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Abstract

We discuss the special role of right-handed neutrinos in the μνSSM for solving the μ- and ν-problems, 
simultaneously avoiding the potential domain wall and tadpole problems. In particular, embedding the 
μνSSM in the framework of superstrings implies that not all gauge invariant terms are necessarily present 
in the superpotential, and thus there is more flexibility to allow only those that avoid the domain wall and 
tadpole problems to be present. These can be non-renormalizable terms of dimension 4 or terms of higher 
dimensions. In addition, non-perturbative effects can also solve both problems. We discuss another impli-
cation of the superstring inspired μνSSM, since the right-handed neutrino is expected to have extra U(1)

charges at high energies. In this case, the cubic right-handed neutrino terms in the superpotential, helpful 
for generating Majorana masses and solving domain wall and tadpole problems, can arise through a variety 
of stringy mechanisms.
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1. Introduction

The addition of right-handed (RH) neutrinos νR to the spectrum of the standard model (SM) 
provides the light neutrinos with masses at the tree level. In the framework of supersymmetry 
(SUSY), the ‘μ from ν’ Supersymmetric Standard Model (μνSSM) [1] (for a recent review, 
see Ref. [2]), was proposed to solve the μ- and ν-problems simultaneously without the need 
to introduce additional energy scales beyond the SUSY-breaking scale, which is the source of 
the electroweak symmetry breaking (EWSB). To perform it, the presence in the superpotential 
of trilinear couplings involving RH neutrino superfields, νc

i , in addition to the usual quark and 
charged-lepton Yukawa couplings, is crucial [1,3]:

WμνSSM = Y e
ij Hd Li e

c
j + Yd

ij Hd Qi d
c
j − Yu

ij Hu Qi u
c
j

− Y ν
ij Hu Li ν

c
j + λi Hu Hd νc

i + 1

3
κijk νc

i νc
j νc

k . (1)

Here the summation convention is implied on repeated indexes, with i, j, k = 1, 2, 3 the usual 
family indexes of the SM.1 Our convention for the contraction of two SU(2) doublets is e.g. 
Hu Hd ≡ εabH

a
u Hb

d , a, b = 1, 2 and εab the totally antisymmetric tensor with ε12 = 1.
The last three terms containing RH neutrinos in the above superpotential are clearly allowed 

by gauge invariance, since these fields have vanishing hypercharges by construction. In particular, 
the fifth term in Eq. (1) is an explicit R-parity (and lepton-number) violating term which gener-
ates dynamically a μ-parameter after EWSB, μ = λiviR , with viR the vacuum expectation values 

1 The number of RH neutrinos is in fact a free parameter. These particles are the only SM singlets and therefore their 
way of arising from a more fundamental theory can be different from the other particles. An analysis using this number as 
a free parameter can be found in Ref. [4]. Nevertheless, we will assume for simplicity in what follows that their number 
is three, replicating what happens with the other SM fermions, since this assumption will not modify our results.
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(VEVs) of the right sneutrinos. This mechanism solves the so-called μ-problem [5] (for a recent 
review, see Ref. [6]). It is analogue to the solution of the Next-to-Minimal Supersymmetric Stan-
dard Model (NMSSM) (for reviews, see Refs. [7,8]), where instead of RH neutrino superfields 
an extra singlet superfield S is added to the spectrum with the coupling λHuHdS. By the same 
EWSB mechanism, the neutrino Yukawa term generates effectively bilinear terms, μi = Y ν

ij vjR , 
as the ones of the Bilinear R-Parity Violating model (BRPV) (for a review, see Ref. [9]), as well 
as Dirac masses for neutrinos, mDij

= Y ν
ij vu, with vu the VEV of the Higgs Hu. In addition, 

the cubic neutrino term generates electroweak (EW)-scale Majorana masses, Mij = 2κijkvkR , 
instrumental in generating the correct neutrino masses and mixing angles [10–13], i.e. in solv-
ing the ν problem through an EW-scale seesaw with Y ν

ij � 10−6 [1,3,14–18]. The presence of 
this cubic term also forbids a Peccei-Quinn-like symmetry U(1)PQ in the Lagrangian, avoiding 
therefore the existence of a phenomenologically unacceptable massless Nambu-Goldstone boson 
once EWSB takes place. Again, this is analogue to what happens in the NMSSM where the cubic 
term κSSS is present.

Since R-parity and lepton number are not conserved in the μνSSM in contrast to the NMSSM, 
this leads to a completely different phenomenology characterized by an enlarged Higgs sector 
which includes the left and right sneutrinos [3,19–23], and distinct prompt or displaced decays of 
the lightest supersymmetric particle (LSP) producing multi-leptons/jets/photons with small/mod-
erate missing transverse energy from neutrinos. Studies of these interesting signals at the Large 
Hadron Collider (LHC) have been carried out in the literature [24–30], taking into account the 
intimate connection between the LSP lifetime and the size of neutrino Yukawas. The low decay 
width of the LSP due to the smallness of neutrino masses is also related to the existence of pos-
sible candidates for decaying dark matter in the model. This is the case of the gravitino [31–35], 
or the axino [36], with lifetimes greater than the age of the Universe. It is worth mentioning 
concerning cosmology, that baryon asymmetry might be realized in the μνSSM through EW 
baryogenesis [37]. See also Refs. [3,38] for vacuum structure analyses of the μνSSM. The EW 
sector of the μνSSM can also explain [28,29] the longstanding discrepancy between the experi-
mental result for the anomalous magnetic moment of the muon [39,40] and the SM prediction.

However, despite all these interesting theoretical and phenomenological properties, similar to 
the NMSSM the μνSSM has the potential problem of the existence of a Z3 discrete symmetry 
in its superpotential, corresponding to a multiplication of all components of all chiral superfields 
by a phase e2πi/3. Discrete symmetries when spontaneously broken can give rise to domains of 
different degenerate vacua separated by domain walls [41–44]. The walls would dominate the 
energy density in the Universe producing wall driven inflation, unless they are removed well 
before. Besides, domain walls can also disrupt primordial nucleosynthesis. These cosmological 
domain wall problems, if present, can be solved if the degeneracy of the vacua is slightly broken, 
eventually leading to the dominance of the true vacuum [41].

