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ON RICCI NEGATIVE DERIVATIONS

MARÍA VALERIA GUTIÉRREZ

Abstract. Given a nilpotent Lie algebra, we study the space of all diagonalizable
derivations such that the corresponding one-dimensional solvable extension admits a
left-invariant metric with negative Ricci curvature. It has been conjectured by Lauret-
Will that such a space coincides with an open and convex subset of derivations defined in
terms of the moment map for the variety of nilpotent Lie algebras. We prove the validity
of the conjecture in dimension ≤ 5, as well as for Heisenberg and standard filiform Lie
algebras.
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1. Introduction

Even though in the general case there are no topological obstructions on a differentiable
manifold M to the existence of a complete Riemannian metric with Ric < 0, in the homo-
geneous case, this is the only curvature behavior which is still far from being understood.
Given a Lie group G, a nice relationship between any prescribed curvature behavior of
left-invariant metrics, the topology of G and also the structure of its Lie algebra g is
expected. When we consider a Lie group all the metrics are assumed to be left invariant.

In [DtLtM], Dotti, Leite and Miatello proved that if a unimodular Lie group G admits
a Ric < 0 metric, then G is non-compact and semisimple. They also showed that most of
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non-compact, simple Lie groups indeed have one, with some low dimensional exceptions.
On the other hand, it was proved by Jablonski and Petersen [JP] that a semisimple Lie
group admitting a metric with Ric < 0 can not have compact factors.

In 2016, Will constructed unexpected examples of Lie groups admitting a Ric < 0 metric
which are neither semisimple nor solvable [W1, W2]. Furthermore, a general construction
in [W2] shows that any non-compact, semisimple Lie group admitting a Ric < 0 metric
can be the Levi factor of a non-semisimple Lie group with a Ric < 0 metric, and in [LrW]
it is proved that any compact semisimple Lie group can be the Levi factor of a Lie group
having a Ric < 0 metric. All this shows that an algebraic characterization of Lie groups
admitting this kind of metrics is out of reach at the moment.

In the solvable case, Nikolayevsky and Nikonorov obtained a sufficient condition on a
solvable Lie group S, with Lie algebra s, for the existence of a metric on S with Ric < 0:
there exists Y ∈ s such that all the eigenvalues of the restriction of ad Y to the nilradical
of s have positive real part. They also prove a necessary condition, which says that if S
admits a metric of negative Ricci curvature, then there exists Y ∈ s such that tr adY > 0
and all the eigenvalues of the restriction of the operator adY to the center of the nilradical
have a positive real part.

It has been shown in [DL] that the class of those nilpotent Lie algebras that can be the
nilradical of some solvable Lie algebra admitting a Ric < 0 metric is really far from being
understood. We consider instead the following question.

Question 1: Given a nilpotent Lie algebra n, which are the solvable Lie algebras
with nilradical n admitting a Ric < 0 metric?

The following conjecture was proposed in [NN, N], see also [LW].

For each nilpotent Lie algebra n, there is an open and convex cone C in the
maximal torus of derivations of n such that a solvable Lie algebra s with
nilradical n admits a Ric < 0 metric if and only if there exists Y ∈ s such
that adY |Rn ∈ C (up to automorphism conjugation).

In the context of solvable Lie groups, strongly Ricci negative derivations of a nilpotent
Lie algebra n were defined in [LW] in order to study this problem by considering one-
dimensional solvable extensions of n.

Definition 1.1 (see Definition 2.1). A derivation D of a nilpotent Lie algebra n with
trD > 0 is said to be strongly Ricci negative if the one-dimensional solvable extension Lie
algebra sD = Rf ⊕ n (ad f |n = D) admits an inner product of negative Ricci curvature
such that Dt = D and f ⊥ n.

If we denote by t(n) the maximal torus of diagonalizable (over R) derivations of n, we
call t(n)srn the set of all derivations in t(n) which are strongly Ricci negative. In [LW] it is
also defined the following open and convex cone C(n) consisting of this kind of derivations:

C(n) :=
(

R>0 m
(

Gt(n) · [·, ·]
)

∩Dg(n) + Dg(n)>0

)

∩ t(n)tr>0,

where Gt(n) denotes the connected component of the centralizer of t(n) in GL(n), which

acts on V := Λ2n∗ ⊗ n by g · µ := gµ(g−1·, g−1·). We denote by m the moment map for
the GL(n)-representation on V defined by the derivative of this action. The vector spaces
Dg(n) and Dg(n)>0 are those of diagonal operators (in terms of a fixed basis of n) and
positive diagonal operators of n, respectively, and t(n)tr>0 := {D ∈ t(n) : trD > 0}.

The following inclusions are proved in [LW]:

t(n)srn ∩ t(n)gen ⊂ C(n) ⊂ t(n)srn,

where t(n)gen are the generic derivations in t(n). In view of this, given a nilpotent Lie
algebra n, it is natural to expect the validity of the following
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Conjecture 1: C(n) = t(n)srn.

We refer to Section 2 for a more detailed treatment. Our aim in this paper is to prove the
validity of the above conjecture among three families of nilpotent Lie algebras.

In Section 3, we focus on nilpotent Lie algebras of dimension 5 and we obtain a complete
description of the cone C(n) in each case. After that, we prove our main result in Section
4.

Theorem 1.2 (see Theorem 4.4). For any nilpotent Lie algebra n of dimension 5, we have

that t(n)srn = C(n).

We also consider two important classes of nonabelian nilpotent Lie algebras: the Heisen-
berg Lie algebras and the standard filiform Lie algebras.

Proposition 1.3 (see Proposition 5.1). Let h2n+1 be the Heisenberg Lie algebra with basis

{e1, e2, . . . , e2n+1} and Lie brackets:

µ(e1, e2) = e2n+1, µ(e3, e4) = e2n+1, . . . , µ(e2n−1, e2n) = e2n+1.

For D := Dg(d1, dn+1 − d1, d2, dn+1 − d2, . . . , dn, dn+1 − dn, dn+1) ∈ t(h2n+1), the 3n equa-

tions which define the cone C(h2n+1) are given by:

(1) (l + 1)dn+1 ± di1 ± di2 ± . . . ± dik > 0, 0 ≤ k ≤ n, 0 ≤ l ≤ k.

This paves the way to prove Conjecture 1 for Heisenberg Lie algebras by using results
of [NN].

Theorem 1.4 (see Theorem 5.3). C(h2n+1) = t(h2n+1)srn, for all n ∈ N.

Finally, we study the standard filiform Lie algebra Ln.

Proposition 1.5 (see Proposition 6.1). Let Ln be the filiform Lie algebra defined by the

basis {e1, e2, . . . , en} and the Lie brackets:

µ(e1, e2) = e3, µ(e1, e3) = e4, . . . , µ(e1, en−1) = en.

For D := Dg(d1, d2, d1+d2, 2d1+d2, . . . , (n−2)d1+d2) ∈ t(Ln), the cone C(Ln) is defined
by the following equations,

(n− 2)d1 + d2 > 0 and
(n− 1)(n − 2)

2
d1 + (n− 1)d2 > 0.

