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1. Introduction

It is well known that the fractional integral defined as

Iα f (x) =


Rn

f (y)
|x − y|n−α

dy, (1.1)

for α ∈ (0, n) given and f ∈ L1loc, is a bounded operator from Lp into Lq with 1
q =

1
p −

α
n , whenever 1 < p < n

α
, and from L

n
α

into BMO. Less known is its behavior on Lp for p > n
α
.

In regards to this, Gatto and Vagi [17] proved that, when p > n
α
, an extension of Iα is bounded from Lp into Lipschitz

spaces whose smoothness is controlled by p and α. Moreover the result holds with Lp replaced by Lp,∞ and in the general
setting of the spaces of homogeneous type. In addition they proved an extension of another well known result: that Iα takes
Lipschitz spaces of order β into Lipschitz spaces of order α + β .

It is worth mentioning that those results have a one-weight extension in [20] but this time in Rn. Also, this weighted
result was proved for the case of the fractional integral related to Schrödinger operators in [6].

The aim of this work is to extend some of the abovementioned unweighted boundedness properties in another direction.
More precisely, to consider Lebesgue space with a variable exponent instead of Lp with constant p. These are particular cases
of the Musielak–Orlicz spaces (see [26]), which have been generating interest in recent years because of its connection
with the study of variational integrals and partial differential equations with a non-standard growth condition (see, for
instance, [1,2,4,5,14,19,21,25,29]).

In order to state our main results we begin by giving some basic definitions related to the spaces we are going to deal
with.

Given an exponent function, that is a non-negativemeasurable function p(·) from Rn to [1, ∞), we say that ameasurable
function f belongs to Lp(·), the Lebesgue space with variable exponent p(·), if it satisfies

Rn
|f (x)|p(x) dx < ∞.
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The formula

∥f ∥p(·) = inf


λ > 0 :


Rn


|f (x)|

λ

p(x)

dx ≤ 1


defines a norm in Lp(·). Topics related to general properties of these spaces are treated in [24]. In particular, associated to
p(·), we consider the following constants:

p−(Ω) := inf
x∈Ω

p(x); p+(Ω) := sup
x∈Ω

p(x), (1.2)

where Ω is a measurable set in Rn. For simplicity, when Ω = Rn we only denote p− and p+. Whenever p−(Ω) > 1 we
denote p′(x) =

p(x)
p(x)−1 , x ∈ Ω . It can be proved (see [24]) that the following generalization of Hölder’s inequality holds

Rn
|f (x) g(x)| dx ≤ C ∥f ∥p(·) ∥g∥p′(·) . (1.3)

This inequality is an important tool, as the classical one in the case p ≡ constant, in order to prove the following relationship
(see [24] again)

∥f ∥p(·) ≈ sup
∥g∥p′(·)≤1


Rn

f (x)g(x) dx. (1.4)

In many articles related to boundedness of classical operators in variable exponent spaces it is common to assume that p(·)
satisfies

LH0 : |p(x) − p(y)| ≤
C

log

e +

1
|x−y|

 , x, y ∈ Rn (1.5)

LH∞ : |p(x) − p∞| ≤
C

log(e + |x|)
, x ∈ Rn (1.6)

for some positive constants C and p∞. In ourworkwewill refer to these properties by saying that p(·) ∈ LH0 and p(·) ∈ LH∞

respectively.
Assuming this type of hypothesis on p(·), different extensions of the classical result about the boundedness of Iα from

Lp to Lq have been given by several authors. For instance, in [28] it is considered a variable order for Iα , that is the constant
α is replaced by a function α(·), and the boundedness is proved on a bounded domain Ω in Rn. In [23], the variable order
is considered again, Lq is replaced by a certain weighted Lq(·) and the setting is Rn. On the other hand, in [10] a result on
unbounded domains is proved for Iα with constant order α and p constant outside a large ball. Another extension for Rn

and constant α but p variable in all Rn appears in [8], where an original approach using ideas taken from the extrapolation
theory is adopted.

However, these articles do not consider the behavior of Iα when p+ > n
α
, that is the rangewhere some kind of smoothness

can be expected. This is precisely, as we said before, our objective. To this aimwe introduce a class of spaces that generalizes
the integral Lipschitz-type spaces Lp,λ considered in [27].

