
Gravitation, Relativistic Astrophysics and Cosmology
Second Argentinian-Brazilian Meeting, 2014
G. S. Vila, F. L. Vieyro and J. Fabris, eds.

Gravitational entropy of a Kerr black hole

Daniela Pérez1, and Gustavo E. Romero 1,2

1Instituto Argentino de Radioastronomía, C.C.5, (1894)
Villa Elisa, Bs. As., Argentina
2Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Paseo del
Bosque s/n CP (1900), La Plata, Bs. As., Argentina

Abstract. The gravitational entropy of a Kerr black hole is calculated
using a classical estimator based on the Bel-Robinson tensor, which has
been recently proposed by Clifton, Ellis, and Tavakol. We prove that, in
the frame we consider, Clifton et al.'s estimator does not reproduce the
Bekenstein-Hawking entropy of a Kerr black hole.

1. Introduction

Black holes are among the simplest objects of the universe. They can be fully
described by a small number of parameters: mass (M), angular momentum (J),
and electric charge (Q). Wheeler seems to have been the �rst to notice that, if
we are not to abandon the Second Law of Thermodynamics, material accreted
by a black hole should not only transfer to the hole its mass, angular momentum,
and electric charge, but its entropy as well. Bekenstein (1972, 1973) noticed that
the properties of the area of the event horizon of a black hole resemble those of
entropy and proposed the following relation:

SBH =
A

4 l2P
. (1)

Here, SBH is the entropy of the black hole, A is the area of the event horizon,
and lPl =

√
Gh̄c−3 is the Planck length. A generalized second law of black hole

thermodynamics was also derived by Bekenstein (1974). Bardeen, Carter, and
Hawking (1973) formulated the four laws of black hole physics, which are similar
to the four laws of thermodynamics.

Since black holes can be fully described in terms of the gravitational �eld,
it seems reasonable to associate an entropy with the gravitational �eld itself.
In absence of a theory of quantum gravity, a statistical measure of the gravita-
tional entropy is not possible. Instead, approximations might be obtained using
classical invariants of General Relativity, as �rst suggested by Penrose (1979).

Several authors have tried to implement Penrose's proposal. Recently, Clifton,
Ellis and Tavakol (2013) o�ered a novel de�nition for the entropy of the gravi-
tational �eld based on integrals over quantities constructed from the pure Weyl
form of the Bel-Robinson tensor. In particular, they calculated the gravitational
entropy for a Schwarzschild black hole, for a spatially �at Robertson-Walker ge-
ometry with scalar perturbations, and for the inhomogeneous Lemaître-Tolman-
Bondi solution.
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The main goal of the present work is to calculate the gravitational entropy of
a Kerr black hole using Clifton et al.'s proposal, and test whether such estimator
still reproduces the Benkenstein-Hawking entropy of a Kerr black hole.

Throughout this paper we use geometrized units G = c = 1.

2. Bel-Robinson estimator

Clifton, Ellis, and Tavakol (2013) de�ned the entropy of the gravitational �eld
Sgrav following these �ve requirements: 1) Sgrav ≥ 0, 2) Sgrav = 0⇔ Cabcd = 0,
where Cabcd is the Weyl tensor, 3) Sgrav gives a measure of the local anisotropy of
the free gravitational �eld, 4) Sgrav should be equal to the Bekenstein-Hawking
entropy on the event horizon of a black hole, 5) Sgrav should increase monotoni-
cally as structure forms in the universe.

In particular, Clifton and coworkers constructed a de�nition of Sgrav in
analogy with the fundamental law of thermodynamics:

TgravdSgrav = dUgrav + pgravdV. (2)

Here, Tgrav, Sgrav, Ugrav and pgrav stand for the e�ective temperature, entropy,
internal energy, and isotropic pressure of the free gravitational �eld respectively,
whereas V is the spatial volume. Expressions for the e�ective energy density
ρgrav and pressure pgrav are derived from the Bel-Robinson tensor, which for
Coulomb-like gravitational �elds, such as black hole spacetimes, take the form:

8πρgrav = 2α

√
2W
3
, (3)

pgrav = 0, (4)

where α is a constant and W is the �super-energy density�:

W =
1

4

(
Ea

bEab +Ha
bHa

b

)
, (5)

and Eab and Hab denote the electric and magnetic part of the Weyl tensor,
respectively.