By using [NN, Theorem 4], we also prove Conjecture 1 in this case.

Corollary 1.6 (see Corollary 6.2). C(Ln) = t(Ln)srn, for all n > 3.

2. Preliminaries

2.1. The representation Λ2(Rn)∗⊗R
n and the moment map. We consider the space

of all skew-symmetric algebras of dimension n, which is parameterized by the vector space

V := Λ2(Rn)∗ ⊗ R
n.

There is a natural linear action of GLn(R) on V given by g · µ := gµ(g−1·, g−1·), for all
g ∈ GLn(R), µ ∈ V , whose derivative defines the following gln(R)-representation on V ,

E · µ = Eµ(·, ·) − µ(E·, ·) − µ(·, E·), E ∈ gln(R), µ ∈ V.

Let tn denote the set of all diagonal n × n matrices. If {e1, ..., en} is the basis of (Rn)∗

dual to the canonical basis {e1, ..., en}, then

{µijk := (ei ∧ ej)⊗ ek : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}



4 MARÍA VALERIA GUTIÉRREZ

is a basis of V of weight vectors for the above representation. Note that µijk is actually
the bilinear form on R

n defined by µijk(ei, ej) = −µijk(ej , ei) = ek and zero otherwise.
The corresponding weights of this basis are given by

F k
ij := Ekk − Eii −Ejj ∈ tn, i < j,

where Ers denotes as usual the matrix whose only nonzero coefficient is 1 at entry rs. The
structural constants c(µ)kij of an algebra µ ∈ V are then given by

µ(ei, ej) =
∑

k

c(µ)kij ek, µ =
∑

i<j, k

c(µ)kij µijk.

We endow all these vector spaces with their canonical inner products.
The moment map (or GLn(R)-gradient map) from real geometric invariant theory (see

[HSS, BL] for further information) for the above representation is the O(n)-equivariant
map

m : V r {0} −→ sym(n),

defined by

(2) 〈m(µ), E〉 = 1
|µ|2

〈E · µ, µ〉 , µ ∈ V r {0}, E ∈ sym(n),

or equivalently, for any X,Y ∈ Rn,

(3) 〈m(µ)X,Y 〉 = −1
2

∑

〈µ(X, ei), ej〉〈µ(Y, ei), ej〉+
1
4

∑

〈µ(ei, ej),X〉〈µ(ei, ej), Y 〉.

We are using gln(R) = so(n)⊕sym(n) as a Cartan decomposition, where so(n) and sym(n)
denote the subspaces of skew-symmetric and symmetric matrices, respectively. It is easy
to check that m is well defined on the projective space P(V ) and trm(µ) = −1 for any
µ ∈ V . In [HS, BGH], many nice and useful results on the convexity of the image of
the moment map have been obtained, which were used in [DL] to study Ricci negative
solvmanifolds (see Section 2.2).

2.2. Strongly Ricci negative derivations. Let n be a nilpotent Lie algebra, a maximal
abelian subspace of diagonalizable (over R) derivations is called a maximal torus and
denoted t(n), it is known to be unique up to Aut(n)-conjugation. Each derivation D of n
defines a solvable Lie algebra

sD = Rf ⊕ n,

with Lie bracket defined as the semi-direct product such that ad f |n = D.
The following strong condition for derivations was studied in [DL].

Definition 2.1. A derivation D of a nilpotent Lie algebra n with trD > 0 is said to be
strongly Ricci negative if the solvable Lie algebra sD admits an inner product of negative
Ricci curvature such that Dt = D and f ⊥ n. We denote by Der(n)srn the cone of all
strongly Ricci negative derivations of n.

Since we do not know if Der(n)srn is open in Der(n), we do not know whether the
corresponding cone

(4) t(n)srn := Der(n)srn ∩ t(n)

is open in t(n) either. The cone t(n)srn was proved to be open in t(n) and convex for
Heisenberg and filiform Lie algebras endowed with the standard bases (see [NN, N] for
more details).

The next result of [DL] characterizes strongly Ricci negative derivations in terms of the
moment map m. We fix a basis {ei} of n such that t(n) ⊂ Dg(n), the space of all operators
of n whose matrix in terms of {ei} is diagonal. Note that the vector space n is identified
with R

n using the basis {ei} and so the whole setting described in Section 2.1 can be used.
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In particular, the inner products of the definition of moment map are the canonicals,
i.e. those making orthonormal the bases ei ⊗ ej and (ei ∧ ej)⊗ ek.

Let GD denote the connected component of the centralizer subgroup of D in GL(n) and
let gD be its Lie algebra.

Theorem 2.2. [DL, Corollary 3.4] Let n be a nilpotent Lie algebra with Lie bracket [·, ·]
and consider D ∈ t(n) such that trD > 0. Then the following conditions are equivalent:

(i) D is strongly Ricci negative.

(ii) D ∈ R>0 m(GD · [·, ·]) ∩Dg(n) + Dg(n)>0.

(iii) D ∈ R>0 m
(

GD · [·, ·]
)

∩Dg(n) + Dg(n)>0.

(iv) D ∈ R>0 m
(

GD · [·, ·]
)

∩ aD+ + Dg(n)>0, where aD+ ⊂ Dg(n) is any Weyl chamber

of GD.

Note that all the cones in the above theorem depend on D and are open in Dg(n) since
the space Dg(n)>0 of positive diagonal matrices is so. On the other hand, the cone in part
(iv) is in addition convex by [HS].

2.3. An open and convex cone of Ricci negative derivations. We keep the basis
{e1, . . . , en} of n such that t(n) ⊂ Dg(n) fixed. Let α1, . . . , αr ∈ t(n)∗ be the weights for
t(n) and let n = n1 ⊕ · · · ⊕ nr be the decomposition of n in weight subspaces, that is,

DX = αi(D)X, for all X ∈ ni, D ∈ t(n).

We call a D ∈ t(n) generic when αi(D) 6= αj(D) for any i 6= j. Let t(n)gen denote the
subset of all generic derivations, which is open and dense in t(n).

If Gt(n) denotes the connected component of the centralizer of t(n) in GL(n), then
Gt(n) ⊂ GD for any D ∈ t(n) and equality holds if and only if D ∈ t(n)gen. In the
multiplicity-free case, i.e. dim ni = 1 for all i, Gt(n) is given by the torus Dg(n)>0 with Lie
algebra Dg(n) and t(n) is the only Weyl chamber. Note that the space t(n) is multiplicity-
free if and only if there is at least one D ∈ t(n) with pairwise different eigenvalues.