This mechanism to solve the domain wall problem was applied in the NMSSM assuming 
that the Z3 discrete symmetry is explicitly broken by gravitationally suppressed interactions 
producing non-renormalizable terms in the superpotential, which lift the degeneracy of the three 
original vacua [45–47].2 Besides, these terms can be chosen small enough as not to alter the low-
energy phenomenology. However, another problem arises when working in the framework of 
NMSSM supergravity. The presence of a linear term tS in the superpotential (with t of dimension 

2 Once this solution is present, the domain walls were used in Ref. [48] for the generation of baryogenesis in the 
NMSSM.
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mass squared) would destabilize the hierarchy since the mass scale is expected to be proportional 
to the cut-off scale of the theory, which is typically the Planck mass MPl ≈ 1.2 × 1019 GeV. 
Although its presence is forbidden by the Z3 symmetry, the non-renormalizable terms together 
with soft SUSY breaking can reintroduce it in the effective potential. Such corrections to the 
potential are quadratically divergent and therefore proportional to powers of MPl, destabilizing 
the hierarchy [49–51,47,52,53].

Any supergravity model with gauge singlets can have this tadpole problem, since the dan-
gerous diagrams are not excluded by gauge invariance. It has been argued nevertheless in the 
framework of the NMSSM that the non-renormalizable terms generating them are not necessar-
ily present when the model possesses either target space duality in a string effective action [53] or 
R-symmetry [53–55], but other terms that do not destabilize the hierarchy, and solve in addition 
the domain wall problem, can be present.

The aim of this work is to analyze domain wall and tadpole problems in the framework of 
the μνSSM, where SM singlets such as RH neutrinos are present. In particular, we will see that 
these problems can be solved naturally in the context of superstring compactifications, where not 
all gauge invariant terms are necessarily allowed. Besides, non-perturbative effects can also be 
relevant. The paper is organized as follows. Sec. 2 will be devoted to discuss the advantage of 
constructing the μνSSM in the framework of superstring theory. In Sec. 3, we will analyze how 
the presence of non-renormalizable terms can be helpful for solving the domain wall problem. In 
Sec. 4, we will see that these terms can induce simultaneously destabilizing tadpole divergences, 
and we will study how to solve this additional problem. Finally, in Sec. 5 we will explain first 
that RH neutrinos, whose presence is crucial in the framework of the μνSSM, can have extra 
U(1) charges in string compactifications. Then, we will discuss how these charges modify the 
origin of certain terms in the superpotential with interesting consequences. Our conclusions are 
left for Sec. 6.

2. The μνSSM and renormalizable terms

In this section we will discuss how natural is the presence in WμνSSM of only the terms shown 
in Eq. (1), when RH neutrinos are added to the spectrum of the SUSY SM. Note that the exis-
tence of the latter fields imply that the SU(3) × SU(2) × U(1)Y gauge invariant superpotential 
containing the most general renormalizable terms is in fact given by:

Wr = Y e
ij Hd Li e

c
j + Yd

ij Hd Qi d
c
j − Yu

ij Hu Qi u
c
j + μHu Hd

+ λijk Li Lj ec
k + λ′

ijk Li Qj dc
k + λ′′

ijk uc
i dc

j dc
k + μi Hu Li

− Y ν
ij Hu Li ν

c
j + λi Hu Hd νc

i + 1

3
κijk νc

i νc
j νc

k +Mij νc
i νc

j + ti ν̂
c
i . (2)

The four terms in the first line determine the superpotential of the Minimal Supersymmetric 
Standard Model (MSSM) (for reviews, see e.g. Refs. [56–58]). The four terms in the second 
line are the conventional trilinear and bilinear R-parity violating (RPV) couplings (for a review, 
see Ref. [9]). Finally, all the terms in the last line contain RH neutrino superfields. The first 
three terms are characteristic of the μνSSM as discussed in the Introduction, the fourth one is 
a bilinear term giving Majorana masses for RH neutrinos, and the fifth one is a linear (tadpole) 
term for them.

Given superpotentials (1) and (2), one would like to have an explanation for the absence in 
WμνSSM of some of the terms present in Wr . In particular, this is the case of the dangerous 
4
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tadpole terms tiνc
i , as well as of the mass terms μHuHd , μiHuLi and Mij ν

c
i ν

c
j which would 

reintroduce the μ-problem and additional naturalness problems if they are of the order of the 
high-energy scale. Here we are interested in the analysis of the μνSSM inspired in the construc-
tion of superstring models, given the relevance of string theory as a possible underlying unified 
theory. In this framework, not all gauge invariant terms are necessarily allowed. In particular, 
at the perturbative level in string constructions the massive modes have typically huge masses 
of the order of the string scale, whereas the massless ones give rise only to trilinear terms at the 
renormalizable level. Thus one ends up with an accidental Z3 symmetry in the low-energy theory. 
Thanks to it, the presence of the above dangerous terms is automatically forbidden. Let us remark 
nevertheless that using WμνSSM these terms arise dynamically with the correct (EW) scale after 
EWSB, as discussed in the Introduction. This fact motivates the use of the superpotential (1), 
where only dimensionless parameters contribute.