Definition 1.7. Given 0 < α < n and an exponent function p(·) with 1 ≤ p− ≤ p+ < ∞ we say that a locally integrable
function f belongs to Lα,p(·) = Lα,p(·)(Rn) if there exists a constant C such that

1

|B|
α
n ∥χB∥p′(·)


B
|f − mBf | dx ≤ C, (1.8)

for every ball B ⊂ Rn, with mBf =
1
|B|


B f . The least constant C in (1.8) will be denoted by ∥f ∥Lα,p(·)

.

Remark 1.9. It is easy to see that in Definition 1.7 the average can be replaced by a constant in the following sense

1
2

∥f ∥Lα,p(·)
≤ sup

B∈Rn
inf
a∈R

1

|B|
α
n ∥χB∥p′(·)


B
|f (x) − a| dx ≤ ∥f ∥Lα,p(·)

.

Remark 1.10. In [15] p. 4155, for a bounded open set Ω in Rn and functions p(·) : Ω → [1, ∞) and λ(·) : Ω → [0, ∞)
such that p(·), λ(·) ∈ LH0 ∩ LH∞, a definition of variable exponent Campanato spaces is given as follows:

Lq(·),λ(·)(Ω) =


f ∈ Lq(·)(Ω) : sup

x0∈Ω,ρ>0
ρ−λ(x0)


Ω(x0,ρ)

|f (x) − fΩ(x0,ρ)|
q(x) dx < +∞


,

where Ω(x0, ρ) = Ω ∩ Q (x0, ρ) and Q (x0, ρ) denotes the cube of Rn with center at x0 and side length 2ρ.
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Since for small balls it holds that |B|p−(B)
≈ |B|p(x) ≈ |B|p+(B) for each x ∈ B whenever p(·) ∈ LH0, then restricting our

spaces Lα,p(·) to a similar Ω they coincide with L1,α+n/p′(x)(Ω).

With these basic details we are in a position to state our first theorem. It establishes, under certain hypotheses, a
characterization of the exponent functions p(·) such that an extension of Iα is bounded from Lp(·) into Lα,p(·). It is important
to note that in relation to the boundedness of operators on variable exponent Lebesgue spaces is not so common to get
results like this. In general, only sufficient conditions on p(·) are given.

Theorem 1.11. Given 0 < α < n let p(·) be an exponent function with 1 < p− ≤ p+ < ∞. Then the following statements are
equivalent.
(a) The operator Iα can be extended to a linear bounded operatorIα from Lp(·) into Lα,p(·) as follows,

Iα f (x) =


Rn


1

|x − y|n−α
−

1 − χB(0,1)(y)
|y|n−α


f (y) dy.

(b) There exists a positive constant C such that

(Pα)

 χRn−B

|xB − ·|n−α+1


p′(·)

≤ C |B|
α
n −

1
n −1

∥χB∥p′(·) ,

holds for every ball B, where xB denotes its center.

For our next theorem we consider the following definition of weak Lebesgue spaces with a variable exponent.

Definition 1.12. Given an exponent function p(·) we say that a measurable function f belongs to Lp(·),∞ if there exists a
constant C such that

Rn
tp(x)χ{|f |>t}(x) dx ≤ C,

for every t > 0.

It is not difficult to see that

[f ]p(·), ∞ = inf


λ > 0 : sup

t>0


Rn


t
λ

p(x)

χ{|f |>t}(x) dx ≤ 1


is a quasi-norm in Lp(·),∞.

We remark that the spaces Lp(·),∞ were before considered by Capone, Cruz-Uribe and Fiorenza in [7], although the authors
there did not define them explicitly.

Our second theorem gives sufficient conditions on p(·) under which an extension of Iα is bounded from Lp(·),∞ intoLα,p(·).
As we will see in our examples, the condition on p(·) is stronger than the ones considered in Theorem 1.11.

Theorem 1.13. Given 0 < α < n, let p(·) be an exponent functionwith 1 < p− ≤ p+ < n
(α−1)+ . Assume that p(·) ∈ LH0∩LH∞

and there exists a positive r0 such that p(x) ≤ p∞ for |x| > r0. Then the extensionIα , defined as in Theorem 1.11, is bounded
from Lp(·), ∞ into Lα,p(·).

Throughout this paper, we denote for a ball B ⊂ Rn, aB with a > 0 the ball concentric with B and radius a times the
radius of B. For a subset A in Rn, |A| denote the Lebesgue measure of A. Also, we denote by C a constant that may be different
in each occurrence. The structure of the paper is as follows. Section 2 is devoted to a study of the condition we assume on
p(·) and the proof of some properties of ∥·∥p(·) derived from them. Section 3 contains some technical lemmas that will be
useful in Section 4 for the proof of our main results.

