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POLYAK’S THEOREM ON HILBERT SPACES

MAXIMILIANO CONTINO, GUILLERMINA FONGI, AND SANTIAGO MURO

Abstract. We extend to infinite dimensional Hilbert spaces a celebrated result, due to B. Polyak, about

the convexity of the joint image of quadratic functions. We show sufficient conditions which assure that

the joint image is also closed. However, we prove that the closedness part of Polyak’s theorem does not

hold in general in the infinite dimensional setting. Finally, we give some applications to S-lemma type

results.

1. Introduction

In [17], Polyak extended a well-known theorem of Dines [8], by providing a convexity property related

to non-homogeneous quadratic functions. Consider the functions

φi(x) = 〈Aix, x〉+ 〈x, ai〉+ bi,

where Ai is a n × n symmetric matrix, ai ∈ R
n, bi ∈ R for i = 1, 2. Polyak’s result [17] states that if

n ≥ 2 and there exists (µ1, µ2) ∈ R
2 such µ1A1 + µ2A2 > 0 then the set

{(φ1(x), φ2(x)) : x ∈ R
n}

is closed and convex. Here, the notation µ1A1+µ2A2 > 0 means that the matrix µ1A1+µ2A2 is positive

definite. Polyak also proved that the joint image of three homogeneous quadratic forms in R
n is a closed

and convex cone of R
3 if and only if there is a positive definite linear combination of the operators

determining the three quadratic forms.

In [2] an extension of Polyak’s theorems to quadratic forms defined by compact operators on infinite

dimensional separable Hilbert spaces was investigated. However, in [2, Theorems 2.1 and 2.3], some com-

pact operators are assumed to be bounded below, so unfortunately,their main results are only applicable

to finite dimensional spaces (see the comments after Corollary 2.2). Moreover, Example 2.3 shows that

the joint image can be non-closed, even for quadratic functions determined by compact positive definite

operators. This shows that additional hypothesis must be considered in order to prove the closedness

part of Polyak’s theorem.

In this work we extend Polyak’s convexity result to an arbitrary infinite dimensional Hilbert space

H. Moreover, we show that if A1 is a compact operator on H with 0 in its numerical range and A2 is a

positive invertible definite operator, then the joint image of two non necessarily homogeneous quadratic

forms determined by A1 and A2, is also closed. We finish this work with some applications to S-lemma

type results.
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2. Extension of Polyak’s results: the homogeneous case

In this section we prove the convexity of the joint image of three homogeneous quadratic forms on a

Hilbert space. Let us first introduce some notations.

Throughout H and K denote real inner product spaces. The range and nullspace of any given mapping

A are denoted by R(A) and N(A), respectively. Also, L(H,K) stands for the space of the bounded

linear operators defined on H to K. When H = K we write, for short, L(H). Given a linear operator

T on H (possibly densely defined) we say that T is positive definite or T > 0 if T is symmetric (i.e.,

〈Tx, y 〉 = 〈x, T y 〉 for every x, y in the domain of T ) and 〈Tx, x 〉 > 0 for every x 6= 0 in the domain

of T . The group of invertible operators in L(H) is denoted by GL(H) and GL(H)+ denotes the set of

positive definite and invertible operators in L(H). For a closed subspace M, PM denotes the orthogonal

projection onto M. Finally, SH and BH denote the unit sphere and the open unit ball of H, respectively.

A key tool used in the proof of Polyak’s theorems is a result on the joint real numerical range of real

symmetric matrices due to Brickman [3]. This result can be seen as the real analogue of the classical

Toeplitz-Hausdorff Theorem (and implies it, see e.g. [14]). Brickman’s result was extended to infinite

dimensional inner product spaces, [15, 13] (see also [12, Theorem 2]):

Theorem 2.1 (Brickman’s convexity). Let (H, 〈 ·, · 〉) be a real inner product space, 3 ≤ dim(H) ≤ ∞.

Let A1, A2 be (not necessarily bounded) linear endomorphisms on H. Then the set

WR(A1, A2) := {(〈A1x, x〉, 〈A2x, x〉) ∈ R
2 : ‖x‖ = 1}

is a convex subset of R2.