On the other hand, it is well known that the simultaneous presence of the terms λ′
ijkLiQjd

c
k

and λ′′
ijku

c
i d

c
j d

c
k , violating lepton and baryon number respectively, is dangerous since they would 

produce fast proton decay. The usual assumption in the literature of the MSSM is to invoke an 
ad hoc Z2 discrete symmetry R-parity [9] to avoid the problem, providing with charge +1 to 
ordinary particles and −1 to their superpartners. However, this assumption is clearly too strin-
gent, since then other terms like e.g. λijkLiLj e

c
k or λiν

c
i HuHd , which are harmless for proton 

decay, would also be forbidden. Less drastic solutions arise in the context of string theory. In 
compactifications of the heterotic string on orbifolds [59] the matter fields lie in different sec-
tors of the compact space. For example, for the case of the Z3 orbifold couplings between three 
fields in the untwisted sector or three fields in the twisted sector are allowed, but couplings 
between untwisted and twisted fields are forbidden by the space group selection rules. Similar 
results about couplings that are forbidden even if they are gauge invariant, can also be obtained 
in other kind of compactifications and in other types of strings. Thus “stringy” selection rules 
can forbid couplings that in principle seem to be allowed by gauge invariance, as pointed out 
in Ref. [3]. As a consequence, the RPV couplings λ′′

ijk can be naturally forbidden whereas the 
other RPV couplings are allowed. In fact, the couplings λijk and λ′

ijk can be naturally added to 
WμνSSM [1,3,24].

Alternatively, in the context of e.g. heterotic orbifolds or free fermion constructions the typ-
ical presence of several U(1) gauge symmetries beyond the hypercharge (see a more detailed 
discussion below in Sec. 5), can also be useful. Although these extra U(1)’s are spontaneously 
broken by VEVs of scalar fields through D- and F -flat directions of the scalar potential, danger-
ous couplings allowed by the SM gauge symmetry as those discussed above can be forbidden by 
the extra U(1) charges [60–62]. In fact, residual ZN symmetries can be left in the low-energy 
theory depending on the choice of flat direction. In Refs. [63,64], a less model-dependent mech-
anism was obtained in type IIA intersecting brane constructions, where e.g. models with Z3
Baryon-parity which forbids λ′′

ijk couplings were constructed.
We conclude therefore that string constructions facilitate the presence of only certain cou-

plings in WμνSSM solving crucial theoretical problems, such as the μ- and ν-problems. However, 
this superpotential has a Z3 discrete symmetry that can induce a cosmological domain wall prob-
lem. This is the subject that we will discuss in the next sections. As we will see, the addition of 
non-renormalizable terms to WμνSSM breaks the Z3 symmetry and can generate dynamically the 
appropriate contributions to solve this problem, simultaneously avoiding the destabilization of 
the hierarchy due to tadpoles.

Let us finally comment that there is another strategy to explain the absence of linear, bilin-
ear and baryon-number violating terms in WμνSSM, solving simultaneously the domain wall and 
5
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tadpole problems, without relying on the superstring framework. It consists of extending the 
SM gauge group with an extra U(1) at low energies [65,66,4] (see Ref. [67] for a review in other 
models).3 Then, the dangerous operators could be forbidden by gauge invariance, and the domain 
wall problem disappears once the discrete symmetry is embedded in the broken gauge symme-
try [69–71]. After the EW phase transition one expects a network of domain walls bounded by 
cosmic strings to form and then collapse. Since the RH neutrinos (and the other matter fields) are 
charged under the extra U(1) the dangerous tadpole diagrams could also be forbidden. In addi-
tion to the presence of the extra U(1) at low energies, another crucial characteristic of the models 
in Refs. [65,4] is the presence in their spectrum of exotic matter dictated by the anomaly cancel-
lation conditions, such as extra quark representations or singlets under the SM gauge group. In 
addition to the non-minimality of the particle spectrum, gauge invariance forbids the cubic term 
κijkν

c
i ν

c
j ν

c
k that generates Majorana masses, making more involved to obtain the correct neutrino 

masses and mixing angles.
In the following we will focus our analysis in the minimal μνSSM characterized by the SM 

gauge group and the superpotential (1), in the framework of superstrings.

3. Domain wall problem and non-renormalizable terms

The Z3 discrete symmetry of the superpotential of the μνSSM is spontaneously broken due 
to the EWSB in the early Universe. As discussed in the Introduction, in this case dangerous 
domain walls separating degenerate vacua can be produced. The strongest constraint on domain 
walls arises from nucleosynthesis, since the walls must disappear before the nucleosynthesis era 
beginning at T ∼ 1 MeV. If we trust this cosmological argument, to solve the problem requires 
the presence in the effective potential of Z3-breaking terms [47]

δV � 10−7 v3
Rm2

W

MPl
, (3)

where the surface energy of the domain wall σ ∼ v3, with v a typical VEV of the fields deter-
mining the scale of the EWSB, has been approximated using in the μνSSM v ∼ viR ∼ vR . This 
condition ensures that the pressure produced by one of the vacua slightly deeper than the others, 
ε ∼ δV , is larger than the surface tension σ/R (where R is the curvature scale of the wall) before 
nucleosynthesis, leading to the dominance of the true vacuum.

Now, one can straightforwardly see that non-renormalizable dimension-n terms, with n > 3, 
in the superpotential (working with the Kähler potential will not modify our conclusions)

Wnr = cn

φ1 · · · φn


n−3 , (4)

break explicitly the discrete Z3 symmetry inducing the following soft SUSY-breaking contribu-
tions to the effective potential

δVnr ≈ cn m3/2
v1 · · · vn


n−3 , (5)

where v1,...,n are the VEVs of the fields φ1,...,n, we have assumed soft SUSY-breaking parameters 
∼ m3/2, and 
 is the cut-off scale of the high-energy theory. To solve the domain wall problem, 
δVnr must be large enough to fulfill requirement (3).

3 This strategy is also possible in string constructions, where as mentioned above several U(1)’s are typically present 
and some of them could survive at low energies (see e.g. the orbifold model with an extra U(1) of Ref. [68]).
6
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In the case of a supergravity theory where 
 = MPl, obviously only dimension-4 terms pro-
ducing

δVnr ≈ c4
v5
R

MPl

, (6)

can fulfill this requirement with the coupling constant verifying the reasonable bound, c4 � 10−9, 
where we have used m3/2 ∼ vR ∼ v1,...,4 ∼ 1 TeV. Terms of dimension larger than four are too 
much suppressed by the Planck mass. For example, a dimension-5 term in the superpotential 
c5φ

5/M2
Pl gives rise to δVnr ≈ c5v

6
R/M2

P l , implying the bound c5 � 107, well beyond perturba-
tivity theory.