We consider the smallest of the open cones appearing in Theorem 2.2, (iii) to introduce
the following cone defined in [LW]:

(5) C(n) :=
(

R>0 m
(

Gt(n) · [·, ·]
)

∩Dg(n) + Dg(n)>0

)

∩ t(n)tr>0,

where t(n)tr>0 := {D ∈ t(n) : trD > 0}.
Let O(n) denote the orthogonal group relative to the inner product making {ei} an

orthonormal basis. In order to have a group acting on C(n), which may be helpful for
computing it, we consider the group

(6) Wort(n) := NAut(n)∩O(n)(t(n))/CAut(n)∩O(n)(t(n)),

where N and C denote normalizer and centralizer, respectively. We call it the orthogonal
Weyl group.

We define the convex polytope Ct(n) := {D ∈ C(n) : tr(D) = t} which is also Wort-
invariant for all t > 0.

Proposition 2.3. [LW] C(n) is an open and convex cone in t(n) such that

(7) t(n)srn ∩ t(n)gen ⊂ C(n) ⊂ t(n)srn.

This motivates the next conjecture,

Conjecture 1 [LW]: C(n) = t(n)srn.
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In the next sections, we will see that this holds for nilpotent Lie algebras of dimension
5, as well as for Heisenberg and filiform Lie algebras.

3. The cone C(n) for nilpotent Lie Algebras of dim 5

In order to prove that Conjecture 1 is valid in dimension 5 (see Section 2.3), we study
in this section the cones C(n) for nilpotent Lie algebras of dimension 5, which are defined
in Table 1.

n Lie bracket of n

n1 µ(e1, e2) = e3, µ(e1, e3) = e4, µ(e1, e4) = e5

n2 µ(e1, e2) = e3, µ(e1, e3) = e4, µ(e1, e4) = e5, µ(e2, e3) = e5

n3 µ(e1, e2) = e4, µ(e2, e3) = e5, µ(e1, e4) = e5

n4 µ(e1, e2) = e5, µ(e3, e4) = e5

n5 µ(e1, e2) = e3, µ(e1, e3) = e4, µ(e2, e3) = e5

n6 µ(e1, e2) = e4, µ(e1, e3) = e5

n7 µ(e1, e2) = e3

n8 µ(e1, e2) = e3, µ(e1, e3) = e4

Table 1. Nilpotent Lie Algebras of dimension 5

3.1. Case n1. Let D be a derivation of n1 in the maximal torus t(n1), this implies that

D = Dg(d1, d2, d1 + d2, 2d1 + d2, 3d1 + d2), with d1, d2 ∈ R.

D is generic if and only if d1 6= d2, d1 6= −d2, d2 6= −2d1, and d1, d2 6= 0. In the generic
case, as t(n1) is multiplicity-free, GD = Dg(n1)>0 and Dg(n1)>0 · µ is given by the linear
subspace of V of nilpotent Lie brackets λ = λ(α, β, γ) defined by

λ(e1, e2) = αe3, λ(e1, e3) = βe4, λ(e1, e4) = γe5,

with α, β, γ ≥ 0. The moment map of λ is given by

m(λ) = 1
α2+β2+γ2 Dg(−α2 − β2 − γ2,−α2,−β2 + α2,−γ2 + β2, γ2)

= 1
α2+β2+γ2 (α

2F 3
12 + β2F 4

13 + γ2F 5
14).

This means that m(λ) = m(Dg(n1)>0 · µ) = CH(F 3
12, F

4
13, F

5
14).

It follows from (5) that D ∈ C(n1) ⊂ t(n1) if and only if D = aF 3
12 + bF 4

13 + cF 5
14 + E

and tr(D) > 0, where a, b, c > 0 and E is a positive definite diagonal matrix. This can be
expressed as a system of inequalities as follows:











d1 + a+ b+ c > 0, (1.1)

d2 + a > 0, (1.2)

d1 + d2 − a+ b > 0, (1.3)

{

2d1 + d2 − b+ c > 0, (1.4)

3d1 + d2 − c > 0. (1.5)

Condition (1.5) implies that 3d1 + d2 > 0 and by adding the last three inequalities we
obtain 2d1 + d2 > 0.

From (1.5), (1.4), (1.1), we have the existence of c > 0 such that

3d1 + d2 > c > −2d1 − d2 + b ,−d1 − a− b,
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this holds if and only if, by (1.3), there exists b > 0 such that

5d1 + 2d2 > b > −d1 − d2 + a , −4d1 − d2 − a,

and, consequently, there exists a > 0 such that

6d1 + 3d2 > a > −9d1 − 3d2 , −d2.

And so, we also get 15d1 + 6d2 > 0 and 6d1 + 4d2 > 0.
From this, we can see that the equations which define C(n1) are (see Figure 1):

3d1 + d2 > 0, 3d1 + 2d2 > 0.

3.2. Case n2. Let D = Dg(d1, 2d1, 3d1, 4d1, 5d1), d1 ∈ R be a derivation of n2 in the
maximal torus t(n2). If d1 6= 0, then D is generic and GD = Dg(n2)>0, therefore GD · µ =
λ = R≥0µ

It can be seen that m(λ) = m(GD · µ) = CH(F 3
12, F

4
13, F

5
14, F

5
23) and by definition (5)

we have that D ∈ C(n2) ⊂ t(n2) if and only if D = aF 3
12 + bF 4

13 + cF 5
14 + dF 5

23 + E where
a, b, c, d > 0 and E ∈ Dg(n2)>0. This means that D ∈ C(n2) if and only if d1 > 0, see
Figure 2 below.

−1 0 1 2 3 4 5
0

1

2

3

4

5

d1

d2

C(n1)tr(D) > 0

d2 = −3
2d1

d2 = −3d1

Figure 1. C(n1)

−1 0 1 2 3 4 5
d1

C(n2)

(

Figure 2. C(n2)

3.3. Cases n3 and n5. For the cases n3 and n5 we are going to see the equations of the
cones and the figures without detailed computes, which are very similar to the case n1.

Here d1, d2 ∈ R are the variables of the respective diagonal derivation D, the equations
of C(n3) are 4d1 + d2 > 0 and d1 + d2 > 0, see Figure 3. C(n5) is defined by d1 + 2d2 > 0
and 2d1 + d2 > 0 as we can see in Figure 4.

3.4. Case n4. The Lie algebra n4 is the Heisenberg Lie algebra of dimension 5, and we
will discuss it in Section 5.
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−1 0 1 2 3
0

1

2

3

d1

d2

C(n3)tr(D) > 0

d2 = −d1

d2 = −4d1

Figure 3. C(n3)

−1 0 1 2 3
0

1

2

3

d1

d2

C(n5)

tr(D) > 0

d2 = −1
2d1

d2 = −2d1

Figure 4. C(n5)

3.5. Case n6. A diagonal matrix D is a derivation of n6 in t(n6) if and only if D =
Dg(d1, d2, d3, d1 + d2, d1 + d3), where d1, d2, d3 ∈ R. In the generic case, i.e. when d1 6=
d2, d1 6= d3, d2 6= d3, d1 + d2 6= d3, d1 + d3 6= d2 and d1, d2, d3 6= 0, we obtain that
GD = Gt(n6) = Dg(n6)>0, and GD · µ is given by

λ(e1, e2) = αe4, λ(e1, e3) = βe5.

where α, β ≥ 0. As the basis is nice, by [DL, Lemma 3.14], m(λ) = m(GD · µ) =
CH(F 4

12, F
5
13).