As a consequence of Brickman’s convexity theorem, it is easy to show that a similar result holds

considering two different inner products in H. The following corollary will be useful to prove our convexity

result (see Theorem 2.10). In order to include examples of densely defined unbounded operators (e.g. the

differentiation operator on L2(R)) we state the next corollary for linear mappings from an inner product

space to its completion.

Corollary 2.2. Let H be a real vector space and let 〈·, ·〉, 〈·, ·〉∗ be two inner products on H and 3 ≤

dim(H) ≤ ∞. Consider A1, A2 (not necessarily bounded) linear transformations from H to H̃, where H̃

denote the completion of H with respect to the inner product 〈 ·, · 〉. Then the set

{(〈A1x, x〉, 〈A2x, x〉) ∈ R
2 : ‖x‖∗ = 1}

is a convex subset of R2, where ‖ · ‖∗ is the norm associated to the inner product 〈·, ·〉∗.

Proof. As in the proof of [13, Theorem 2.2], we first consider H = R
3. In this case H = H̃ = R

3

and, since 〈·, ·〉 is continuous on (R3, 〈·, ·〉∗), there exists B ∈ L(R3) such that 〈x, y〉 = 〈Bx, y〉∗ for every

x, y ∈ R
3. Thus, by Theorem 2.1 for H = R

3, the set

{(〈A1x, x〉, 〈A2x, x〉) ∈ R
2 : ‖x‖∗ = 1} = {(〈BA1x, x〉∗, 〈BA2x, x〉∗) ∈ R

2 : ‖x‖∗ = 1}

is convex.

Now suppose that 3 ≤ dim(H) ≤ ∞.

Let y1 := (〈A1x1, x1 〉 , 〈A2x1, x1 〉) and y2 := (〈A1x2, x2 〉 , 〈A2x2, x2 〉), with ‖x1‖∗ = ‖x2‖∗ = 1, be

any two different points in {(〈A1x, x〉, 〈A2x, x〉) ∈ R
2 : ‖x‖∗ = 1}. Take any orthonormal basis {w1, w2}
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of the space (span{x1, x2}, 〈 ·, · 〉) and take another vector w3 such that 〈w3, w1 〉 = 〈w3, w2 〉 = 0 and

‖w3‖∗ = 1. Set W := span{w1, w2, w3} and consider the operators Ãl := PW (Al)|W : W → W , for

l = 1, 2. Then by the first part of the proof, {(〈Ã1x, x〉, 〈Ã2x, x〉) : x ∈ W, ‖x‖∗ = 1} is convex.

Moreover, since 〈Ãlx, x〉 = 〈Alx, x〉 for any x ∈ W, we have that

{(〈Ã1x, x〉, 〈Ã2x, x〉) : x ∈ W, ‖x‖∗ = 1} ⊂ {(〈A1x, x〉, 〈A2x, x〉) : x ∈ H, ‖x‖∗ = 1}.

Finally, since x1, x2 ∈ W , we conclude that for every λ ∈ [0, 1],

(1 − λ)y1 + λy2 ∈ {(〈A1x, x〉, 〈A2x, x〉) ∈ R
2 : ‖x‖∗ = 1}.

�

In [2] the authors tried to extend Polyak’s theorems to quadratic forms defined by compact operators

on infinite dimensional separable real Hilbert spaces. For example, Theorem 2.1 in [2] was intended to

show the closedness part of Polyak’s theorem. There it is assumed that A1, A2 ∈ L(H) are compact

operators and that there exist scalars µ1, µ2 ∈ R such that C := µ1A1 + µ2A2 satisfies that for some

α > 0,

(1) 〈Cx, x 〉 ≥ α‖x‖2 for every x ∈ H.

The reader should be aware that in [2] an operator C satisfying (1) is denoted by C > 0 . It is well

known that there are no compact operators on infinite dimensional Hilbert spaces that satisfy (1). Indeed,

consider (xn)n≥1 ⊆ BH (the closed unit ball). Since (xn)n≥1 is bounded and BH is a closed subset of H,

then there exists a subsequence (xnk
)k≥1 ⊆ BH and x0 ∈ BH such that (xnk

)k≥1 converges weakly to x0.