On the other hand, even in superstrings the relevant scale of the theory can be much lower than 
MPl (see e.g. Ref. [72] and references therein). As pointed out in Ref. [37], as long as 
 < MPl
the above result on the dimensionality of the non-renormalizable terms to solve the domain wall 
problem, n = 4, can be relaxed. In particular, from Eqs. (3) and (5) it is straightforward to deduce 
that in general the coupling constants must verify

cn � 10−25
(




vR

)n−3

. (7)

Thus, even for values of the cut-off scale as large as 
 = 1015 GeV, one obtains that dimension-5 
terms can be used to solve the domain wall problem. For very low values of the scale such as 

 = 104 GeV, terms of dimension as large as 27 can be used. In the following we will consider 
only the case 
 = MPl , but the results can be straightforwardly extrapolated for lower scales.

To solve the domain wall problem in the μνSSM supergravity model we have available the 
following dimension-4 terms in the superpotential, with the only contributions of RH neutrino 
and Higgs superfields:

κnr
ijkl ν

c
i νc

j νc
k νc

l /MPl, λnr
ij νc

i νc
j Hu Hd/MPl, λnr

ud (Hu Hd)2/MPl, (8)

and the terms

Y
ν,nr
ijk νc

i νc
j Hu Lk/MPl, κnr

ij Hu Li Hu Lj/MPl, Y
ν,nr
i Hu Li Hu Hd/MPl, (9)

with the contribution also of lepton doublet superfields Li .
The terms in Eq. (8) are similar to the ones available in the NMSSM supergravity model [47], 

substituting in the first two the RH neutrino superfields νc
i by the singlet superfield S. Now, as 

discussed above, to solve the domain wall problem with some of these non-renormalizable terms 
their couplings must fulfill requirement (3), where now

δVnr ≈ κnr
ijkl

v5
R

MPl

, λnr
ij

v3
Rvuvd

MPl

, λnr
ud

vRv2
uv

2
d

MPl

, (10)

implying the reasonable bounds shown at the top of Table 1. Obviously, the bound for the cou-
plings κnr

ijkl � 10−9 is the same as for the c4 coupling obtained in the generic discussion of 

Eq. (6). The stronger constraints for the other couplings, λnr
ij � 10−7 and λnr

ud � 10−5, are due to 

the smaller values of the VEVs vu,d ∼ 10−1vR . Let us point out that these values for the cou-
plings are reasonable, since one expects the non-renormalizable couplings to be smaller than the 
renormalizable ones. This is in fact the natural situation in string compactifications where the 
former get a suppression factor with respect to the latter (see e.g. the discussion of couplings in 
the Z3 orbifold compactification of the heterotic string in Ref. [73]).
7
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Table 1
(top) Bounds on some of the couplings to solve the domain wall (DW) problem with 
the corresponding non-renormalizable terms of Eqs. (8) and (9), as discussed in Sec. 3. 
(bottom) Bounds on the associated renormalizable couplings of Eq. (1) to solve simulta-
neously the tadpole (T) problem, as discussed in Sec. 4.1.

DW κnr
ijkl

� 10−9 λnr
ij
� 10−7 λnr

ud
� 10−5 Y

ν,nr
ijk

� 10−1

T κijk � 10−3 λi � 10−5 κijkλj λk � 10−5 Yν
ij
� 10−11

Concerning the non-renormalizable terms in Eq. (9), let us remark that because of RPV in 
the μνSSM not only the right sneutrinos and Higgses acquire VEVs, but also the left sneutrinos 
in Li . This is the reason for the presence of these terms in the μνSSM unlike the case of the 
NMSSM. Their contributions to δVnr depend therefore on the VEVs of the left sneutrinos which 
are small viL ∼ vL � 10−4 GeV [1,3,2], because their minimization equations are determined by 
the small neutrino Yukawas. We have respectively

δVnr ≈ Y
ν,nr
ijk

v3
RvLvu

MPl

, κnr
ij

vRv2
Lv2

u

MPl

, Y
ν,nr
i

vRvLv2
uvd

MPl

, (11)

implying that the bounds on the couplings are stronger, with Y ν,nr
ijk � 10−1 as shown at the top of 

Table 1 and κnr
ij � 107, Y ν,nr

i � 10. Because of perturbativity, clearly only the couplings Y ν,nr
ijk are 

useful for solving the domain wall problem.
Thus, we have shown above that the domain wall problem can be solved in the framework 

of supergravity by dimension-4 terms. However, the latter induce in the effective potential linear 
terms that generate quadratic tadpole divergences, which destabilize the hierarchy [49–52,47,53]. 
This will be the subject of the next section, where we will also explore another solution to the 
domain wall problem through higher dimensional terms harmless to the gauge hierarchy.

4. Solving the tadpole problem

4.1. Non-renormalizable dimension-4 terms

Given that we are working with a non-renormalizable effective theory valid below the cut-off 
scale MPl, the presence of quadratically divergent tadpole diagrams giving rise to contributions 
to the effective potential proportional to MPl can destabilize the hierarchy [49–52,47,53]. In par-
ticular, the first and second terms in Eq. (8) give rise to quadratically divergent tadpole diagrams 
at 2-loop order when SUSY is spontaneously broken, as shown in Fig. 1. In the case of the 
third term the tadpole divergence arises at 3-loop order. Similar comments apply to the terms in 
Eq. (9). In particular, the first one which is useful for solving the domain wall problem generates 
a tadpole divergence at 2-loop order (exchanging in Fig. 1 two propagators νc by Hu and L).