From (5) we say that D ∈ C(n6) ⊂ t(n6) if and only if D = aF 4
12 + bF 5

13 + E and
tr(D) > 0, where a, b > 0 and E ∈ Dg(n6)>0, this implies:











d1 + a+ b > 0, (6.1)

d2 + a > 0, (6.2)

d3 + b > 0, (6.3)

{

d1 + d2 − a > 0, (6.4)

d1 + d3 − b > 0, (6.5)

Note that, from conditions (6.5), (6.3), (6.1), there exists b > 0 such that

d1 + d3 > b > −d3 , −d1 − a,

and this holds if and only if d1 + 2d3 > 0 and by (6.4) there exists a > 0 such that

d1 + d2 > a > −2d1 − d3 , −d2,

this means 3d1 + d2 + d3 > 0 and d1 + 2d2 > 0. Then, the system above is equivalent to
the next one.











d1 + d2 > 0,

d1 + d3 > 0,

d1 + 2d3 > 0,

{

d1 + 2d2 > 0,

3d1 + d2 + d3 > 0.

As the cone C(n6) is invariant up to scaling, we can considerer tr(D) = 1 such that the
equations of C1(n6) are:











1− 2d1 − d2 − 2d3 > 0,

1− 2d1 − 2d2 − d3 > 0,

1− 2d1 − 2d2 > 0,

{

1− 2d1 − 2d3 > 0,

1− d2 − d3 > 0.
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We see that C1(n6) is a five-sided polygon which its vertices are:
(

0, 12 , 0
) (

0, 0, 12
) (

1,−1
2 ,−

1
2

) (

−1
3 ,

2
3 ,

1
3

) (

−1
3 ,

1
3 ,

2
3

)

We can see a figure of this if we consider the subspace 3d1+2d2+2d3 = 0, an orthonormal
basis of it and the coordinates of the vertices in this basis, see Figure 5.

−1 0 1

−1

1

d1

d2

(0, 0, 12)

(1,−1
2 ,−

1
2)

(0, 12 , 0)(−1
3 ,

2
3 ,

1
3)

(−1
3 ,

1
3 ,

2
3)

Figure 5. C1(n6)

3.6. Cases n7 and n8. For the cases n7 and n8, the equations of the cone C(n) are 2d1 +
d2 > 0, d1 + 2d2 > 0, d4 > 0, d5 > 0 and 2d1 + d2 > 0, d1 + d2 > 0, d5 > 0, respectively.
Compare these results to [DL, Example 3.6 and Example 3.7].

4. The validity of t(n)srn = C(n) in dimension 5

The goal of this section is to prove that the cone of all strongly Ricci negative derivations
of nilpotent Lie algebras of dimension 5 is equal to the cone defined in [LW] (see (5)).
First, we give three lemmas, which allow us to reduce the cases involved in the proof of
the theorem.

Lemma 4.1. Let a, b be subspaces of t(n). If there exists f ∈ Wort(n) such that faf−1 = b,

then,

a ∩ t(n)srn ⊂ C(n) if and only if b ∩ t(n)srn ⊂ C(n).

Proof. Suppose that D ∈ b ∩ t(n)srn, then f−1Df ∈ a ∩ t(n) ⊂ C(n), because of the
hypothesis. As C(n) is Wort- invariant, we have that D ∈ fC(n)f−1 = C(n). �

Lemma 4.2. Let n be a nilpotent Lie algebra with Lie bracket µ. If C(n) is the cone

defined in (5), then
C(n⊕ R) = C(n)×R>0.

Proof. Let D ∈ t(n⊕R)gen; that is D|n = D1 and D|R = d, where D1 ∈ t(n)gen and d ∈ R

such that d /∈ Spec(D1), note that Gt(n) = GD1
. In this case GD = Gt(n⊕R) is given by

h ∈ GL(n⊕ R) such that h|n ∈ GD1
and h|R = a with a > 0.

As GD · µ is given by the brackets defined by GD1
· µ, we have that m(GD · µ)|n =

m(GD1
· µ) and m(GD · µ)|R = 0. By (5), D ∈ C(n⊕R) if and only if D ∈ R>0m(GD · µ)∩

Dg(n⊕R)+Dg(n⊕R)>0, i.e. if and only if there exist r, t > 0, h ∈ GD and E1 ∈ Dg(n)>0

such that
D1 = rm(h · µ) + E1, d = t.

Therefore C(n⊕ R) = C(n)×R>0. �

Lemma 4.3. Given n a nilpotent Lie algebra, suppose that t(n)srn = C(n). If D|n = D1

and D|R = d such that d /∈ Spec(D1), then D ∈ C(n⊕ R).
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Proof. By Lemma 4.2 we already know that

C(n⊕ R) = C(n)× R>0 = t(n)srn × R>0

Given D ∈ t(n ⊕ R)srn under the hypothesis, analysis similar to that in the proof of
Lemma 4.2 shows that D ∈ t(n)srn ×R>0. �

Theorem 4.4. For any nilpotent Lie algebra n of dimension 5, we have that

t(n)srn = C(n).

Proof. The proof is completed by showing that all the strongly Ricci negative non generic
derivations of n belong to the cone C(n). This means that if a non generic derivation of n
does not belong to C(n), then it can not be strongly Ricci negative. As C(n) is convex, we
already know that all the derivations inside of it are also in t(n)srn.

First, consider n1 the nilpotent Lie algebra defined in Table 1, according to Section 3.1,
we have that the only non generic derivation with positive trace of n1, which does not
belong to the cone C(n1) is (up to scaling) D0 = Dg(−1, 2, 1, 0,−1). We know from [NN,
Theorem 2] that it can not be strongly Ricci negative because D0|z(n1) = −1 < 0.

In the case n2, the only non generic derivation vanishes and it has not positive trace,
so it can not be in t(n2)srn.

Taking the case n5, we can see that all the non generic derivations of positive trace are
in C(n5) which means that they are strongly Ricci negative.

So, until now we see that C(nj) = t(nj)srn for j = 1, 2, 5. The remaining cases are more
difficult and we give the proof only for the case n6; the other cases follow by the same
method. For the cases n7 and n8 Lemmas 4.2 and 4.3 are very useful.

Applying the results of Section 3.5, we see that D is a derivation of n6 if and only
if D = Dg(d1, d2, d3, d1 + d2, d1 + d3), the non generic cases happen when some of the
following equalities holds:

d1 = 0; d2 = 0; d3 = 0; d1 = d2; d1 = d3; d2 = d3; d1 + d2 = d3; d1 + d3 = d2.

Define a = {D ∈ t(n6) : d1 = 0}. Any derivation of this subspace is given by Da =
Dg(0, d2, d3, d2, d3), the connected component of the identity of the centralizer subgroup
of Da in GL(n6), denoted GDa , is defined by

H =

(

t
a b
p q

c d
r s

)

, where det1 := ad− bc 6= 0 and det2 := ps− qr 6= 0.

