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Abstract

In this paper a k-nearest neighbor type estimator of the marginal density function for a random field which evolves with time
is considered. Considering dependence, the consistency and asymptotic distribution are studied for the stationary and
nonstationary cases. In particular, the parametric rate of convergence 4/ 1" is proven when the random field is stationary.

The performance of the estimator is shown by applying our procedure to a real data example.
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1 Introduction

In the last decade there has been a significant growth on research of functional data
as well as spatial-temporal data (see Tang et al. 2008). However, not all the theory
developed for curves has been extended to random fields as is the case of nonparamet-
ric marginal density estimation which so far has only been performed for RV -valued
random fields. For instance, for mixing stationary random fields, Tran and Yakowitz
(1993) proved the asymptotic normality of the k-nearest neighbor estimator. Tran
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(1990) obtained the asymptotic normality of kernel type estimator, while Carbon et al.
(1996) studied its L convergence. The uniform consistency of this kind of estimator
was shown by Carbon et al. (1997) and further extensions were studied by Hallin
et al. (2001, 2004).

For functional data, the problem of nonparametric marginal density estimation
has been considered by several authors in different setups. The case when a single
sample path is observed over an increasing interval [0, T'] as T grows to infinity has
been studied by Rosenblatt (1970), Nguyen (1979), and Castellana and Leadbetter
(1986). In particular, the latter showed that for continuous time processes a paramet-
ric speed of convergence is attained by kernel type estimators. More recently, some
extensions have been obtained by Blanke and Bosq (1997), Blanke (2004), Kutoyants
{2(}04] among uther:-. In pdrtl-::ular Labrador (2008) proposed a k-nearest nmghbur
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neighbor estimator for the case when an independent sample is observed, obtaining
parametric rates of convergence and its asymptotic normality.

This work addresses the problem of nonparametric marginal density estimation
for random fields which evolve in time. More precisely, given the following random
field:

X(s) = u(s) +e(s), seScRY, (1)

we estimate its marginal density function using a k-nearest neighbor type estimator
defined via local time when a dependent sample of identically distributed random
fields &, ..., X7 is given. For this estimator we study its asymptotic properties. The
functional nature of the data (a random surface) plays a fundamental role which al-
lows us to obtain parametric rates of convergence of this density estimator in the
stationary case, contrary to what generally happens in nonparametric problems. This
kind of data appears naturally when analyzing the evolution of some measurements
in a geographical area (such as the Amazon), or when recording responses from the
brain during a time interval, among other interesting practical problems.

This paper is organized as follows: in Sect. 2 we recall some well-known depen-
dence notions and give a new one which will be used in this work. Section 3 is dedi-
cated to theoretical results. More precisely, in Sect. 3.2 we introduce the estimator for
the stationary case, prove its consistency obtaining strong rates of convergence, and
show its asymptotic normality. In Sect. 3.3, we extend the definition given in Sect. 3.2
to nonstationary random fields, and also obtain its rates of convergence. Section 4 is
devoted to numerically show the performance of our estimation methods. In Sect. 4.1
a simulated example 1s presented for d = 2, and in Sect. 4.2 a real data example of
fMRI images corresponding to the brain in the resting state is considered. Main and
auxiliary proofs are given in Appendices B and C, respectively.

2 Dependence notions
In this section we will review some known dependence notions and introduce a new
one which will be used in this work to find convergence rates of our density estima-

tors. We will start with the classical @-mixing condition, introduced by Rosenblatt
(1956) whose definition is the following:
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