2. On the conditions on p(·)

The following estimates showvery useful relations between the normof a characteristic function of a ball and its Lebesgue
measure.

Lemma 2.1. Given a ball B = B(x0, r), we have the following.
(a) If r < 1, there exist constants a1 and a2 such that

a1 |B|
1

p−(B) ≤ ∥χB∥p(·) ≤ a2 |B|
1

p+(B) .

(b) If r > 1, there exist constants b1 and b2 such that

b1 |B|
1

p+(B) ≤ ∥χB∥p(·) ≤ b2 |B|
1

p−(B) .

We can find the proof in [16,11].
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Definition 2.2. We say that the function p(·) satisfies a doubling condition D, if there exists a positive constant C such that

∥χ2B∥p(·) ≤ C ∥χB∥p(·) ,

for every ball B ⊂ Rn. In this case, we write p(·) ∈ D.

It is important to note that depending on the behavior of p(·), the functions belonging to Lα,p(·) can get some kind of local
smoothness. More precisely, using Lemma 2.1 and the definition above we deduce the following lemma.

Lemma 2.3. Let α be such that 0 < α < n and p(·) be an exponent function with p− > 1. Let Ω be an open set such that
p−(Ω) > n

α
. In addition, if p(·) ∈ D, then for all f ∈ Lα,p(·), there exist a constant C verifying

|f (x) − f (y)| ≤ C ∥f ∥Lα,p(·)
|x − y|α−

n
p−(2B) ,

for all ball B such that 2B ⊂ Ω , |B| ≤ 1 and almost everywhere x, y ∈ B.

Proof. Let f ∈ Lα,p(·). Let us take x and y Lebesgue points of f in B, where B is such that 2B ⊂ Ω and |B| ≤ 1. Now, considering
the balls B1

= B(x, |x − y|) and B2
= B(y, |x − y|), we can write

|f (x) − f (y)| ≤ |f (x) − fB1 | + |f (y) − fB2 | + |fB1 − fB2 |.

We are going to estimate the first term of the sum. Note that the estimate of the second one is quite similar. For Bi =

B(x, 2−i
|x − y|), we have

|f (x) − fB1 | ≤ lim
m→∞


|f (x) − fBm | +

m−1
i=0

|fBi+1 − fBi |



=

∞
i=0

|fBi+1 − fBi |

≤ C
∞
i=0

|Bi|
−1

Bi

|f (z) − fBi |dz

≤ C ∥f ∥Lα,p(·)

∞
i=0

|Bi|
−1+ α

n
χBi


p′(·)

.

Then, from Lemma 2.1(a), we get

|f (x) − fB1 | ≤ C ∥f ∥Lα,p(·)

∞
i=0

|Bi|
−1+ α

n +
1

(p′)+(Bi)

≤ C ∥f ∥Lα,p(·)
|x − y|

α−n+ n
(p′)+(B)

∞
i=0

(2−i)
α−n+ n

(p′)+(B)

≤ C ∥f ∥Lα,p(·)
|x − y|α−

n
p−(B) ,

since α − n +
n

(p′)+(B) = α −
n

p−(B) > 0. Finally, for the third term, using again Lemma 2.1 (a), we have

|fB1 − fB2 | ≤ |fB1 − f2B1 | + |fB2 − f2B1 |

≤ |B1
|
−1

B1

|f (z) − f2B1 |dz + |B2
|
−1

B2

|f (z) − f2B1 |dz

≤ C |B1
|
−1

2B1

|f (z) − f2B1 |dz

≤ C ∥f ∥Lα,p(·)

χ2B1

p′(·)

|B1
|
α−1

≤ C ∥f ∥Lα,p(·)
|x − y|α−

n
p−(2B) .

Then the proof is complete. �

Remark 2.4. In Theorem 4.3 of [15] the authors proved that functions in Lq(·),λ(·)(Ω) (see Remark 1.10) satisfy some kind
of local pointwise smoothness under the assumption that ‘‘Ω has no external cusps’’, i.e. there exists a constant A > 0
such that for every x0 ∈ Ω and for every ρ ∈ (0, diam Ω], |Ω(x0, ρ)| ≥ A |Q (x0, ρ)| holds. In the case q(x) ≡ 1 and
λ(x) = α + n/p′(x), this result has an obvious relation with the lemma above (see also Theorem 6 of [3] p. 493).
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As a corollary of our lemma we can get local smoothness result similar to that contained in Theorem 5.4 in [13].