To simplify the notation, let us denote generically all the couplings of the 2-loop divergent 
terms, κnr

ijkl, λ
nr
ij and Y ν,nr

ijk as c4, and the related renormalizable couplings contributing to the 
dangerous Feyman diagrams, κijk , λi and Y ν

ij , respectively, as c3. Similarly, for the 3-loop diver-
gent term we denote λnr

ud as c4, but there are now three renormalizable couplings c3 contributing 
to the Feynman diagram, two contributions from λi and one from κijk .

Following the analyses of Refs. [49–52,47,53], the quadratically divergent 2-loop integral of 
O(M2 /(16π2)2) generates in the effective potential a linear term of the form
Pl

8
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Fig. 1. The dangerous diagram for the first term in Eq. (8) which can destabilize the hierarchy. For the second term the 
figure is the same exchanging two propagators νc by Hu and Hd .

δV ∼ c4c3

(16π2)2 m2
3/2MPl(̃νR + ν̃∗

R). (12)

For the 3-loop divergences, this result is valid but with the substitution c3/(16π2)2 →
c3

3/(16π2)3. Let us remark related to the discussion of Eq. (7) that we are using MPl as the 
cut-off scale of our theory. Otherwise, we should substitute in Eq. (12) MPl → 
2/MPl .

Now, it is straightforward to see that the contribution (12) destabilizes the hierarchy unless 
the factor in front of the RH sneutrino field is

c4c3

(16π2)2 m2
3/2MPl � m3

3/2, (13)

implying the following bound to avoid the tadpole problem:

c4c3 � 10−12. (14)

This constraint is compatible with requirements for the non-renormalizable couplings c4 in 
Table 1, κnr

ijkl , λ
nr
ij and Y ν,nr

ijk , if the related renormalizable couplings c3, i.e. κijk , λi and Y ν
ij re-

spectively, fulfill the bounds shown at the bottom of the table. Note, however, that the bound 
Y ν

ij � 10−11 is very unlikely to be compatible with Y ν,nr
ijk � 10−1, because one expects the 

renormalizable couplings to be larger than the non-renormalizable ones, as discussed below 
Eq. (10).

Concerning the other two couplings, κijk and λi , in the case of the NMSSM their bounds 
correspond to κ � 10−3 and/or λ � 10−5. The former would imply a light singlino, which is 
tightly constrained by the invisible Higgs decay and dark matter searches. The latter would give 
rise to μ = λ〈S〉 ∼ 10−2 GeV, which is excluded by experimental bounds on chargino masses. 
In the μνSSM there is nevertheless more flexibility since we have available 3 couplings λi

and 10 couplings κijk . Thus hierarchies among couplings are allowed, still solving the μ- and 
ν-problems. For example, if λnr

1j � 10−7 is used to solve the domain wall problem, with the 

corresponding renormalizable coupling λ1 � 10−5 to avoid the tadpole problem, we can still 
have λ2,3 � 1 available for solving the μ problem. If instead we solve the domain wall problem 
e.g. with κnr

112l � 10−9 with the corresponding κ112 � 10−3, we can have the other couplings 
κ123 � 1, κ113 � 1, etc., which are useful to solve the ν-problem with the EW-scale seesaw of 
the μνSSM.
9
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One might be worried that the presence of the non-renormalizable terms related to these large 
couplings of order one, e.g. λnr

2j or κnr
123l , would reintroduce the tadpole problem via diagrams as 

in Fig. 1. As already discussed in Sec. 2 not all gauge invariant renormalizable couplings have 
to be allowed in a particular model due to the stringy selection rules. Similarly, not all gauge in-
variant non-renormalizable couplings have to be allowed. For example, three untwisted fields in 
the Z3 orbifold of the heterotic string can only couple with a particular number of twisted fields, 
and three twisted fields can only couple with a particular number of twisted or moduli fields (see 
e.g. Ref. [73] and references therein). For other Zn orbifolds the situation is similar. These pecu-
liarities of the superpotential also carry over to the Kähler potential. For example, a non-minimal 
non-renormalizable Kähler term �HuHd/MPl + hc. mixing the hidden (�) and visible (Hu,d ) 
sectors and generating after SUSY breaking a Giudice-Masiero μ-term [74], is not present in 
prime orbifolds such as the Z3 orbifold [75,76]. Thus, embedding the μνSSM in the framework 
of superstrings, the stringy selections rules can forbid the dangerous non-renormalizable terms 
related to the above large couplings.

We conclude that dimension-4 terms in Eq. (8) with couplings κnr
ijkl � 10−9 solve the domain 

wall problem, simultaneously avoiding the tadpole problem if the corresponding renormalizable 
couplings fulfill κijk � 10−3. Similarly, couplings λnr

ij � 10−7 with the corresponding λi � 10−5

can also be used for this task.
On the other hand, for the case of 3-loop divergences the constraint becomes less stringent

c4c
3
3 � 10−10, (15)

where now c4 corresponds to λnr
ud with the corresponding bound shown in Table 1, λnr

ud � 10−5, 
and c3

3 to the product κijkλjλk . Therefore, this constraint implies the bound κijkλjλk � 10−5, 
as shown also in Table 1. For example, assuming κijk ∼ λj ∼ λk , this constraint would imply 
κijk, λj , λk � 10−2. Similarly to above, one could argue that depending on the concrete val-
ues of these renormalizable couplings, the other terms generating 2-loop divergences could still 
destabilize the hierarchy. But again, embedding the μνSSM in the framework of superstring, the 
non-renormalizable terms that generate 3-loop divergences could be allowed whereas the terms 
generating 2-loop divergences could be forbidden.