Since C is compact, it follows that lim
k→∞

‖Cxnk
− Cx0‖ = 0. Therefore

‖xnk
− x0‖

2 ≤
1

α
〈C(xnk

− x0), xnk
− x0 〉 ≤

1

α
‖Cxnk

− Cx0‖‖xnk
− x0‖ −→

k→∞
0.

Then BH is norm compact. Therefore H is finite dimensional.

The following examples show that the closedness part of Polyak’s theorem does not hold neither for

pairs of compact positive definite operators (Example 2.3) nor for pairs of bounded below operators

(Example 2.4) on infinite dimensional spaces. Also, it is not difficult to extend both examples to k-tuples

of operators.

Example 2.3. Take any sequence (αn)n of positive real numbers converging to 0. Consider on ℓ2 (the

usual Hilbert space of square summable sequences with orthonormal basis (en)n∈N) a pair of diagonal

operators defined by

A0(x) = (αnxn)n, A1(x) =
(

αn(1 +
1

n
)xn

)

n
.

Note that A0, A1 are both positive definite. Since αn → 0, then A0, A1 can be uniformly approximated by

finite range operators, so they are both compact operators. Moreover, note that for j = 0, 1,

〈Ajα
−1/2
n en, α

−1/2
n en〉 = α−1

n 〈Ajen, en〉 = 1 +
j

n
→ 1, as n → ∞.

This means that (1, 1) is in the closure of {(〈A0x, x〉, 〈A1x, x〉) : x ∈ ℓ2} in R
2.

But on the other hand, (1, 1) /∈ {(〈A0x, x〉, 〈A1x, x〉) : x ∈ ℓ2} because for any x 6= 0,

〈A0x, x〉 =
∑

n

αnx
2
n <

∑

n

αn(1 +
1

n
)x2

n = 〈A1x, x〉.
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Therefore the image of the quadratic form determined by A0, A1 is not closed.

Example 2.4. Take any sequence (αn)n of positive real numbers converging to α > 0. As in Example

2.3, let A0, A1 be operators on H = ℓ2 defined by,

A0(x) = (αnxn)n, A1(x) =
(

αn(1 +
1

n
)xn

)

n
.

Then A0, A1 ∈ GL(H)+ because α > 0 (in particular, both operators satisfy (1)). Moreover, proceeding as

in the previous example, it follows that (1, 1) is in the closure of the image {(〈A0x, x〉, 〈A1x, x〉) : x ∈ ℓ2}

in R
2, but not in the image of the quadratic form determined by A0, A1.

Remark 2.5. It is known that the numerical range of a compact operator is not necessarily closed on

infinite dimensional Hilbert spaces: take for example on ℓ2 the operator (xn)n 7→ (xn

n )n, then the nu-

merical range is (0, 1] (see [11, Problem 212]). Thus, the image of the unit sphere by pairs of quadratic

forms (i.e. the joint numerical range) is not closed in general for infinite dimensional spaces, even for

compact operators. On the other hand, since a quadratic form determined by a compact operator is

weakly continuous on bounded sets, and the closed unit ball is weakly compact, we immediately conclude

the following: given {A1, · · · , An}, any collection of compact operators, the set

{(〈A1x, x〉, · · · , 〈Anx, x〉) ∈ R
n : ‖x‖ ≤ 1}

is closed.

Next, we give some conditions under which the joint image of three quadratic forms is closed and

convex. First we need the following lemma, which is an extension of a result in [6] and shows, using the

same ideas, that under certain conditions the joint numerical range of compact operators on real Hilbert

spaces is closed.

Lemma 2.6. Consider A1, A2 compact selfadjoint operators on a real Hilbert space H. Suppose that

(0, 0) ∈ WR(A1, A2) then WR(A1, A2) is closed.