Corollary 2.5. Let Ω be a bounded open set in Rn. Let p(·) ∈ LH0 with p(x) > n for all x ∈ Ω . Given f ∈ Lp(·)(Ω)∩ C1(Ω) with
∇f ∈ Lp(·)(Ω), there exists a constant c > 0 such that

|f (x) − f (y)| ≤ c ∥ |∇f | ∥p,Ω |x − y|1−
n

p(x) ,

for all x, y ∈ B such that 2B ⊂ Ω , |B| ≤ 1.

Proof. Note that from Lemma 2.3 and Lemma 3.6 in [22], we have

|f (x) − f (y)| ≤ C ∥f ∥L1,p(·)
|x − y|1−

n
p(x) .

So, we only need to prove that ∥f ∥L1,p(·)
≤ C ∥ |∇f | ∥p,Ω . In order to do this, using the well known pointwise inequality

|f (x) − fB| ≤ C

B

|∇f (z)|
|x − z|n−1

dz,

(see [18], Lemma 7.16), we get
B
|f (x) − fB| dx ≤ C


B


B

|∇f (z)|
|x − z|n−1

dz dx

≤ C

B
|∇f (z)|


|x−z|<2r

dx
|x − z|n−1


dz

≤ C |B|
1
n ∥ |∇f | ∥p(·) ∥χB∥p′(·)

where we use the Hölder inequality (1.3). �

In the proof of the corollary above we use a result about the LH0 condition. This estimation will be useful for other results
in this paper. So, for the sake of completeness we state it (see Lemma 3.6 in [22] for the proof).

Lemma 2.6. Let p+ < ∞. Then the following conditions are equivalent.

(a) The function p ∈ LH0.
(b) There exists a constant C such that

|B|p−(B)−p+(B)
≤ C,

for every ball B ⊂ Rn.

The next proposition is a particular case of a result contained in [9], Lemma 3.6 (see also [12], p. 7–8).

Proposition 2.7. Let p(·) ∈ LH∞. Then

∥χB∥p(·) ≃ |B|1/p∞ ,

for every ball B with radius rB ≥ 1/4.

Remark 2.8. If p(·) ∈ LH0 ∩ LH∞, Proposition 2.7, Lemmas 2.1 and 2.6 imply that p(·) ∈ D.

In the followingwewill see someproperties that can be deduced from the hypothesis on p(·) considered in Theorems 1.11
and 1.13. In additionwewill study the relation between them. First, in order to see that Pα also impliesD (see Definition 2.2),
we notice that Pα is equivalent to the following condition

|B|
1
n −

α
n +1

 1

(|B|
1
n + |xB − ·|)n−α+1


p′(·)

≤ C ∥χB∥p′(·) .

In fact, if p(·) satisfies Pα we have

|B|
1
n −

α
n +1

 1

(|B|
1
n + |xB − ·|)n−α+1


p′(·)

≤ |B|
1
n −

α
n +1

 χRn−B(·)

|xB − ·|n−α+1


p′(·)

+ |B|
1
n −

α
n +1

 χB(·)

|B|
1
n −

α
n +1


p′(·)

= C ∥χB∥p′(·) .

The converse is clear.

Lemma 2.9. If p(·) satisfies Pα , then p(·) ∈ D.
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Proof. Using the remark above, we get

∥χB∥p(·) ≥ C |B|
1
n −

α
n +1

 1

(|B|
1
n + |xB − ·|)n−α+1


p′(·)

≥ C |B|
1
n −

α
n +1

 χ2B(·)

|B|
1
n −

α
n +1


p′(·)

≥ C ∥χ2B∥p′(·) ,

for all ball B. This proves the lemma. �

Using Lemmas 2.1 and 2.9 and Proposition 2.7 we can prove the following proposition.

Proposition 2.10. Let p(·) be an exponent function belonging to LH0 ∩ LH∞ with p+ < n
(α−1)+ . Then


∞

r

χB(x0,t)

p′(·)

tn−α+1

dt
t

≤ C |B|
α
n −

1
n −1

∥χB∥p′(·) , (2.11)

for all ball B with center x0 and radius r.

