [20, 21] is caused 
by the small size of the StdON subpopulation outside the 
animal host [19]. However, std expression increases in the 
intestine of infected animals, with concomitant production 
of large StdON subpopulations [22].

The std operon contains six genes, named stdABCDEF, 
which are co-transcribed from a single promoter located 
upstream of stdA [23] (Fig. 1a). The downstream genes stdE 
and stdF encode transcription factors that control expression 
of multiple genes including the std operon itself [19]. Tran-
scriptional control of std expression is complex, and involves 
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a double feedback loop: StdE activates transcription of hdfR, 
a gene located outside the std operon, and HdfR activates std 
transcription together with StdF [24]. HdfR binding to the std 
upstream activating sequence (UAS) is hindered by methyla-
tion of GATC sites located at the std UAS, and formation of 
StdON cells requires GATC methylation hindrance, which is 
caused by HdfR binding [21, 24]. This study shows that the 
RcsCDB system is an additional regulator of std transcription, 
thus adding a fimbrial operon to the list of loci under RcsCDB 
control.

Methods
Bacterial strains, molecular techniques and growth 
conditions
The S. Typhimurium strains used in this work derive from 
ATCC 14028 s (Table  1). Mutations were introduced into 
different genetic backgrounds by P22-mediated transduc-
tion following the protocol described by Davis et al. [25]. The 
pRcsB plasmid is derivative of the pUHE2-21 lacIq expression 
vector harbouring the rcsB gene under the control of Plac [26]. 
Bacterial growth and recombinant DNA techniques followed 

standard protocols [27]. Kanamycin (Km), ampicilin (Ap) 
and chloramphenicol (Cm) were used at final concentrations 
of 50, 50 and 25 µg ml−1, respectively.

β-galactosidase assays
Levels of β-galactosidase activity were assayed using the 
CHCl3-sodium dodecyl sulfate permeabilization procedure 
[28]. β-galactosidase activity data are the averages and 
standard deviations from three independent experiments.

Protein extracts and Western blot analysis
Total protein extracts were obtained from bacterial cultures 
grown for 5 h at 37 °C in Luria broth (LB) medium. Bacte-
rial cells were collected by centrifugation (16 000 g, 2 min) 
and suspended in 100 ml of Laemmli sample buffer 
[1.3 % SDS, 10 % (v/v) glycerol, 50 mM Tris-HCl, 1.8 % 
β-mercaptoethanol, 0.02 % bromophenol blue, pH 6.8]. 
Proteins were resolved by Tris-Tricine-PAGE (12%). The 
Western blot assay was performed using conditions for 
protein transfer described elsewhere [23]. Optimal primary 
antibody dilutions were used as follows: anti-FLAG M2 

Fig. 1. Regulation of std transcription by the RcsCDB system. (a) Diagram of the std operon with amplification of the promoter and the 
upstream regulatory region. Binding sites for StdF and HdfR are shown. The region harbours three GATC sites, and two such sites 
are located within the HdfR-binding site. (b) β-galactosidase activity of strains harbouring an stdA::lacZ fusion. Strains were SV5206 
(stdA::lacZ, in a wild-type background), MDs1696 (stdA::lacZ rcsB

D56N
) and MDs1695 (stdA::lacZ rcsC11). Asterisk represents statistically 

different β-galactosidase activity values compared to the wild-type strain (Tukey test, P<0.05). (c) Flow cytometry analysis of stdA::gfp 
expression in the wild-type and rcsC11 backgrounds (SV9597 and SV8528, respectively). The box shows StdON cells. (d) β-galactosidase 
activity of the stdA::lacZ fusion in dam (MDs1697), dam rcsB

D56N
 (MDs1699), dam rcsC11 (MDs1698) and dam pRcsB (SV9318) backgrounds. 

Asterisk represents statistically different β-galactosidase activity values compared to dam background (Tukey test, P<0.05). Data in (b) 
and (d) are averages and standard deviations from three independent experiments, each carried out in duplicate.
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monoclonal antibody (Sigma Chemical), 1 : 5 000; and anti-
DnaK polyclonal antibody (Sigma Chemical), 1 : 20 000. 
The Goat anti-mouse horseradish peroxidase-conjugated 
antibody (1 : 5 000, BioRad, Hercules, CA, USA) or Goat 
anti-rabbit horseradish peroxidase conjugated antibody 
(1 : 20 000, Santa Cruz Biotechnology, Heidelberg, Germany) 
were used as secondary antibodies. Proteins recognized by 
the antibodies were visualized by chemoluminescence using 
luciferin-luminol reagents in a LAS 3000 Mini Imaging 
System (Fujifilm, Tokyo, Japan). DnaK was used as the 
loading control of each extraction.