Since

H · µ(e1, e2) = Hµ(1
t
e1,

d
det1

e2 −
c

det1
e4) =

bd
tdet1

e2 +
d2

tdet1
e4,

H · µ(e1, e3) = Hµ(1
t
e1,

s
det2

e3 −
r

det2
e5) =

qs
tdet2

e3 +
s2

tdet2
e5,

H · µ(e1, e4) = Hµ(1
t
e1,−

b
det1

e2 +
a

det1
e4) = − b2

tdet1
e2 −

bd
tdet1

e4,

H · µ(e1, e5) = Hµ(1
t
e1,−

q
det2

e3 +
p

det2
e5) = − q2

tdet2
e3 −

qs
tdet2

e3,

the bracket GDa · µ is defined by:

λ(e1, e2) = αe2 + βe4, λ(e1, e3) = γe3 + ξe5,

λ(e1, e4) = τe2 − αe4, λ(e1, e5) = ιe3 − γe5,
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where all of the constants are non negative. From the definition of moment map (see (3))
we have that:

m(λ) =
2

|λ|2







−2α2−β2−2γ2−ξ2−τ2−ι2

−β2+τ2 M24

−ξ2+ι2 M35

M24 +β2−τ2

M35 ξ2−ι2







where M24 = 2α(β − τ) and M35 = 2γ(ξ − ι). So m(GDa · µ) ∩ Dg(n6) 6= ∅ if and only if
bd = 0 and qs = 0, which means [α = 0 ∧ (τ = 0 or β = 0)] and [γ = 0 ∧ (ι = 0 or
ξ = 0)]. From all of this, we have that m(GDa · µ)∩Dg(n6) = CH(F 4

12, F
5
13)∪CH(F

4
12, F

3
15)∪

CH(F 2
14, F

5
13) ∪ CH(F 2

14, F
3
15), and from Theorem 2.2 (iv), Da ∈ a ∩ t(n6)srn if and only if

Da = aF 2
14 + bF 3

15 + E where a, b > 0 and E ∈ Dg(n6)>0. This holds if and only if d2 > 0
and d3 > 0, as these are equations of C(n6) ∩ a we conclude that a ∩ t(n6)srn ⊂ C(n6).

To analyze the non generic cases d2 = 0 and d3 = 0, we define b = {D ∈ t(n6) : d2 =
0} and c = {D ∈ t(n6) : d3 = 0}. It is evident that there exists f ∈ Wort(n6) such that
b = f−1cf . By Lemma 4.1, if we prove the case d2 = 0, the case d3 = 0 follows. Let
Db = Dg(d1, 0, d3, d1, d1 + d3) ∈ b ∩ t(n6), GDb

is given by:

H =

(

a b
p
q

c d
r

)

, where det := ad− bc 6= 0.

GDb
· µ is defined by:

λ(e1, e2) = αe1 + βe4, λ(e1, e3) = γe5,

λ(e2, e4) = ξe1 + αe4, λ(e3, e4) = τe5,

because we can compute

H · µ(e1, e2) = Hµ( d
det

e1 −
c
det

e4,
1
p
e2) =

db
pdet

e1 +
d2

pdet
e4,

H · µ(e1, e3) = Hµ( d
det

e1 −
c
det

e4,
1
q
e3) =

dr
qdet

e5,

H · µ(e2, e4) = Hµ(1
p
e2,−

b
det

e1 +
a
det

e4) =
b2

pdet
e1 +

bd
pdet

e4,

H · µ(e3, e4) = Hµ(1
q
e3,−

b
det

e1 +
a
det

e4) =
br
qdet

e5.

From (3) we have:

m(λ) =
2

|λ|2







−β2+ξ2−γ2 M14

−2α2−β2−ξ2

−γ2−τ2

M14 β2−τ2−ξ2

γ2+τ2







where M14 = 2αξ + 2βα + γτ . We can see that m(GDb
· µ) ∩ Dg(n6) 6= ∅ if and only if

M14 = bd( 2b2

p2det2
+ 2d2

p2det2
+ r2

q2
) = 0. So, m(GDb

· µ)∩Dg(n6) 6= ∅ if and only if α = 0∧ [(β =

0 and γ = 0) or (ξ = 0 and τ = 0)]. As we have m(GDb
· µ) ∩ Dg(n6) = CH(F 1

24, F
5
34) ∪

CH(F 4
12, F

5
13), by Theorem 2.2 (iv), Db ∈ t(n6)srn if and only if Db = aF 1

24 + bF 5
34 + E

with a, b > 0 and E ∈ Dg(n6)>0. We can see that this is equivalent to have d1 + 2d3 > 0,
3d1 + d3 > 0 and d1 > 0, which are equations of C(n6) ∩ b, so b ∩ t(n6)srn ⊂ C(n6).

We can now procced analogously to the proof of the non generic cases: d1 = d2, d1 = d3,
d1 + d3 = d2, d1 + d2 = d3, d2 = d3 and the intersections between them. Using the same
f ∈ Wort(n6), we define d = {D ∈ t(n6) : d1 = d2}, j = {D ∈ t(n6) : d1 = d3}, k = {D ∈
t(n6) : d1 + d3 = d2}, l = {D ∈ t(n6) : d1 + d2 = d3} and we say that d = f−1jf and
k = f−1lf . After these cases we deal with the case d2 = d3.
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Let Dd = Dg(d1, d1, d3, 2d1, d1 + d3) ∈ d ∩ t(n6). GDd is given by

H =

(

a b
c d

p
q
r

)

, with det := ad− bc 6= 0.

It is easy to check that GDd · µ is given by:

λ(e1, e2) = αe4, λ(e2, e3) = βe5, λ(e1, e3) = γe5.

We can compute the moment map of λ following (3),

m(λ) =
2

|λ|2







−α2−γ2 M12

M12 −α2−β2

−β2−γ2

α2

+β2+γ2






where M12 = −γβ.

So, m(GDd · µ) ∩ Dg(n6) = CH(F 4
12, F

5
23) ∪ CH(F 4

12, F
5
13). By Theorem 2.2 (iv), Dd ∈

t(n6)srn if and only if there exist a, b > 0, and E ∈ Dg(n6)>0 such thatDd = aF 4
12+bF 5

23+E,
this equality holds if and only if 3d1 > 0, d1+d3 > 0, d1+2d3 > 0 and 4d1+d3 > 0. Because
of this, we claim that d∩t(n6)srn ⊂ C(n6), and by Lemma 4.1 we can say j∩t(n6)srn ⊂ C(n6).

Taking Dk = Dg(d1, d2, d3, d1 + d2, d2) ∈ k∩ t(n6), we can assert that GDk
is defined by:

H =

( p
a b
q
r

c d

)

, where det := ad− bc 6= 0.