Proof. Let λ ∈ WR(A1, A2). Since the closed ball is weakly compact then

λ = lim
α
(〈A1xα, xα〉, 〈A2xα, xα〉)

for some net (xα)α with ‖xα‖ = 1 weakly convergent to some x with ‖x‖ ≤ 1. Moreover, since the

operators A1, A2 are compact, it is easy to see that λ = (〈A1x, x〉, 〈A2x, x〉). If λ = (0, 0) there is

nothing to prove. Otherwise, x 6= 0, and thus λ
‖x‖2 belongs to WR(A1, A2). Finally, since ‖x‖ ≤ 1 and

(0, 0) ∈ WR(A1, A2), we conclude that λ ∈ WR(A1, A2) by Theorem 2.1. � �

Theorem 2.7. Let F (x) = (〈A1x, x〉, 〈A2x, x〉, 〈A3x, x〉) be a quadratic mapping determined by bounded

operators A1, A2, A3 on a real Hilbert space H. Suppose that there exist µ1, µ2, µ3 ∈ R such that µ1A1 +

µ2A2 + µ3A3 ∈ GL(H)+, A1, A2 are compact and (0, 0) ∈ WR(A1, A2). Then F (H) is closed.

Proof. We may assume that A1, A2, A3 are selfadjoint and we assume that H is infinite dimensional

because the finite dimensional case was proved by Polyak [17, Theorem 2.1].
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We first assert that it is sufficient to prove the case when A1, A2 are compact and A3 = I. In fact,

consider the linear transformation T : R3 → R
3 defined by T (r, s, t) = (r, s, µ1r+µ2s+µ3t). Since µ3 6= 0,

T is invertible and preserve closedness. Then it suffices to prove that

T (F (H)) = {(〈A1x, x〉, 〈A2x, x〉, 〈Ã3x, x〉) ∈ R
3 : x ∈ H}

is closed, where Ã3 := µ1A1 + µ2A2 + µ3A3.

Since Ã3 ∈ GL(H)+, the inner product 〈x, y〉∗ := 〈Ã3x, y〉 makes (H, 〈·, ·〉∗) a Hilbert space. Denote

by ‖ · ‖∗ the induced norm, which is equivalent to ‖ · ‖.

Then 〈 x, y 〉 =
〈

Ã3Ã
−1
3 x, y

〉

= 〈Ã−1
3 x, y〉∗, for every x, y ∈ H, and

T (F (H)) = {(〈Ã−1
3 A1x, x〉∗, 〈Ã

−1
3 A2x, x〉∗, ‖x‖

2
∗) ∈ R

3 : x ∈ H}.

Finally note that, in (H, 〈·, ·〉∗), we have that Ã−1
3 A1, Ã

−1
3 A2 are compact operators and (0, 0) ∈

WR(Ã
−1
3 A1, Ã

−1
3 A2).

Suppose then that A3 = I and take λ = (λ1, λ2, λ3) ∈ F (H). Then

λ = lim
n

F (xn) = lim
n
(〈A1xn, xn〉, 〈A2xn, xn〉, ‖xn‖

2)

for some sequence (xn)n ⊆ H. If λ3 = 0 then 0 = λ3 = limn ‖xn‖2. So that λ = 0 ∈ F (H).

If λ3 6= 0, then λ3 = limn ‖xn‖2. Therefore,

lim
n
〈Aj

xn

‖xn‖
,

xn

‖xn‖
〉 =

λj

λ3

for j = 1, 2.

Then (λ1

λ3

, λ2

λ3

, 1) ∈ F (SH) and (λ1

λ3

, λ2

λ3

) ∈ WR(A1, A2) = WR(A1, A2), where we used Lemma 2.6. Hence,

there exists z ∈ SH such that

(
λ1

λ3

,
λ2

λ3

) = (〈A1z, z〉, 〈A2z, z〉).

Then F (λ
1/2
3 z) = (λ3〈A1z, z〉, λ3〈A2z, z〉, λ3) = λ, so that λ ∈ F (H). � �

Remark 2.8. Modifying Example 2.3, it can be seen that the assumption (0, 0) ∈ WR(A1, A2) cannot be

dropped in the above theorem. Indeed, take Aj(x) = ( j
nxn)n, for j = 1, 2, A3 = I. Then (0, 0, 1) =

limn F (en) is in F (H) but not in F (H).

With a similar proof we may show the following more general result.