Electrophoretic mobility shift assay (EMSA)
EMSA was carried out according to the protocol previously 
described [29]. DNA sequences containing the putative RcsB-
binding site were amplified by PCR using wild-type ATCC 
14028 s chromosomal DNA as a template. The PCR product 
of the std promoter (735 bp), containing the predicted RcsB-
binding site, was obtained using primers no. 9053 (5′-​CGAT​
TCTA​GACG​CATT​AATA​TCCC​CCAGCC-3′) and no. 9055 
(5′-​ATTA​CGCA​TAGA​TAAT​ATGTC-3′). The 234 bp PCR 
product of the dps promoter, where a predicted RcsB-binding 
site was not present, was amplified using primers no. 8032 
(5′-GCGCTATTACTTCGTC-3′) and no. 8033 (5′-​CGGG​
ATCC​CTCA​TATC​CTCT​TGAT​GTTTGTGT-3′) and used 
as a negative control. In this assay, 2 pmol of each PCR 
product were incubated together at room temperature with 
0, 5, 10, 40 or 80 nM of RcsB-His6 protein previously puri-
fied as described [12]. The samples were analysed on a 6 % 
non-denaturing Tris-borate-EDTA polyacrylamide gel and it 
was run at 8 mA at 4 °C. The polyacrylamide gel was stained 
with ethidium bromide, and migration of PCR fragments was 
visualized under UV irradiation.

Flow cytometry
Bacterial cultures were grown at 37 °C in LB medium until 
stationary phase (OD600≅2). Cells were then diluted in PBS 
to a final concentration of ~107 cells ml−1. Data acquisition 
was performed using a Cytomics FC500-MPL cytometer 
(Beckman Coulter, Brea, CA, USA). Data were collected for 
100 000 events per sample and were analysed with CXP and 
FlowJo 8.7 softwares. Data are shown by dot plots representing 

Table 1. Salmonella enterica serovar Typhimurium strains used in this 
study

Strain Description Referencea

MDs1695 rcsC11 stdA::lacZ

MDs1696 rcsBD56N stdA::lacZ

MDs1697 dam-201::Tn10dTc stdA::lacZ

MDs1698 rcsC11dam-201::Tn10dTc stdA::lacZ

MDs1699 rcsBD56Ndam-201::Tn10dTc stdA::lacZ

SV9318 dam-201::Tn10dTc/pRcsB

SV5206 stdA::lacZ [21]

SV6502 dam-201::Tn10dTc stdF::3xFLAG [23]

SV6533 dam-201::Tn10dTc stdF::lacZ [23]

SV8783 rcsC11 dam-201::Tn10dTc stdF::lacZ

SV8784 dam-201::Tn10dTc stdF::3xFLAG rcsC11

SV9597 stdA::gfp [19]

SV8528 stdA::gfp rcsC11

a, Omitted for strains described in this study.

Fig. 2. Regulation of stdF expression by RcsCDB. (a) β-galactosidase activity of the stdF::lacZ fusion measured in dam (SV6533) and dam 
rcsC11 (SV8783) mutants. Data are averages and standard deviations of three independent experiments, carried out in duplicate. Asterisk 
represents statistically different β-galactosidase activity values (Tukey test, P<0.05). (b). Western blot analysis using the stdF::3xFLAG 
fusion expressed in dam (SV6502) and dam rcsC11 (SV8784) backgrounds.
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forward scatter (cell size) in the y axis vs fluorescence intensity 
in the x axis.

Results
Regulation of std transcription by the RcsCDB 
system
To investigate whether the RcsCDB system controls the 
std operon expression, a stdA::lacZ transcriptional fusion 

harboured in the Salmonella chromosome (SV5206) was 
transduced to strains carrying rcsC11 and rcsBD56N mutations. 
The rcsC11 allele contains a point mutation that constitutively 
activates the RcsCDB system [30]. In turn, the rcsBD56N allele 
contains a point mutation in the receiver domain of the rcsB 
gene that prevents RcsB phosphorylation [31]. The expression 
levels of stdA were low in both backgrounds as well as in the 
wild-type strain (Fig. 1b), in accordance with previous reports 
indicating that std operon expression is difficult to detect under 

Fig. 3. Binding of RcsB to the std promoter region. (a) Nucleotide sequence upstream of the std start codon (bold sequence) harbouring 
the +1 transcription start site and −10 and −35 conserved boxes. The RcsB-binding site is highlighted. The GATC Dam-dependent 
methylation sites are in bold. (b) Sequence alignment of the std promoter region with RcsB-binding sites identified in the promoters 
of other RcsB-dependent genes, using the MEME/MAST motif detection program. (c) EMSA of a 735 bp PCR product that contains the 
putative RcsB-binding site in the std promoter in the presence of RcsB-His6 protein. A 234 bp PCR product amplified from the dps 
promoter without the RcsB-binding site was used as a negative control.
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laboratory conditions [20, 21]. However, we observed that the 
rcsC11 mutant (MDs1695) produced a very low expression 
level, suggesting that activation of the RcsCDB phosphorelay 
might repress std transcription (Fig. 1b). Further evidence for 
RcsB-mediated repression was provided by flow cytometry 
analysis using strains carrying a stdA::gfp fusion (Fig. 1c). 
The wild-type strain (SV9597) showed bistable expression 
as previously described [19], with formation of a small StdON 
subpopulation (approx. 0.3 % cells). RcsCDB activation by the 
rcsC11 mutation (SV8528) abolished bistability, and StdON 
cells were not detected (Fig. 1c).