Finally, it is worth noting that the values of the couplings discussed above are compatible 
with the physical vacuum, including a SM-like Higgs which in turn is compatible with collider 
constraints [3,23,38]. In Refs. [3,23], it was shown that working with small and moderate values 
of λi and diagonal couplings κiii , i.e. λi, κiii � 10−1, it is possible to find global electroweak 
vacua in significant regions of the parameter space of the μνSSM. In Ref. [38], the alignment-
without-decoupling limit of the μνSSM was analyzed, which implies that at least one of the λi

has a value of order one, close to be non-perturbative up to the GUT scale. In particular they used 
λ1 ∼ 0.5, λ2 ∼ 0.4 and λ3 ∼ 10−3, showing that in this region of the parameter space, with all 
diagonal couplings κiii ∼ 0.4, the possibility of long-life unstable electroweak vacua becomes 
viable. In all these results above, negligible off-diagonal couplings κijk were used. Thus, the use 
in the first and third columns of Table 1 of off-diagonal couplings κijk is trivially compatible 
with the physical minima studied in Refs. [3,23,38]. For example, in order to apply the solution 
of the third column to the vacua of Ref. [38], one can use λ1 ∼ 0.5, λ2 ∼ 0.4, and κi12 � 10−4. 
Diagonal couplings are also compatible, for example one could use κ333 ∼ 0.4 with λ3 ∼ 10−3. 
On the other hand, the solution of the second column of Table 1 can be present in the vacua of 
Refs. [3,23]. Also the solution of the first column with diagonal κiii .
10
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Fig. 2. Tadpole diagrams for (a) dimension-5 terms in the superpotential, and (b) dimension-7 terms in the superpotential.

4.2. Non-renormalizable terms of higher dimensions

We will use here the above simple argument about the flexibility of string constructions con-
cerning the presence of certain couplings, in the context of another solution proposed to solve 
simultaneously the destabilization and domain wall problems. In particular, it was shown in 
the framework of the NMSSM [53] that any extra odd-dimension terms in the superpotential 
(or even-dimension terms in the Kähler potential) are not harmful to the gauge hierarchy, but 
can avoid the domain wall problem. In the framework of the μνSSM these are the following 
dimension-5 terms with the contribution of RH neutrino superfields:

c5 (νc)5/M2
Pl, c5 (νc)3 (Hu Hd)/M2

Pl, c5 νc (Hu Hd)2/M2
Pl, (16)

and the terms

c5 (νc)3 (Hu L)/M2
Pl, c5 νc (Hu L)2/M2

Pl, c5 νc (Hu L) (Hu Hd)/M2
Pl, (17)

with the contribution of lepton doublet superfields. In these formulas we have simplified again 
the notation, denoting νc ≡ νc

i , L ≡ Li , and by c5 all non-renormalizable couplings. These terms 
give rise to a divergence at 3-loop order when SUSY is spontaneously broken, as shown in 
Fig. 2a.

In the case of dimension-7 terms, these are

c7 (νc)7/M4
Pl, c7 (νc)5 (Hu Hd)/M4

Pl, c7 (νc)3 (Hu Hd)2/M4
Pl, c7 νc (Hu Hd)3/M4

Pl,

(18)

and

c7 (νc)5 (Hu L)/M4
Pl, c7 (νc)3 (Hu L)2/M4

Pl, c7 νc (Hu L)3/M4
Pl,

c7 νc (Hu L)2 (Hu Hd)/M4
Pl, c7 νc (Hu L) (Hu Hd)2/M4

Pl, (19)

giving rise to a divergence at 4-loop order as shown in Fig. 2b, except the fourth term in Eq. (18), 
and the last three terms in Eq. (19), which give rise to divergences at 5-loop order.

For example, for the dimension-7 terms the quartically divergent 4-loop integral of O(M4
Pl/

(16π2)4) generates in the effective potential a linear term of the form

δV ∼ c7c
2
3

(16π2)4 m3
3/2(̃νR + ν̃∗

R), (20)

which is obviously not harmful to the gauge hierarchy, but large enough to break the Z3 symme-
try (see Eq. (3)), and therefore to eliminate the domain wall problem. Similar results are obtained 
for other odd-dimension terms, but with the corresponding n-loop factors (16π2)−n in Eq. (20).
11
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In the framework of the NMSSM supergravity, it was further argued that the dangerous even 
(odd)-dimension terms could be forbidden in the superpotential (Kähler potential) under special 
conditions. In particular, in Ref. [53] it was shown that this is possible when the models possess 
either target space duality in a string effective action or gauged R-symmetry, and they advocated 
finally for generating μ-terms from couplings in the Kähler potential leading to small terms, 
BμHuHd and B ′μ′SS, in the low-energy theory. In Ref. [54], a Z2 R-symmetry was used, 
allowing only the dimension-7 term c7S

7/M4
Pl. A similar approach was used in Ref. [77] to 

attack the domain wall problem in the NMSSM extended by an A4 × Z3 flavor symmetry and 
three RH neutrinos. On the other hand, in Ref. [55] the discrete Z5 R-symmetry used gave rise to 
the proposal of the new Minimally-extended Supersymmetric Standard Model (nMSSM) [78]. In 
this case, the cubic term κSSS is forbidden by the symmetry, and its role contributing to generate 
the VEV of the scalar component S and the breaking of the Peccei-Quinn-like symmetry is played 
by the tadpole. The latter arises at 6-loop level in the effective potential by combining two non-
renormalizable dimension-4 terms of the Kähler potential with the renormalizable superpotential 
term c3SHuHd , and is of order c2

4c
4
3m

2
3/2MPl(S + S∗)/(16π2)6. The authors adjust c2

4c
4
3 ∼ 10−3

for the tadpole to have the desired SUSY scale. A similar model using discrete Z5 and Z7 R-
symmetries, but with the tadpole contribution appearing in the superpotential, was proposed in 
Ref. [79] with the name of Minimal Non-minimal Supersymmetric Standard Model (MNSSM).4

In the case of the μνSSM supergravity from superstrings, one has in addition the freedom 
of playing with the presence or absence of particular types of non-renormalizable terms. This 
is model dependent, and therefore one can assume a model where only harmless odd (even)-
dimension terms are allowed in the superpotential (Kähler potential) by the stringy selection 
rules, generating contributions in the effective potential of the type (20). These contributions are 
small enough as not to alter the minimization equations for the right sneutrinos, and therefore 
one can continue working with the conventional superpotential of the μνSSM in Eq. (1), i.e. 
their impact on the phenomenology can be neglected.