Corollary 2.9. Let F (x) = (〈A1x, x〉, 〈A2x, x〉, 〈A3x, x〉) be a quadratic mapping determined by operators

A1, A2, A3 on a real Hilbert space H. Suppose that there are linear combinations

Ãi := µi1A1 + µi2A2 + µi3A3 for i = 1, 2, 3

such that the 3 × 3 matrix of real numbers µ = (µij)
3
i,j=1 is not singular, Ã3 ∈ GL(H)+, Ã1, Ã2 are

compact and (0, 0) ∈ WR(Ã1, Ã2). Then F (H) is closed.

We prove now the extension of Polyak convexity theorem [17, Theorem 2.1] to not necessarily bounded

linear operators on inner product spaces.

Theorem 2.10. Let H be a real inner product space, 3 ≤ dim(H) ≤ ∞. Let A1, A2, A3 be linear

transformations from H to its completion H̃ such that there exist µ1, µ2, µ3 ∈ R with µ1A1+µ2A2+µ3A3 >

0. Then the set

F (H) = {(〈A1x, x〉, 〈A2x, x〉, 〈A3x, x〉) ∈ R
3 : x ∈ H}
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is a convex cone in R
3.

Proof. We may suppose that µ3 6= 0 (otherwise we interchange the order of the operators).

As in the proof of Theorem 2.7, consider the linear transformation T : R3 → R
3 defined by T (r, s, t) =

(r, s, µ1r + µ2s+ µ3t). Then T is invertible and preserves convexity. Therefore it suffices to prove that

T (F (H)) = {(〈A1x, x〉, 〈A2x, x〉, 〈Ã3x, x〉) ∈ R
3 : x ∈ H}

is convex, where Ã3 := µ1A1 + µ2A2 + µ3A3. Since Ã3 > 0, the bilinear form 〈 ·, · 〉∗ := 〈Ã3·, ·〉 makes

H∗ := (H, 〈 ·, · 〉∗) an inner product space with norm denoted by ‖ · ‖∗. Then

T (F (H)) = {(〈A1x, x〉, 〈A2x, x〉, ‖x‖
2
∗) ∈ R

3 : x ∈ H}.

By Corollary 2.2, the set {(〈A1x, x〉, 〈A2x, x〉, ‖x‖2∗) ∈ R
3 : ‖x‖∗ = 1} = T (F (SH∗

)) is convex. Hence

by homogeneity, T (F (H)) is a convex cone because

T (F (H)) =
⋃

t≥0

t · {(〈A1x, x〉, 〈A2x, x〉, ‖x‖
2
∗) ∈ R

3 : ‖x‖∗ = 1}.

� �

3. The non-homogeneous case

Using the closedness of the joint image of a pair of non necessarily homogeneous quadratic forms, it

was proved in [2, Theorem 2.2] that this image is also convex. We will now prove Polyak’s theorem for

non-homogeneous quadratic forms without assuming that it is closed.

Proposition 3.1. Let H be a real inner product space, 3 ≤ dim(H) ≤ ∞. Let A1, A2 ∈ L(H) be

such that µ1A1 + µ2A2 > 0 for some µ1, µ2 ∈ R, a1, a2 ∈ H and b1, b2 ∈ R. Let Φ = (φ1, φ2) be the

non-homogeneous quadratic form defined by φj(x) = 〈Ajx, x〉 + 〈x, aj〉+ bj, j = 1, 2. Then

Φ(H) = {(φ1(x), φ2(x)) ∈ R
2 : x ∈ H}

is convex.

Proof. Let t, s ∈ Φ(H), with t 6= s, then there exist x, y ∈ H such that

t = Φ(x) and s = Φ(y).

Consider H̃ := span{w, x, y}, where w ∈ H is linearly independent to x and y. Note that 2 ≤ dim(H̃) ≤ 3.