If we compute

H · µ(e1, e2) = Hµ(1
p
e1,

d
det

e2 −
c
det

e5) =
d

pdet
re4,

H · µ(e1, e3) = Hµ(1
p
e1,

1
q
e3) =

1
pq
(be2 + de5),

H · µ(e1, e5) = Hµ(1
p
e1,−

b
det

e2 +
a
det

e5) = − b
pdet

re4.

We obtain that

λ(e1, e2) = αe4, λ(e1, e3) = βe2 + γe5, λ(e1, e5) = ξe4,

define GDk
· µ. From the definition of the moment map (see (3)) we have:

m(λ) =
2

|λ|2







−α2−β2−γ2−ξ2

−α2+β2 M25

−β2−γ2

+α2+ξ2

M25 +γ2−ξ2







where M25 = −αξ + βγ = r2

p2det2
bd+ 1

p2q2
bd = bd( r2

p2det2
+ 1

p2q2
).

Then m(GDk
· µ) ∩ Dg(n6) 6= ∅ if and only if bd = 0, which implies β = 0 ∧ ξ = 0 or

α = 0 ∧ γ = 0. Therefore, m(GDk
· µ) ∩Dg(n6) = CH(F 4

12, F
5
13) ∪ CH(F 2

13, F
4
15).

By Theorem 2.2 (iv), Dk ∈ t(n6)srn if and only if Dk = aF 2
13 + bF 4

15 + E where a, b > 0
and E ∈ Dg(n6)>0. This holds if and only if d1 + d2 > 0, d1 + 2d2 > 0, d2 + d3 > 0 and
2d1 + 2d2 > 0. These are equations of C(n6) ∩ k, so k ∩ t(n6)srn ⊂ C(n6) and l ∩ t(n6)srn ⊂
C(n6).

We now turn to the case d2 = d3. Define p = {D ∈ t(n6) : d2 = d3} and Dp =
Dg(d1, d2, d2, d1 + d2, d1 + d2) ∈ p ∩ t(n6). As GDp is given by:

H =

(

t
a b
c d

p q
r s

)

, with det1 := ad− bc 6= 0 and det2 := ps− qr 6= 0,

it is immediate that GDp · µ is defined by:

λ(e1, e2) = αe4 + βe5, λ(e1, e3) = γe4 + ξe5.
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and

m(λ) =
2

|λ|2







−α2−β2−γ2−ξ2

−α2−β2 M23

M23 −γ2−ξ2

+α2+γ2 M45

M45 β2+ξ2







where M23 = −αγ − βξ and M45 = αβ + γξ.
So, m(GDp · µ) ∩ Dg(n6) 6= ∅ if and only if (α, ξ)⊥(γ, β) and (α, ξ)⊥(β, γ) which im-

plies α = 0 ∧ ξ = 0 or γ = ±β. Applying this, m(GDp · µ) ∩ Dg(n6) = CH(F 5
12, F

4
13) ∪

CH(F 4
12, F

5
12, F

4
13, F

5
13).

By Theorem 2.2 (iv), Dp ∈ t(n6)srn if and only if there are a, b > 0, and E ∈ Dg(n6)>0

such that Dp = aF 5
12 + bF 4

13 +E, which holds if and only if d1 + d2 > 0, d1 + 2d2 > 0 and
3d1+2d2 > 0. Because of what we have seen in Section 3, these are equations of C(n6)∩p,
therefore p ∩ t(n)srn ⊂ C(n6).

We summarize in Table 2 the results considering the intersection of the subspaces de-
fined.

Subspaces Derivation Conclusion

a∩ b, a∩ d, b∩ d D = Dg(0, 0, d3, 0, d3) There is a 0 in the center so, D /∈ t(n6)srn.

a ∩ c, a ∩ j, c ∩ j D = Dg(0, d2, 0, d2, 0) There is a 0 in the center so, D /∈ t(n6)srn.

a∩ k, a∩ l, a∩ p,
k ∩ l k ∩ p, l ∩ p,

D = Dg(0, d2, d2, d2, d2) By nec condition d2 > 0 and so, D ∈ C(n6)

b∩ c, b∩ p, c∩ p D = Dg(d1, 0, 0, d1, d1) By nec condition d1 > 0 and so, D ∈ C(n6)

b ∩ j, b ∩ l, j ∩ l D = Dg(d1, 0, d1, d1, 2d1) By nec condition d1 > 0 and so, D ∈ C(n6)

b ∩ k D = Dg(d1, 0,−d1, d1, 0) There is a 0 in the center so, D /∈ t(n6)srn.

c ∩ d c ∩ k d ∩ k D = Dg(d1, d1, 0, 2d1, d1) By nec condition d1 > 0 and so, D ∈ C(n6)

c ∩ l D = Dg(d1,−d1, 0, 0, d1) There is a 0 in the center so, D /∈ t(n6)srn.

d ∩ j, d ∩ p, j ∩ p D = Dg(d1, d1, d1, 2d1, 2d1) By nec condition d1 > 0 and so, D ∈ C(n6)

d ∩ l D = Dg(d1, d1, 2d1, 2d1, 3d1) By nec condition d1 > 0 and so, D ∈ C(n6)

j ∩ k D = Dg(d1, 2d1, d1, 3d1, 2d1) By nec condition d1 > 0 and so, D ∈ C(n6)

Table 2. Case n6

Hence, we obtain that C(n6) = t(n6)srn. The remaining cases can be proved in much
the same way. �

5. Heisenberg Lie algebra

In this section we proceed with the study of C(n) defined in (5) for the Heisenberg
Lie algebra endowed with the standard basis. Results of [NN] are useful to prove the
Conjecture 1 for this Lie algebra. We begin by introducing the following proposition.

Proposition 5.1. Let h2n+1 be the Heisenberg Lie algebra with basis {e1, e2, . . . , e2n+1}
and Lie brackets:

µ(e1, e2) = e2n+1, µ(e3, e4) = e2n+1, . . . , µ(e2n−1, e2n) = e2n+1.
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For D := Dg(d1, dn+1 − d1, d2, dn+1 − d2, . . . , dn, dn+1 − dn, dn+1) ∈ t(h2n+1), the 3n equa-

tions which define the cone C(h2n+1) are given by:

(8) (l + 1)dn+1 ± di1 ± di2 ± . . . ± dik > 0, 0 ≤ k ≤ n, 0 ≤ l ≤ k.

Remark 5.2. For each k there are 2k
(

n
k

)

equations which are all the ways to choose l minus
signs in the formula with l = 0, . . . k.

Proof. Let h2n+1 be the Heisenberg Lie algebra. Let D be a diagonal derivation of h2n+1,
that is:

D = Dg(d1, dn+1 − d1, d2, dn+1 − d2, . . . , dn, dn+1 − dn, dn+1).

Note that tr(D) = (n + 1)dn+1 and D|z(h2n+1) = dn+1. D ∈ t(h2n+1)gen if and only if

di 6= 0 i = 1 . . . n+ 1, di 6= dn+1 i = 1 . . . n, di 6= dj if i 6= j,

di + dj 6= dn+1 i, j = 1 . . . n, i 6= j.