If the non-renormalizable terms allowed by the stringy selection rules are of the type proposed 
in Ref. [55], then the tadpole contribution in the μνSSM is of the form

δV ∼ c2
4c

4
3

(16π2)6
m2

3/2MPl(̃νR + ν̃∗
R), (21)

where we have exchanged S → νc . In this case one expects c2
4c

4
3 << 10−3, being this factor sup-

pressed by a non-renormalizable squared coupling (c2
4), and therefore this tadpole contribution 

solves the domain wall problem, but again without modifying the μνSSM phenomenology. Even 
if one manages to have in a concrete model c2

4c
4
3 ∼ 10−3, this contribution will not essentially 

modify our numerical results either since we are assuming that the stringy selection rules allow 
the presence of the cubic term κijkν

c
i ν

c
j ν

c
k in the superpotential (1). If this is not the case and it 

is not present, then to account for neutrino data becomes more involved.

4.3. Non-perturbative terms

In type II superstring another mechanism to solver the domain wall and tadpole problems is 
available. As discussed in Refs. [84,85], the singlet of the NMSSM carries global U(1) charge 

4 It is worth noting however that global symmetries are most likely broken by quantum gravity effects [80,81] (for a 
review, see e.g. Ref. [82] and references therein). This is also one of the swampland conjectures (for a recent discussion, 
see e.g. Ref. [83] and references therein).
12
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under the branes, and therefore perturbative couplings with several singlets are forbidden. Nev-
ertheless, a D-instanton can generate in the superpotential non-perturbatively terms of the type

Wnp ∼ e−Scl
M3−n

s Sn ≡ cnS
n, (22)

where Ms is the string scale, and the instanton suppression factor given by the classical instanton 
effective action Scl depends on the volume of the three-cycle which the instanton wraps. In 
Refs. [86–90], similar instanton effects were used to generate a Majorana mass term for RH 
neutrinos with n = 2.

Then, in the case of the μνSSM a term with n = 1 and S → νc

Wnp ∼ e−Scl
M2

s νc, (23)

can solve the domain wall problem without spoiling the hierarchy if the exponential suppression 
factor is such that e−Scl

M2
s � m2

3/2.

5. Generating the cubic coupling (νc)3

We have discussed in the previous sections the importance of the presence of RH neutrinos 
in the low-energy spectrum of the μνSSM for solving the μ- and ν-problems, simultaneously 
avoiding the potential domain wall and tadpole problems. We would like to discuss in this section 
another characteristic of RH neutrinos. When added to the SM spectrum they are the only fields 
with no quantum numbers under the gauge group, however in the heterotic string any SM singlet 
arises from the E8 × E8 or SO(32) gauge groups and as a consequence must be charged under 
some of the groups. This implies that terms of the type (νc)3 in the superpotential (1) are expected 
to be forbidden by gauge invariance. See also the discussion in Sec. 4.3 for the type II superstring, 
where they are also forbidden. On the other hand, as discussed in the Introduction, this type 
of terms is very useful for solving the ν-problem in a natural way through the generation of 
Majorana masses. We also saw in Secs. 3 and 4 that their presence can be helpful for solving the 
domain wall and tadpole problems. Let us then analyze how this type of terms can originate in 
the superstring framework. In Ref. [91], the case of the singlet in the NMSSM was analyzed.

In orbifold compactifications of the heterotic string, models with SU(3) × SU(2) × U(1)n ×
[hidden sector] as gauge group after the breaking due to the presence of Wilson lines, were 
built [92]. The matter content of these models is initially very large, including extra representa-
tions in addition to SM ones, with typically many singlets under the SM gauge group. All these 
representations have non-vanishing U(1)n charges, including the RH neutrinos if present.

Subsequently, the Fayet-Iliopoulos (FI) D-term of the “anomalous” U(1)(a) [93–96] arising 
from a combination of the U(1)’s of the models was used for breaking the gauge group fur-
ther [60]. In particular, the anomaly is cancelled due to the Green-Schwarz mechanism [97], 
which determines the following value of the FI D-term:

D(a) = c(a) +
∑
α

Q(a)
α η∗

αηα, c(a) =
∑

α Q
(a)
α

192π2 g(a)2
M2

P , (24)

where ηα are the scalar fields with charges Q(a)
α under the anomalous U(1)(a) and MP ≡

MPl/
√

8π . Therefore, in order to have a SUSY vacuum solution it is necessary to give VEVs 
to particular scalar fields, say χβ , in such a way that the anomalous D-term is cancelled:∑

Q
(a)
β |〈χβ〉|2 = −c(a). (25)
β

13
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If these fields are charged under the U(1)n, except under the U(1)Y which arises from a combi-
nation of the non-anomalous U(1)’s, then we are left at low energies with the SM gauge group 
in the observable sector as desired. In addition, many of the extra matter representations acquire 
a high mass thus disappearing from the low-energy spectrum, giving rise to an observable sector 
with the usual three families of matter (plus a few extra representations) [60–62,98]. These extra 
fields are related to solutions for the generation of terms of the type (ν̂c)3, as we will discuss 
below.

5.1. Mixing among fields

The extra matter representations discussed above acquire their masses from terms of the type:

(χ...χ)ζ, (χ...χ)ζ ζ, (26)

where χ means any field acquiring a large VEV in order to cancel the FI D-term, and ζ is any 
field. (Of course higher-order operators must also be taken into account here.) The calculation 
of the massless spectrum shows that some of the massless fields are combinations of several 
states [60–62]. As a consequence, some of the “old” physical particles have combined with other 
ones, and the “new” particles may have more couplings allowed. This mechanism, relying on 
the mixing between fields due to FI breaking was used in Ref. [99] for generating the observed 
structure of quark and lepton masses and mixing angles. In the case that we are interested here, 
for example νc → ν′ c = (aνc + bϕc + cψc)/

√
a2 + b2 + c2, where a, b, c are proportional to 

some VEVs, and ϕ and ψ are other singlets under SU(3) × SU(2). Therefore, a term of the type 
(ν′ c)3 becomes present in the superpotential if the term νcϕcψc is initially allowed.