Let 〈 ·, · 〉H̃ be the restriction of 〈 ·, · 〉 to H̃. Let PH̃ denote the orthogonal projection onto the finite

dimensional Hilbert space H̃. Set Φ̃ := Φ|H̃ = (φ̃1, φ̃2) where φ̃j := φj |H̃ for j = 1, 2. Then, φ̃j : H̃ → R,

t = Φ̃(x), s = Φ̃(y) and, for z ∈ H̃,

φ̃j(z) = 〈Ajz, z 〉+ 〈 aj , z 〉+ bj

= 〈Aj |H̃z, PH̃z 〉+ 〈 aj , PH̃z 〉+ bj

= 〈PH̃Aj |H̃z, z 〉
H̃
+ 〈PH̃aj , z 〉H̃ + bj .

Let Ãj := PH̃Aj |H̃ for j = 1, 2. Then µ1Ã1 + µ2Ã2 > 0. In fact, for z ∈ H̃ we have
〈

(µ1Ã1 + µ2Ã2)z, z
〉

H̃
= 〈 (µ1PH̃A1|H̃ + µ2PH̃A2|H̃)z, z 〉 = 〈 (µ1A1 + µ2A2)z, z 〉 > 0.
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Then, by Polyak’s Theorem, Φ̃(H̃) is a convex set. Therefore, for every α ∈ [0, 1],

αt+ (1− α)s ∈ Φ̃(H̃) ⊆ Φ(H).

Hence Φ(H) is a convex set. � �

Remark 3.2. We may actually prove the convexity of the image of Φ under the hypothesis of A1, A2 being

non-degenerate (that is, if 〈A1u, u 〉 = 0 = 〈A2u, u 〉 then u = 0). For infinite dimensional Hilbert spaces,

this is a strictly weaker assumption, see e.g. [4].

Proof. Using the notation as in the proof of Proposition 3.1, it is clear that Ã1, Ã2 is a non-degenerate

pair. If the 2-homogeneous part of Φ̃ is not surjective, then by [8, Corollary 1], there are µ1, µ2 ∈ R such

that µ1Ã1 + µ2Ã2 > 0. Then, by Polyak’s Theorem, Φ̃(H̃) is a convex set.

On the contrary, if the 2-homogeneous part of Φ̃ is surjective, then by [10, Lemma 4.10], Φ̃(H̃) = R
2.

Therefore, Φ̃(H̃) is a convex set. Then, for every α ∈ [0, 1], Therefore Â1 and Â3 are compact operators

and (0, 0) ∈ WR(Â1, Â3). Hence Φ(H) is a convex set. � �

Proposition 3.3. Let H be a real Hilbert space, 3 ≤ dim(H) ≤ ∞. Let A1, A2 ∈ L(H) be selfadjoint

operators, a1, a2 ∈ H and b1, b2 ∈ R. Let Φ = (φ1, φ2) be the non-homogeneous quadratic form defined by

φj(x) = 〈Ajx, x〉+ 〈x, aj〉+ bj, j = 1, 2. Suppose that there are linear combinations

Ã1 := α1A1 + α2A2, Ã2 := β1A1 + β2A2

such that α1β2 − α2β1 6= 0, Ã1 is compact, 〈Ã1x, x〉 = 0 for some x 6= 0 and Ã2 ∈ GL(H)+. Then Φ(H)

is convex and closed.

In particular if 0 is in the numerical range of A1, A1 is compact and A2 ∈ GL(H)+. Then Φ(H) is

convex and closed.

Proof. Since Ã2 ∈ GL(H)+, by Proposition 3.1, Φ(H) is convex.

Now we are going to show that Φ(H) is closed. As in the proof of Theorem 2.7, consider the linear

transformation T : R2 → R
2 defined by T (r, t) = (α1r + α2t, β1r + β2t). Since α1β2 − α2β1 6= 0, T is

invertible and preserves closedness. Therefore it suffices to prove that

T (Φ(H)) = {(〈Ã1x, x〉 + 〈x, ã1〉+ b̃1, 〈Ã2x, x〉+ 〈x, ã2〉+ b̃2) ∈ R
2 : x ∈ H}

is closed, where Ã1 := α1A1 + α2A2 is compact, 0 = 〈Ã1x, x〉 for some x ∈ SH, Ã2 := β1A1 + β2A2 ∈

GL(H)+, ã1 := α1a1 + α2a2, ã2 := β1a1 + β2a2, b̃1 := α1b1 + α2b2 and b̃2 := β1b1 + β2b2.