The temperature of the gravitational �eld is de�ned as a local quantity that
reproduces the Hawking (1974, 1975), Unruh (1976), and de Sitter temperatures
(Gibbons and Hawking, 1977) in the appropriate limits (Clifton at al., 2013). It
has the following expression:

Tgrav =

∣∣∣u̇aza +H + σabz
azb
∣∣∣

2π
. (6)

Here ua is a timelike unit vector, za is a spacelike unit vector aligned with the
Weyl principal tetrad, H = Θ/3 being Θ = ∇aua the expansion scalar and
σab = ∇(aub) + a(aub)− 1/3 Θhab is the shear tensor; hab is the projection tensor
hab = gab − (ucu

c)uaub.
Clifton and coworkers calculated the gravitational entropy of a Schwarzschild

black hole, recovering the Bekenstein-Hawking entropy on the event horizon of
the hole. In the following section we extend their calculations to a Kerr black
hole and analyze whether such estimator still represents a good classical measure
of the entropy of the gravitational �eld.
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3. Bel-Robinson estimator for Kerr black holes

The line element of the Kerr spacetime in oblate spheroidal coordinates (t, r, θ, φ)
takes the form (Doran, 2000):

dτ2 = −
(

1− 2Mr

ρ2

)
dt2 +

ρ2

r2 + a2
dr2 − 2

√
2Mr

r2 + a2
dt dr − 4aMr

sin2 θ

ρ2
dt dφ

+ 2a

√
2Mr

r2 + a2
sin2 θdφdr + ρ2dθ2 +

[(
r2 + a2

)
+ 2Mra2

sin2 θ

ρ2

]
sin θ2dφ2,

where ρ2 = r2 + a2cos2 θ. The constant M represents the mass of the black hole
and a its angular momentum.

Clifton et al.'s proposal is frame-dependent. We make the simplest choice
for a Kerr spacetime (see below). Speci�cally, we adopt the following unit vectors
ua and za:

ua =

(
r2 + a2√
−∆
√
r2 + u2

, 0, 0,
a√

r2 + u2
√
−∆

)
, (7)

za =

(√
r2 + a2

√
2Mr√

−∆
√
r2 + u2

,

√
−∆√

r2 + u2
, 0,

a
√

2Mr√
−∆
√
r2 + u2

√
r2 + a2

)
, (8)

where u = a cos θ and ∆ = r2 + a2 − 2Mr. In the region interior to the outer
event horizon uaua = 1 and zaza = −1. The vector za is chosen to be orthogonal
to the hypersurfaces of constant time t. Because of the four-fold coordinate
degrees of freedom inherent to General Relativity, there is not a unique foliation
of spacetime into a family of nonintersecting spacelike 3-surfaces Σ. For the Kerr
spacetime metric given by Eq. (7), we have checked that the unit vectors ua and
za satisfy all conditions for the calculation of the gravitational entropy as stated
by Clifton et al. (2013).

We now proceed to the calculation of the gravitational energy density and
temperature according to Eqs. (3) and (6), respectively.

The gravitational energy density takes the form:

ρgrav =
α

4π

M

(r2 + u2)3/2
. (9)

In Figures 1 and 2,we show plots of ρgrav as a function of the radial coordinate
for θ = π/2 and θ = π/4, respectively. The gravitational energy density is
everywhere well-de�ned and positive, except towards the ring singularity, as
expected.

Figure 1. Plot of ρgrav as a func-
tion of the radial coordinate for
a = 0.8 and θ = π/2.

Figure 2. Plot of ρgrav as a func-
tion of the radial coordinate for
a = 0.8 and θ = π/4.

We obtain the following expression for the temperature of the gravitational
�eld:

Tgrav =

∣∣−ra2 −Mu2 + ru2 +Mr2
∣∣

2π (r2 + u2)3/2
√
−∆

, (10)
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where the absolute value brackets were added to avoid negative or complex val-
ues. A 3-dimensional plot of Tgrav as a function of the radial and angular co-
ordinate for a = 0.8 is shown in Figure 3. We see that Tgrav is everywhere
well-de�ned except towards the inner and outer horizons.