Proof. Let B = B(x0, r) be a ball in Rn. First, assuming r > 1, from Proposition 2.7, since p+ < n
(α−1)+ we get

∞

r

χB(x0,t)

p′(·)

tn−α+1

dt
t

≤ C


∞

r

tn−
n

p∞

tn−α+1

dt
t

= C rα−1− n
p∞

= C rα−1−n+ n
(p∞)′

≤ C |B|
α
n −

1
n −1

∥χB∥p′(·) , (2.12)

where 1/(p∞)′ = 1 − 1/p∞. Now, if r ≤ 1, we have
∞

r

χB(x0,t)

p′(·)

tn−α+1

dt
t

≤

 1

r

χB(x0,t)

p′(·)

tn−α+1

dt
t

+


∞

1

χB(x0,t)

p′(·)

tn−α+1

dt
t

= I1 + I2. (2.13)

From (2.12), (b) of Lemma 2.1 and the fact that p+ < n
(α−1)+ again, it follows that

I2 ≤ C ≤ C r
α−1−n+ n

p′
− = C |B|

α
n −

1
n −1+ 1

(p+)′ (2.14)

≤ C |B|
α
n −

1
n −1

∥χB∥p′(·) .

On the other hand, using again (b) of Lemma 2.1 and the fact that p(·) ∈ LH0, we obtain

I1 ≤ C
 1

r

|B(x0, t)|
1− 1

p−(B(x0,t))

tn−α+1

dt
t

≤ C
 1

r

tn−
n

p+(B(x0,t))

tn−α+1
t

n
p+(B(x0,t)) −

n
p−(B(x0,t))

dt
t

≤ C
 1

r

tn−
n

p+(B(x0,t))

tn−α+1

dt
t

≤ C
 1

r
tα−

n
p+(B(x0,r)) −1 dt

t

≤ C rα−
n

p+(B(x0,r)) −1

≤ C |B|
α
n −

1
n −1

∥χB∥p′(·) . (2.15)

Finally, collecting (2.12)–(2.15) the proof is done. �
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From this proposition the following result is obvious.

Corollary 2.16. Under the hypothesis of Proposition 2.10, p(·) satisfies Pα .

The next lemma states some alternative characterizations for the exponents that satisfy inequality (2.11). In particular,
the one appearing in (c) will be one of the main tools in proving Theorem 1.13.

Lemma 2.17. Let p(·) be an exponent function such that p+ < n
(α−1)+ . Then the following conditions are equivalent.

(a) The function p(·) satisfies (2.11).
(b) There exists a > 1 such thatχB(x,at)


p′(·)

≤
1
2
an−α+1

χB(x,t)

p′(·)

,

for every t > 0 and x ∈ Rn.
(c) There exist positive constants C and ϵ such thatχB(x,θ t)


p′(·)

≤ C θn−α+1−ϵ
χB(x,t)


p′(·)

,

for every θ ≥ 1, t > 0 and x ∈ Rn.

This result is analogous to that in Lemma 3.3 in [20] (p. 241).

Remark 2.18. Given 0 < α < n, let p∞ and b be such that 1 < p∞ < n
(α−1)+ and 1 − p∞ < b < n

(α−1)+ − p∞. Then, it is
not difficult to see that the function

p(x) = p∞ +
b

log(e + |x|)
,

satisfies the hypothesis of Proposition 2.10 above. Note that p(·) is a radial function increasing or decreasing depending on
the sign of b.

Remark 2.19. There exist α and p(·) such that p(·) satisfies Pα and p(·) ∉ LH∞. In fact, consider the set D ⊂ Rn, n ≥ 2,
given by

D =


j∈Z

Bj,

where Bj = B(xj, 1/4) with xj = (j, 0, . . . , 0), j ∈ Z. Let p(·) be a continuous exponent function such that p(x) = p− for all
x ∈ Dc . If we also assume that

(a) p(·) satisfies LH0,
(b) 1 < p− < p+ < n

(n−α)+
with 0 < α < n,

(c) n
p−

−
1
p+

≤ n − 1,

and the supremum is attained on every ball Bj, then it is not hard to see that p(·) satisfies Pα but p(·) ∉ LH∞.

3. Technical lemmas

The following two lemmas will be used in the proof of Theorem 1.13.
In the first we use the notation ∥ · ∥Lq(·)(Rn, dx

|B| )
to mean the norm of Lq(·) with respect to the measure defined through dx

|B| .