Because lack of Dam methylation activates std transcription 
[21], we tested the effects of rcsC11 and rcsBD56N mutations in 
a dam background. As expected, the dam mutation increased 
std expression compared with the wild-type strain [Fig. 1(b) 
and (d)]. In turn, the β-galactosidase activity of the stdA::lacZ 
fusion increased in the dam rcsBD56N background (MDs1699) 
and decreased in the dam rcsC11 background (MDs1698) 
(Fig. 1d). Repression was likewise observed upon RcsB over-
expression from a plasmid (SV9318) (Fig. 1d). Altogether, 
these observations strengthened the evidence that activation 
of the RcsCDB system represses std expression.

To confirm that RcsB-dependent modulation of std expression 
affects the entire std operon, we monitored the expression of 
downstream gene of this operon [23]. For this purpose, we 
determined the activity of an stdF::lacZ transcriptional fusion 
in dam and dam rcsC11 genetic backgrounds (SV6533 and 
SV8783, respectively). The β-galactosidase activity of the 
stdF::lacZ fusion decreased fivefold in the presence of the 
rcsC11 mutation (Fig. 2). In addition, the StdF protein levels 
in dam and dam rcsC11 backgrounds (SV6502 and SV8784, 
respectively) were analysed by Western blot using an anti-
3xFLAG antibody. StdF protein was not detected in the dam 
rcsC11 double mutant, while a 32 kDa band corresponding to 
StdF was observed in the dam mutant (Fig. 2b). The overall 
conclusion from the above experiments was that activation 
of the RcsCDB system does repress std operon expression.

Binding of RcsB to the std promoter region
To determine whether std downregulation upon RcsCDB acti-
vation involves specific binding of RcsB to the std promoter 
region, we carried out an in silico search to identify a potential 
RcsB-binding motif in the std promoter region. Using the 
MEME/MAST motif detection program [32, 33], we detected 
a sequence homologous to RcsB-binding sites present in other 
RcsB-regulated genes [34–36] (Fig. 3a, b). The location of this 
putative RcsB-binding site is 180 bp upstream to the +1 tran-
scription start site, near but not overlapping the HdfR-binding 
site or the Dam methylation sites [24] (Figs 3a and 1a).

A direct test of RcsB binding was performed by EMSA. 
For this purpose, we amplified a DNA fragment of 735 bp 
harbouring the std promoter and upstream regulatory 
sequences including the putative RcsB-binding site. As a 
negative control, we used a 234 bp PCR product containing a 
variant of the RcsB-dependent dps promoter, which lacked the 
RcsB-binding sequence [13]. Retardation of the 735 bp PCR 

product migration was detected while the electrophoretic 
mobility of the 234 bp PCR product (negative control) was 
not modified (Fig. 3c). These observations indicate that RcsB 
binds the std promoter region.

Discussion
We show that activation of the RcsCDB system represses tran-
scription of the std fimbrial operon, and provide evidence that 
repression may be caused by binding of RcsB upstream of the 
std promoter. The RcsB-binding site does not overlap with the 
StdF- and HdfR-binding sites nor with the GATC sites present 
in the region (Figs 1a and 3a). Detection of RcsCDB-mediated 
repression in both dam+ and dam backgrounds (Fig. 1d, c) 
suggests that RcsB binding may counter transcriptional 
activation by the StdE-StdF-HdfR regulatory loop [24]. RcsB 
binding may thus repress std transcription in a manner that is 
independent of previously known mechanisms of std control.

The physiological relevance of RcsCDB-mediated repression 
of std is difficult to understand because the environmental 
cues that activate the RcsCDB signal transduction cascade 
remain largely unknown [6–8]. A tentative speculation, 
however, is that RcsCDB might permit environmental 
control of std switching as described in other Dam-dependent 
bistable switches. For instance, phase variation of the pap 
operon of uropathogenic E. coli is controlled by the CpxAR 
stress response [37] and by the global regulator CRP [38]. 
In std, environmental control might prevent production of 
Std fimbriae under circumstances that are not appropriate for 
attachment, either in the environment or inside the animal 
host. The possibility of environmental control may be tenta-
tively supported by the observation that the sizes of StdOFF 
and StdON subpopulations in the large intestine are different 
from those observed in the laboratory [19, 22]. Control of std 
expression by RcsCDB might thus be part of the regulatory 
networks that adjust Salmonella gene expression to distinct 
host environments [2, 3, 5].
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