Let H̃ := H× R and define the following 2-homogeneous forms on H̃:

fj(x, t) =〈Ãjx, x〉 + t〈x, ãj〉+ t2b̃j , j = 1, 2

f3(x, t) =t2.

Then, the homogeneous quadratic form fj is determined by the selfadjoint operators

Âj :=

(

Ãj
ãj

2

〈·, ãj

2
〉 b̃j

)

for j = 1, 2 and Â3 =

(

0 0

0 1

)

.
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In fact, we have

〈

Â3

(

x

t

)

,

(

x

t

)〉

= t2 = f3(x, t), and for j = 1, 2,

〈

Âj

(

x

t

)

,

(

x

t

)〉

=

〈(

Ãjx+ t
ãj

2

〈x, ãj

2
〉+ tb̃j

)

,

(

x

t

)〉

= 〈Ãjx, x〉+ t〈x, ãj〉+ t2b̃j = fj(x, t).

Also, Â1 and Â3 are compact operators and (0, 0) ∈ WR(Â1, Â3).

Let µ3 ∈ R be such that

µ3 > ‖Ã
−1/2
2

ã2
2
‖2 − b̃2

then Â2 + µ3Â3 ∈ GL(H̃)+. In fact,

Z := Â2 + µ3Â3 =

(

Ã2
ã2

2

〈·, ã2

2
〉 b̃2 + µ3

)

=

(

Ã2 d

d∗ b̃2 + µ3

)

,

where d : R → H is the operator defined by d(t) := t ã2

2
. Then d∗ =

〈

·, ã2

2

〉

, d = Ã
1/2
2 (Ã

−1/2
2 d) and

g := Ã
−1/2
2 d is the (reduced) solution of the equation d = Ã2

1/2
z, see [9]. Then

g∗g = d∗Ã2

−1
d = ‖Ã2

−1/2 ã2
2
‖2.

Hence, b̃2+µ3 = g∗g+t with t := b̃2+µ3−‖Ã
−1/2
2

ã2

2
‖2 > 0. Then, by [1, Theorem 3], Z = Â2+µ3Â3 ≥ 0.

Also, z := b̃2 + µ3 − g∗g = b̃2 + µ3 − d∗Ã−1
2 d = t > 0. Then z−1 = (b̃2 + µ3 − d∗Ã−1

2 d)−1 ∈ R and, it can

be checked that

Z−1 =

(

Ã−1
2 + Ã−1

2 dz−1d∗Ã−1
2 −Ã−1

2 dz−1

−z−1d∗Ã−1
2 z−1

)

∈ L(H̃).

Therefore Z = Â2 + µ3Â3 ∈ GL(H̃)+.

Set F := (f1, f2, f3). Then, by Theorem 2.7, F (H̃) is closed. Then

F (H̃) ∩ {(a, b, c) ∈ R
3 : c = 1} = F (H× {−1, 1}) = F (H× {1}),

where we used that F (x,−1) = F (−x, 1) for every x ∈ H. Therefore, the set F (H×{1}) is closed because

the set {(a, b, c) ∈ R
3 : c = 1} is closed. Finally, note that the projection of F (H× {1}) to R

2 is exactly

Φ(H). � �

4. Applications

Let H be a real Hilbert space, A ∈ L(H), b ∈ H and ρ > 0. Consider the function G : H → R given by

G(x) :=
‖Ax− b‖2

1 + ‖x‖2
+ ρ‖x‖2.

In [5, Proposition 4.13], we apply the following version of an S-lemma in order to give a method for

finding the infimum of G. In that work, we give a characterization of such infimum and we present

sufficient conditions for the existence of solution of a related total least squares problem.

Lemma 4.1. Let H be a real Hilbert space. Let φj(x) = 〈Ajx, x〉+ 〈x, aj〉+ bj, with Aj ∈ L(H), aj ∈ H,

bj ∈ R, j = 1, 2. Suppose that µ1A1 + µ2A2 > 0 for some µ1, µ2 ∈ R. Let F : R2 → R be defined as

F (z) = 〈Θz, z〉+ 〈z, v〉 − t,

where Θ is a real symmetric nonnegative 2 × 2 matrix, v = (v1, v2) ∈ R
2 and t ∈ R. Then the following

are equivalent:
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(i) F (φ1(x), φ2(x)) ≥ 0 for every x ∈ H.