Lemma 3.1. Let p(·) be an exponent function in LH0 ∩ LH∞ such that 1 < p− ≤ p+ < n
(α−1)+ and p(x) ≤ p∞ for |x| ≥ r0 with

r0 > 1. Then there exists a positive constant C depending on r0 and the constants associated to LH0 and LH∞, such that
B
|f (x)| dx ≤ C ∥χB∥p′(·) [f ]p(·), ∞ , (3.2)

for every ball B and f ∈ Lp(·), ∞.

Proof. Without loss of generality, we can assume that [f ]p(·), ∞ = 1. Choosing ε > 0 such that 0 < ε < p− − 1, we take
q(x) = p(x) − ε. From the generalized Hölder inequality, we get

B
|f (x)| dx ≤ C |B| ∥fχB∥Lq(·)(Rn, dx

|B| )
. (3.3)
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Now, taking into account that

|B| ≤ C ∥χB∥p(·) ∥χB∥p′(·) ,

which easily follows from applying again the generalized Hölder inequality, (3.3) lead us to (3.2) whenever we prove that

∥fχB∥Lq(·)(Rn, dx
|B| )

≤
C

∥χB∥p(·)
. (3.4)

To this aim we write

I .
=


B
| ∥χB∥p(·) f (x)|q(x)

dx
|B|

=


∞

0


Rn

q(x)tq(x)−1χ{|∥χB∥p(·)fχB|>t}(x)
dx
|B|

dt

=


∞

0


Rn

q(x)uq(x)−1
∥χB∥

q(x)
p(·)

|B|
χ{|fχB|>u}(x) dx du. (3.5)

Now, if we prove that

∥χB∥
p(x)
p(·)

|B|
= ∥χB∥

ε
p(·)

∥χB∥
q(x)
p(·)

|B|
≤ C,

holds for all x ∈ Rn, where C is a constant independent of B, from (3.5) recalling that [f ]p(·), ∞ = 1, we have

I ≤ C ∥χB∥
−ε
p(·)


∞

0


Rn

q(x)uq(x)−1χ{|fχB|>u}(x) dx du

≤ C ∥χB∥
−ε
p(·)


B

 a

0
q(x)uq(x)−1 du


dx +


∞

a
u−ε−1


Rn

up(x)χ{|fχB|>u}(x) dx du


≤ C ∥χB∥
−ε
p(·)


B
aq(x) dx +


∞

a
u−ε−1 du


≤ C ∥χB∥

−ε
p(·)


B
aq(x) dx + a−ε


.

Choosing a = ∥χB∥
−1
p(·) and noting that


B a

q(x) dx ≤ a−ε we clearly get

I ≤ C ∥χB∥
−ε
p(·) a

ε
≤ C (3.6)

which is (3.4). In order to prove the claim we consider three cases.

Case1. Balls B = B(xB, r) with r ≤ 2r0. From Lemmas 2.1 and 2.6, for x ∈ B, we get

∥χB∥
p(x)
p(·)

|B|
≤ C |B|

p(x)
p+(B) −1

≤ C |B|
p−(B)−p+(B)

p+(B)

≤ C .

Case2. Balls B = B(xB, r) with r > 2r0 and |xB| ≥ 2r . From Lemmas 2.1 and 2.6 again, for x ∈ B, we have

∥χB∥
p(x)
p(·)

|B|
≤ C |B|

p(x)
p−(B) −1

≤ C |B|
p+(B)−p−(B)

p−(B)

≤ C .

Case3. Balls B = B(xB, r) with r > 2r0 and |xB| < 2r . In this situation, it is enough to consider the case xB = 0. In fact, if
xB ≠ 0, we get B ⊂B = B(0, 3r). Therefore, from Proposition 2.7, we obtain

B
|f (x)| dx ≤


B |f (x)| dx ≤ C

χBp′(·)

≤ C |B| 1
p′∞ ≤ C |B|

1
p′∞ ≤ C ∥χB∥p′(·) .
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which proves our thesis. So, let us take B = B(0, r), with r > 2r0 and B0 = B(0, r0). Hence
B
|f (x)| dx =


B0

|f (x)| dx +


Bc0∩B

|f (x)| dx.

From Case 1. the first integral satisfies our thesis. In order to estimate the second one, from (3.3)–(3.6) it is enough
to prove that

∥χB∥
p(x)
p(·)

|B|
≤ C,

is true for x ∈ Bc
0 ∩ B.