As explained by Clifton et al. (2013), a small change in the gravitational
entropy density of a black hole occurs when a small amount of mass is added:

δsgrav =
δ (ρgravv)

Tgrav
. (11)

In the expression above the element of volume is v = zaηabcddx
bdxcdxd, where

ηabcd = η[abcd], η0123 =
√
|gab|. For the our particular coordinate choice:

v =

√
2Mr

(
r2 + a2

)1/2 (
r2 + u2

)1/2
a
√
−∆

dφ du dr. (12)

Figure 3. Plot of Tgrav as a func-
tion of the coordinates r and θ for
a = 0.8.

Figure 4. Plot of SBR and SBH

as a function of the angular mo-
mentum a.

We now proceed to calculate the gravitational entropy Sgrav by performing
the integration of Eq. (11) over the volume V enclosed by the outer event horizon
on a hypersurface of constant t, for a �xed value of a:

Sgrav =

∫
V

ρgravv

Tgrav
, (13)

in order to test whether the Bel-Robinson proposal in the choosen frame repro-
duces the Bekenstein-Hawking entropy of a Kerr black hole. We notice, however,
that independently of the coordinate choice, the region inside the inner horizon is
not time-orientable since the region is chronology-violating (Visser, 1996). The
contribution to the gravitational entropy should come from the region between
the inner and outer horizons.

Integral (13) can explicitly be written as:

Sgrav = β

∫ r+

r−

∫ π

0

r1/2
(
r2 + a2

)1/2 (
r2 + a2cos2 θ

)1/2
sin θ dθ dr

|f(r, θ)|
, (14)

where β = 21/2πα M3/2. In the latter equation we have already integrated over
the azimuthal coordinate φ. The function f(r, θ) is de�ned as:

f(r, θ) ≡ −ra2 +Mr2 + a2cos2 θ (−M + r) . (15)

The domain of integration of Eq. (14) is:

T =
{

(r, θ) ∈ <2/ r− ≤ r ≤ r+ ∧ 0 ≤ θ ≤ π
}
. (16)
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We divide T into two subregions denoted D and G respectively, such that T =
D ∪G,

D =
{

(r, θ) ∈ <2/ r− ≤ r ≤ r∗ ∧ 0 ≤ θ ≤ π
}
, (17)

where r∗ is the solution of the equation f(r∗, 0) = 0, and G = T −D.
Given the de�nitions above, Eq. (14) can be written as Sgrav = β

(
SD
grav + SG

grav

)
where,

SD
grav =

∫ ∫
D

r1/2
(
r2 + a2

)1/2 (
r2 + a2cos2 θ

)1/2
sin θ dθ dr

|f(r, θ)|
, (18)

SG
grav =

∫ ∫
G

r1/2
(
r2 + a2

)1/2 (
r2 + a2cos2 θ

)1/2
sin θ dθ dr

|f(r, θ)|
. (19)

The integral given by Eq. (18) is an improper divergent integral; in particular
it tends to in�nity for those values of r and θ such that f(r, θ) = 0. Contrary,
integral (19) is well de�ned for a ∈ (0, 1), and can be integrated numerically.

We show in Figure 4 the result of the numerical integration of SG
grav (see

Eq. 19). We also plot the Bekenstein-Hawking entropy, denoted SBH, as a
function of the angular momentum of the hole. It is clear that SBR does not
reproduce the Bekenstein-Hawking entropy of a black hole. We conclude that
even in the domain of integration G where the entropy is well de�ned, it is not a
good approximation to the Bekenstein-Hawking entropy, at least for the current
coordinate choice. We do not discard that for a di�erent choice of vectors ua

and za, the Bel-Robinson proposal may coincide with Bekenstein-Hawking result.
However, the fact that the innermost region of the Kerr spacetime is not folliable
and time-orientable suggests that our result might be general.

4. Final remarks

We have computed the gravitational energy density, temperature, and gravita-
tional entropy of a Kerr black hole according to the Bel-Robinson estimator.
The calculations were performed using a pair of vectors ua and z

a spacelike and
timelike, respectively, that determine a Weyl principal tetrad. The choice of such
vectors, however, is not unique, thus being ρgrav and Tgrav frame dependent quan-
tities. Under the simplest coordinate choice, we proved that the gravitational
entropy is not well de�ned.

The �rst requirement that a reliable classical estimator of the gravitational
entropy needs to ful�ll is that it should be well-behaved in all types of horizons
where quantum �eld calculations can be used as an independent probe of the
entropy. Only when a complete match be obtained, the classical estimators can
be used to evaluate other families of spacetimes with some con�dence.
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