5.2. Non-renormalizable couplings

A second mechanism to generate (νc)3 in the superpotential is the following. An effective 
coupling of massless fields which is not U(1)n invariant, say ζ1ζ2ζ3, can be generated by a 
higher-order operator

(χ...χ)ζ1ζ2ζ3, (27)

where as in (26) χ means any field acquiring a VEV. (Of course one has to consider here the 
“new” massless fields again.) One would expect this type of couplings that can generate (νc)3

as desired, to be very small being non-renormalizable and therefore suppressed by the Planck 
mass, but actually this is not necessarily what happens. Given that typically 

∑
α Q

(a)
α � 100 in 

the models built, one obtains from Eqs. (24) and (25) that 〈χ〉/MPl � 1 and as a consequence ef-
fective terms (νc)3 of the desired order of magnitude might be generated in the superpotential of 
the μνSSM. Of course, another consequence of these mechanisms it that the non-renormalizable 
terms discussed in the previous sections to solve the domain wall problem must be effectively 
generated in a similar way.

Related to the above, let us comment the following. All the other terms in the superpotential 
of the μνSSM (1) can be allowed in principle at the renormalizable level. In that case, the simul-
taneous presence of the terms Y ν

ij Hu Li ν
c
j and λi Hu Hd νc

i implies that Hd and Li have the same 
SU(3) × SU(2) × U(1)n quantum numbers. This seems not to be easy to obtain in the model 
building since one needs not only two different fields with exactly the same quantum numbers 
but also having different values for their couplings. We can avoid this situation if any of the above 
14
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two terms arises from a non-renormalizable operator which is U(1)n invariant. In addition, this 
mechanism also implies that the conventional lepton-number-violating terms λijk Li Lj ec

k and 
λ′

ijk Li Qj dc
k are forbidden (at least at the renormalizable level) once we impose the presence of 

the Yukawa couplings Y e
ij Hd Li e

c
j and Yd

ij Hd Qi d
c
j in the superpotential.

5.3. Instanton effects

As discussed in Sec. 4.3, instanton effects in the type II superstring can generate terms cou-
pling NMSSM singlets among themselves (see Eq. (22)) [84,85]. In Ref. [100], similar instanton 
effects were used to generate the cubic coupling of the NMSSM in F-theory GUTs. This mecha-
nism, which lies in the violation of the (typically anomalous) U(1)’s under which S is charged by 
the instanton corrections [84], can be straightforwardly applied to the singlet νc of the μνSSM.

Thus, one can generate couplings of the type

Wnp ∼ e−Scl
(νc)3 ≡ κ (νc)3, (28)

with κ � 1, if one manages to construct a model with n = 3 and the appropriate suppression 
factor. In fact, the presence of several νc

i superfields in the μνSSM, in contrast to the NMSSM 
which contains only one singlet superfield S makes easier to generate from this mechanism the 
parameters κ (and λ) capable to generate a viable mass spectrum. Besides, the simultaneous 
presence of other instanton-induced terms with differing n, such as the tadpole term in (23) with 
n = 1, can be achieved [84] by superpotential corrections from multiple instantons with different 
intersection numbers with the gauge branes.

6. Conclusions

We have discussed the domain wall and tadpole problems in the μνSSM, where RH neutrinos 
are added to the SM spectrum. Their solutions present peculiarities with respect to the usual 
ones found in the NMSSM. An important argument concerns the presence of several different 
couplings involving singlet superfields in the μνSSM (the RH neutrinos), unlike the NMSSM 
where only one extra singlet is present. In addition, embedding the μνSSM in the framework of 
superstring models makes that not all gauge invariant terms are necessarily allowed, providing 
us with more flexibility for only the interesting terms to be present.

In particular, dimension-4 non-renormalizable terms in the superpotential can be large enough 
as to solve the domain wall problem through their contributions to the effective potential. Al-
though they also generate tadpole divergences giving rise to linear terms in the effective potential, 
these contributions can be small enough for several ranges of the couplings avoiding the destabi-
lization of the hierarchy, as discussed in Sec. 4.1.

Alternatively, terms of higher dimensions, odd (even) in the superpotential (the Kähler poten-
tial), can also be used to solve these problems in the superstring inspired μνSSM without relying 
in arguments based on target space duality or R-symmetry. Unlike dimension-4 terms, their con-
tributions to the effective potential are not large enough to solve the domain wall problem (unless 
the cut-off scale of the high-energy theory is smaller than the Planck scale). Nevertheless, the lin-
ear contributions generated from tadpole divergences can be large enough to solve the problem 
without destabilizing the hierarchy, as explained in Sec. 4.2.

In addition, tadpole terms in the superpotential of the correct order of magnitude to solve 
the problems can also be generated by instanton effects in type II superstring or F-theory, as 
discussed in Sec. 4.3.
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Finally, given the special role of RH neutrinos in the μνSSM for solving the μ- and ν-
problems, simultaneously avoiding the potential domain wall and tadpole problems, we have 
analyzed one of their relevant features in string models. In particular, they are expected to have 
typically extra U(1) charges at high energies. We have discussed in Sec. 5 several mechanisms 
that still allow the presence of cubic neutrino terms in the low-energy theory, such as the mixing 
between fields due to Fayet-Iliopoulos breaking, the presence of appropriate non-renormalizable 
terms, or instanton effects. The presence of cubic neutrino terms together with Dirac neutrino 
Yukawas, makes very easy the generation of a EW-scale seesaw able to reproduce neutrino 
masses and mixings in agreement with data. We thus highly motivate our string model builder 
colleagues to take account of this option seriously.
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