To prove this, we apply the hypothesis p(x) ≤ p∞ for all x ∈ Bc
0 and Proposition 2.7 again. So we get

∥χB∥
p(x)
p(·)

|B|
≤ |B|

p(x)
p∞ −1

≤ C .

Then, the proof of the lemma is complete. �

Lemma 3.7. Under the same hypothesis of the lemma above on p(·), there exists a positive constant C such that
Rn−B

|f (y)|
|x0 − y|n−α+1

dy ≤ C |B|
α
n −

1
n −1

χB(x0,r)

p′(·)

[f ]p(·), ∞ , (3.8)

for every ball B = B(x0, r) and all f ∈ Lp(·), ∞.

Proof. Using Lemma 3.1 and (c) of Lemma 2.17, and denoting Bk = B(x0, 2kr), we have
Rn−B

|f (y)|
|x0 − y|n−α+1

dy =

∞
k=0


Bk+1−Bk

|f (y)|
|x0 − y|n−α+1

dy

≤ C |B|
α
n −

1
n −1

∞
k=0

(2k)α−n−1

Bk+1

|f (y)| dy

≤ C [f ]p(·), ∞ |B|
α
n −

1
n −1

∞
k=0

(2k)α−n−1
χBk+1


p′(·)

≤ C [f ]p(·), ∞ |B|
α
n −

1
n −1

∥χB∥p′(·)

∞
k=0

(2k)−ε

≤ C [f ]p(·), ∞ |B|
α
n −

1
n −1

χB(x0,r)

p′(·)

,

and the proof is complete. �

4. Proofs of Theorems 1.11 and 1.13

Proof of Theorem 1.11. Assuming (b) we will prove (a). In order to extend the classical operator Iα toIα we first note an
application of Tonelli’s Theorem and the generalized Hölder inequality, Iα is finite a.e. x ∈ Rn for f ∈ Lp(·) with compact
support. In fact, let B0 = B(0, r0) be such that supp f ⊂ B0 and r > 0, we have

B(0,r)
|Iα f (x)| dx ≤


B(0,r)


B0

|f (y)|
|x − y|n−α

dy dx

≤


B0

|f (y)|


B(0,r)

dx
|x − y|n−α


dy

≤ C ∥f ∥p(·)

χB0


p′(·)

rα.

Thus, |Iα f (x)| < ∞ for a.e. x ∈ B(0, r), and, consequently, for a.e. x ∈ Rn. Now, let us see thatIα f (x) is well defined for every
f ∈ Lp(·). In fact, for a ball B = B(xB, r) withB = 2B, we take

aB =


Rn


1 − χB(y)
|xB − y|n−α

−
1 − χB(0,1)(y)

|y|n−α


f (y) dy.
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Choosing ρ = max {|xB|, 1, r}, from the generalized Hölder inequality and the mean value Theorem, we get

|aB| ≤


B(0,2ρ)

 1 − χB(y)
|xB − y|n−α

−
1 − χB(0,1)(y)

|y|n−α

 |f (y)| dy +


Rn−B(0,2ρ)

 1 − χB(y)
|xB − y|n−α

−
1 − χB(0,1)(y)

|y|n−α

 |f (y)| dy

≤ C rα−n


|y|<2ρ
|xB−y|>2r

|f (y)| dy + C


|y|<2ρ
|y|>1

|f (y)| dy + C |xB|


Rn−B(0,2ρ)

|f (y)|
|x0 − y|n−α+1

dy

≤ C ∥f ∥p(·)


(rα−n

+ 1)
χB(0,2ρ)


p′(·)

+ |xB|
 χRn−B

|xB − ·|n−α+1


p′(·)


< ∞,

where the conclusion follows from the hypothesis on p(·). On the other hand, if we are able to prove that

T (x) =


Rn


1

|x − y|n−α
−

1 − χB(y)
|x0 − y|n−α


f (y) dy

=


B

f (y)
|x − y|n−α

dy +


Rn−B


1

|x − y|n−α
−

1
|x0 − y|n−α


f (y) dy

= T1(x) + T2(x),

satisfies the inequality
B
|T (x)| dx ≤ C |B|

α
n ∥χB∥p′(·) ∥f ∥p(·) ,

then, sinceIα f (x) = aB + T (x),

we get thatIα f is finite for a.e. x in B and
B
|Iα f (x) − aB| dx ≤ C |B|

α
n ∥χB∥p′(·) ∥f ∥p(·) .