In this case D has pairwise different eigenvalues, and t(h2n+1) is multiplicity-free, because

of that Gt(h2n+1) = Dg(h2n+1)>0 and Dg(h2n+1)>0 · µ is given by:

λ(e1, e2) = α1e2n+1, λ(e3, e4) = α2e2n+1, . . . , λ(e2n−1, e2n) = αne2n+1,

where αi ≥ 0, i = 1 . . . n. We have that

m(λ) =
2

|λ|2
Dg(−α2

1,−α2
1,−α2

2,−α2
2, . . . ,−α2

n,−α2
n, α

2
1 + α2

2 + . . .+ α2
n)

=
2

|λ|2
(α2

1F
2n+1
12 + α2

2F
2n+1
34 + . . .+ α2

nF
2n+1
2n−12n).

And from (5), D belongs to C(h2n+1) if and only if there exist a1, a2, . . . , an > 0 and
E ∈ Dg(h2n+1)>0 such that

D = a1F
2n+1
12 + a2F

2n+1
34 + . . . + anF

2n+1
2n−12n + E.

We therefore obtain


















d1 + a1 > 0,

dn+1 − d1 + a1 > 0,

d2 + a2 > 0,

dn+1 − d2 + a2 > 0,























...

dn + an > 0,

dn+1 − dn + an > 0,

dn+1 − a1 − a2 − . . .− an > 0.

In order to obtain the equations defining C(h2n+1), we note that dn+1 > 0 and there exists
a1 > 0 such that

dn+1 − a2 − . . . − an > a1 > −d1, d1 − dn+1

This means that the last system of inequalities implies dn+1 + d1 > 0 and 2dn+1 − d1 > 0,
the same is valid for all di with i = 1, . . . n if we replace a1 > 0 by ai > 0. After this is
done, we can see that there is a2 > 0 such that

d1 + dn+1 − a3 − . . .− an > a2 > −d2, d2 − dn+1,

2dn+1 − d1 − a3 − . . . − an > a2 > −d2, d2 − dn+1,

these inequalities implies dn+1 + d1 + d2 > 0, 2dn+1 + d1 − d2 > 0, 2dn+1 − d1 + d2 > 0
and 3dn+1 − d1 − d2 > 0. As we do before, we can replace d1, d2 by di, dj i 6= j and those
equations are implied from the system too. We also have that,

dn+1 + d1 + d2 − a3 − . . .− an > 0, 2dn+1 + d1 − d2 − a3 − . . .− an > 0,

2dn+1 − d1 + d2 − a3 − . . . − an > 0, 3dn+1 − d1 − d2 − a3 − . . .− an > 0,



ON RICCI NEGATIVE DERIVATIONS 15

and if we continue in the same manner with a3 > 0 or other one, until we get inequalities
with no positive constants involved we obtain 3n − 1 inequalities, these and dn+1 > 0
define the cone C(h2n+1), and this is precisely the assertion of the proposition. �

Now, we are going to study the polytope Cp(h2n+1) := C(h2n+1) ∩ {tr(D) = p} in low
dimensions.

5.1. C3(h5). In h5 we have t(h5) defined by D = Dg(d1, d3 − d1, d2, d3 − d2, d3), where
d1, d2, d3 ∈ R. As tr(D) = 3d3, if we consider C3(h5), we have d3 = 1 and it follows from
Proposition 5.1 that the equations of C3(h5) are:

1 + d1 > 0,

1 + d2 > 0,

2− d1 > 0,

2− d2 > 0,

1 + d1 + d2 > 0,

2 + d1 − d2 > 0,

2− d1 + d2 > 0,

3− d1 − d2 > 0.

In Figure 6 we can see a representation of C3(h5).

5.2. C4(h7). In this case we have that t(h7) is defined by D = Dg(d1, d4 − d1, d2, d4 −
d2, d3, d4 − d3, d4) with d1, d2, d3, d4 ∈ R. Analogously to the case of dimension 5, as
tr(D) = 4d4, if we consider C4(h7) we obtain d4 = 1.

Using Proposition 5.1, we have that C4(h7) is given by 26 inequalities, which are given
below.

1 + d1 > 0,

2− d1 > 0,

1 + d1 + d2 > 0,

2 + d1 − d2 > 0,

2− d1 + d2 > 0,

3− d1 − d2 > 0,

1 + d2 > 0,

2− d2 > 0,

1 + d2 + d3 > 0,

2 + d2 − d3 > 0,

2− d2 + d3 > 0,

3− d2 − d3 > 0,

1 + d3 > 0,

2− d3 > 0,

1 + d1 + d3 > 0,

2 + d1 − d3 > 0,

2− d1 + d3 > 0,

3− d1 − d3 > 0,

1 + d1 + d2 + d3 > 0,

2− d1 + d2 + d3 > 0,

2 + d1 − d2 + d3 > 0,

2 + d1 + d2 − d3 > 0,

3− d1 − d2 + d3 > 0,

3− d1 + d2 − d3 > 0,

3 + d1 − d2 − d3 > 0,

4− d1 − d2 − d3 > 0.

These equations define a 26-sided polygon with 24 vertices , see Figure 7.

−2 −1 0 1 2 3 4

−2

−1

1

2

d1

d2

(2, 1)

(2, 0)

(1,−1)
(0,−1)

(−1, 0)

(−1, 1)

(0, 2)
(1, 2)

Figure 6. C3(h5) Figure 7. C4(h7)

Results of [NN] enables us to say that Conjecture 1 holds for Heisenberg Lie algebra
of dimension 2n + 1. Let g be a solvable Lie algebra with the nilradical h2n+1. For any
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X ∈ g, the vector e2n+1 is an eigenvector of the restriction of adX to h2n+1, so that
[X, e2n+1] = λ(X)e2n+1 for a one-form λ on g, and moreover, (adX)|h2n+1

descends to
a well-defined linear map Φ(X) ∈ End(h2n+1/z). Let di(X) ∈ C, i = 1, . . . , 2n be the
eigenvalues of Φ(X), each listed with its algebraic multiplicity. In [NN, Theorem 3] it is
proved that the cone t(h2n+1)srn is given by

λ(Y ) +
∑

i: Re di(Y )<0

Re di > 0.

In our notation, if a diagonal derivation of h2n+1 is given byD = Dg(d1, dn+1−d1, d2, dn+1−
d2, . . . , dn, dn+1 − dn, dn+1), this means that

dn+1 +
∑

i: di<0

di +
∑

j: dn+1<dj

(dn+1 − dj) > 0

are the equations defining t(h2n+1)srn, we claim that these are the same equations which
define C(h2n+1).