Then, taking into account Remark 1.9 we get (a).
Let us estimate T1(x). From Tonelli’s theorem and the generalized Hölder inequality, we have

B
|T1(x)| dx ≤ C |B|

α
n ∥χB∥p′(·) ∥f ∥p(·) . (4.1)

On the other hand, applying once again, the mean value theorem, the generalized Hölder inequality and the hypothesis on
p(·), for x ∈ B, we obtain

|T2(x)| ≤ C |B|
1
n


Rn−B

|f (y)|
|xB − y|n−α+1

dy

≤ C |B|
α
n −1

χBp′(·)
∥f ∥p(·) .

Combining this estimate with (4.1) the inequality for T (x) follows immediately. Now, in order to see that (a) implies (b), we
will reason in a similar way to that made at [20]; that is, given a ball B = B(xB, r) and denotingxB = xB −

r
3
√
n (1, . . . , 1) we

consider the following three regions:

K = {xB + h : h ∈ Rn, |h| > r, hi ≥ 0, i = 1, . . . , n};

G1 = B

xB,

r
6
√
n


∩ {xB + h : h ∈ Rn, hi ≤ 0, i = 1, . . . , n};

G2 = B ∩ {xB + h : h ∈ Rn, hi ≤ 0, i = 1, . . . , n}.

It is clear that |G1| ≈ |B|, |G2| ≥ Cn |B| and |x − z| ≥ Cn |B|
1
n for every x ∈ G1 and z ∈ G2. Then, taking a non negative

function f ∈ Lp(·) and denoting fm = fχKm , where Km = K ∩ B(0,m), for m ∈ N, we get

1

|B|
α
n −

1
n −1 ∥χB∥p′(·)


K

fm(y)
|xB − y|n−α+1

dy ≤
1

|B|
α
n −1 ∥χB∥p′(·)

1
|G1|

1
|G2|


G1


G2



K

|B|
1
n

|xB − y|n−α+1
fm(y) dy

 dz dx.



M. Ramseyer et al. / J. Math. Anal. Appl. 403 (2013) 95–106 105

Since |xB − y| ≈ |xξ − y|, where xξ is a point in a segment connecting x and z, applying the mean value theorem we obtain
the following estimates

1

|B|
α
n −

1
n −1 ∥χB∥p′(·)


K

fm(y)
|xB − y|n−α+1

dy ≤
C

|B|
α
n +1

∥χB∥p′(·)


G1


G2


K


1

|x − y|n−α
−

1
|z − y|n−α


fm(y) dy

 dz dx
≤

C

|B|
α
n ∥χB∥p′(·)


B
|Iα fm(x) − mBIα fm| dx

≤ C
Iα fmLα,p(·)

≤ C ∥fm∥p(·)

≤ C ∥f ∥p(·) ,

where C is independent ofm and f . Lettingm → ∞ we have
K

f (y)
|xB − y|n−α+1

dy ≤ C |B|
α
n −

1
n −1

∥χB∥p′(·) ∥f ∥p(·) .

Let us observe that K is the complement of B relative to the first quadrant of the Cartesian system with center at xB.
Proceeding as above with the complement of Bwith respect to the other quadrants we get similar estimates for each region.
Adding all these inequalities we can write

Rn−B

f (y)
|xB − y|n−α+1

dy ≤ C |B|
α
n −

1
n −1

∥χB∥p′(·) ∥f ∥p(·) .

Finally, from (1.4), we get p(·) satisfies Pα . �

Proof of Theorem 1.13. As in Theorem 1.11, we observe an application of Tonelli’s Theorem and Lemma 3.1, Iα is finite
a.e. x ∈ Rn for f ∈ Lp(·), ∞ with compact support. Now, considering the definition ofIα , we will proceed as in the proof of
Theorem1.11 but using this time the information given by Lemmas 3.1 and 3.7. First, given a ball B = B(xB, r) and defining aB
as there, an application of Lemma 3.1 and Corollary 2.16 allows us to get |aB| < ∞ again. In a similar way, using Lemma 3.1
again, for the estimate of T1(x) and Lemma 3.7 for T2(x) we have

B
|T (x)| dx ≤ C |B|

α
n
χB(xB,2r)


p′(·)

[f ]p(·), ∞ .

Then, taking into account thatIα f (x) = aB + T (x), the final conclusion follows as in the proof of Theorem 1.11. �
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