Theorem 5.3. C(h2n+1) = t(h2n+1)srn, for all n ∈ N

Proof. Given D = Dg(d1, dn+1 − d1, d2, dn+1 − d2, . . . , dn, dn+1 − dn, dn+1) ∈ t(h2n+1), if
D is strongly Ricci negative then dn+1 > 0 by the necessary condition of [NN, Theorem
2]. Then, if D ∈ t(h2n+1)srn each di ∈ R has three options, being less than 0, between (or
equal) 0 and dn+1 or greater than dn+1, and as the cone is Wort-invariant we can assume
that from i = 1 . . . , r, di < 0, 0 ≤ di ≤ dn+1 if i = r+1, . . . , s, and if i = s+1, . . . , n then
di > dn+1. In this case, following [NN, Theorem 3], we have

dn+1 + d1 + . . .+ dr + (n− s)dn+1 − ds+1 − . . .− dn > 0.

And if we take k = r + n − s and l = n − s we have the same equation in C(h2n+1) by
(8). �

6. Filiform Lie algebra Ln

We now calculate C(Ln) for all n ∈ N, and we compare these results with [NN].

Proposition 6.1. Let Ln be the filiform Lie algebra defined by the basis {e1, e2, . . . , en}
and the Lie brackets:

µ(e1, e2) = e3, µ(e1, e3) = e4, . . . , µ(e1, en−1) = en.

For D := Dg(d1, d2, d1+d2, 2d1+d2, . . . , (n−2)d1+d2) ∈ t(Ln), the cone C(Ln) is defined
by the following equations,

(n− 2)d1 + d2 > 0 and
(n− 1)(n − 2)

2
d1 + (n− 1)d2 > 0.

Proof. Let Ln be the filiform Lie algebra and let D = Dg(d1, d2, d1+ d2, 2d1 + d2, . . . , (n−
2)d1+d2) ∈ t(Ln). Note that tr(D) = (

∑n−2
i=1 i+1)d1+(n−1)d2 andD|z(Ln) = (n−2)d1+d2.

D is generic if and only if:

d1, d2 6= 0, d1 6= d2, d2 6= −jd1 for all j = 1 . . . n− 3.

In this case D has pairwise different eigenvalues, this implies that t(Ln) is multiplicity
free, Gt(Ln) = Dg(Ln)>0 and Gt(Ln) · µ is given by:

λ(e1, ei) = αiei+1 for all i = 2 . . . n− 1,
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where αi ≥ 0. From (3), we have that

m(λ) =
2

|λ|2
Dg(−α2

2 − . . .− α2
n−1,−α2

2, α
2
2 − α2

3, α
2
3 − α2

4, . . . , α
2
n−2 − α2

n−1, α
2
n−1)

= CH(F i+1
1i i = 2 . . . n− 1).

By (5), a derivation D is in C(Ln) if and only if there exist a2, a3, . . . , an−1 > 0 and
E ∈ Dg(Ln)>0 such that

D =
n−1
∑

i=2

aiF
i+1
1i + E.

That is,











d1 + a2 + . . .+ an−1 > 0,

d2 + a2 > 0,

(d1 + d2)− a2 + a3 > 0,























(2d1 + d2)− a3 + a4 > 0,

...

(n− 3)d1 + d2 − an−2 + an−1 > 0,

(n− 2)d1 + d2 − an−1 > 0.

This holds if and only if there exists an−1 > 0 such that

(n− 2)d1 + d2 > an−1 >− (n− 3)d1 − d2 + an−2,

− d1 − a2 − . . .− an−2,

if and only if there exists an−2 > 0 such that

[(n− 2) + (n− 3)]d1 + 2d2 > an−2 >− (n− 4)d1 − d2 + an−3,

[−1− (n− 2)]d1 − d2 − a2 − . . .− an−3.

In the same manner we can see that there exists an−3 > 0 such that

[(n− 2) + (n−3) + (n− 4)]d1 + 3d2 > an−3 > −(n− 5)d1 − d2 + an−4,

[−1− 2(n − 2)− (n− 3)]d1 − (1 + 2)d2 − a2 − . . .− an−4.

If we apply this argument over and over again, we obtain that there exists a3 > 0 such
that

[(n− 2) + (n− 3) + (n− 4) + . . .+ 3 + 2]d1 + (n− 3)d2 > a3 > −d1 − d2 + a2,

[−1−(n−4)(n−2)−(n−5)(n−3)−(n−6)(n−4)−. . .−3]d1−(1+2+3+. . .+(n−4))d2−a2,

and there exists a2 > 0 such that
[

n−1
∑

i=2

(n− i)

]

d1 + (n − 2)d2 > a2 > −d2,

[

−1−
n−2
∑

i=2

(i− 1)i

]

d1 −

(

n−3
∑

i=1

i

)

d2.

Hence,
[

n−1
∑

i=2

(n− i)

]

d1 + (n− 1)d2 > 0 and

[

1 +

n−2
∑

i=2

(i− 1)i +

n−1
∑

i=2

(n− i)

]

d1 +

[

(n− 3)(n − 2)

2
+ (n− 2)

]

d2 > 0

Since,

n−1
∑

i=2

(n− i) = (n−1)(n−2)
2 and

n−2
∑

i=2

(i− 1)i = n
6 (2n

2 − 9n+ 13)− 1− (n−2)(n−1)
2 ,
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the previous system is equivalent to the next one:


































(n− 2)d1 + d2 > 0

[(n− 2) + (n− 3)]d1 + 2d2 > 0

[(n− 2) + (n− 3) + (n− 4)]d1 + 3d2 > 0

...

[(n− 2) + (n− 3) + . . .+ 2]d1 + (n− 3)d2 > 0



























[

n−1
∑

i=2

(n− i)

]

d1 + (n− 2)d2 > 0

(n−1)(n−2)
2 d1 + (n− 1)d2 > 0

n
6 (2n

2 − 9n+ 13)d1 +
(n−1)(n−2)

2 d2 > 0

We claim that

n− 2 ≥
∑j

i=2
(n−i)

j−1 ≥ n−2
2 for all n > j

n− 2 ≥ n(2n2
−9n+13)

3(n−1)(n−2) ≥ n−2
2 for all n > 3.

Indeed,
∑j

i=2
(n−i)

j−1 = n− j2+j

2(j−1) +
1

j−1 ≥ n−2
2 if and only if n ≥ j, and

n− 2 ≥ n− j2+j−2
2(j−1) if and only if 2 ≤ j+2

2 , i.e. it holds for all j ≥ 2.

The other inequalities are equivalent to prove:

n3 − 6n2 + 11n− 12 ≥ 0 and 1
2n

3 +
3

2
n2 − n− 6 ≥ 0 for all n > 3.

If we consider those as real cubic functions, f(4) ≥ 0 in both cases and the functions are increasing
from x = 4. So, the proof is complete (see Figure 8). �

According to [NN] these equations define t(Ln)srn, therefore Conjecture 1 is valid in
this case.

Corollary 6.2. C(Ln) = t(Ln)srn, for all n > 3.

−1 0 1 2 3 4 5
0

1

2

3

4

5

d1

d2

C(Ln)

d2 = −n−2
2 d1

d2 = −(n− 2)d1

Figure 8. C(Ln)
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