(ii) There exist α, β ∈ R such that for every x ∈ H and every z = (z1, z2) ∈ R
2,

F (z) + α(φ1(x) − z1) + β(φ2(x)− z2) ≥ 0.

Moreover,

(1) if A1 is not bounded below and A2 ∈ GL+(H) then β ≥ 0. Likewise, if A2 is not bounded below

and A1 ∈ GL+(H) then α ≥ 0;

(2) if either Θ =

(

0 0

0 ρ

)

and v1 > 0, or Θ =

(

ρ 0

0 0

)

and v2 < 0 then α ≥ 0.

In order to prove the above result we need the following R2 version of Farkas’ Theorem (see for example

[16], [7], [18, section 6.10]):

Let F, h : R2 → R be convex functions and suppose that there exists x̄ ∈ R
2 such that h(x̄) ≤ 0. Then

F (z) ≥ 0 for every z ∈ R
2 such that h(z) ≤ 0 if and only if there exists λ ≥ 0 such that F (z)+λh(z) ≥ 0

for every z ∈ R
2.

of Lemma 4.1. By Proposition 3.1, D := {(φ1(x), φ2(x)) : x ∈ H} is convex. Since Θ ≥ 0, the set

{z ∈ R
2 : F (z) < 0} is also convex. Moreover, by (i), D ∩ {z : F (z) < 0} = ∅. Thus, we can separate

these sets by a hyperplane in R
2, i.e., there exist α, β, γ ∈ R such that

z ∈ D ⇒ αz1 + βz2 + γ ≥ 0 and,(2)

F (z) < 0 ⇒ αz1 + βz2 + γ < 0.

Thus, F (z) ≥ 0 for every z = (z1, z2) such that αz1 + βz2 + γ ≥ 0. By the Farkas’ Theorem, there exists

λ ≥ 0 such that for every z ∈ R
2,

F (z)− λ(αz1 + βz2 + γ) ≥ 0.

From this inequality and (2) we conclude that,

F (z) + λα(φ1(x)− z1) + λβ(φ2(x)− z2) = F (z)− λ(αz1 + βz2 + γ) + λ(αφ1(x) + βφ2(x) + γ) ≥ 0,

for every z = (z1, z2) ∈ R
2 and every x ∈ H. The converse is straightforward.

Moreover,

(1) Suppose that A1 is not bounded below, A2 ∈ GL+(H) and β < 0. By (2), it holds that z2 ≤

−α
β z1 −

γ
β , for every z ∈ D. Then the set D must be below a line with finite slope. We will now

prove that this is not possible. Let 0 < ε < δ |β|
|α| , where δ > 0 is such that 〈A2x, x〉 ≥ δ‖x‖2 for

every x ∈ H.

Since A1 is not bounded below, given r > 0, there exists x ∈ H such that ‖x‖ = r and

|〈A1x, x〉| < ǫr2. Then

δr2 − ‖a2‖r − |b2| ≤ φ2(x) ≤ −
α

β
φ1(x) −

γ

β

<
|α|

|β|
(εr2 + ‖a1‖r + b1) +

|γ|

|β|
.

Thus, for every r we should have that

(δ −
|α|

|β|
ε)r2 − (

|α|

|β|
‖a1‖+ ‖a2‖)r − |b2| −

|α|

|β|
b1 −

|γ|

|β|
< 0.
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This is a contradiction because δ − |α|
|β|ε > 0.

(2) Suppose now that Θ =

(

0 0

0 ρ

)

, v1 > 0 and α < 0. By (2), it holds that z1 > − β
αz2 −

γ
α , for

every z ∈ R
2 such that F (z) < 0.

Since Θ =

(

0 0

0 ρ

)

and v1 > 0, then F (z) = ρz22 +v1z1+v2z2− t. Therefore, {z : F (z) < 0}

is the convex set determined by the parabola z1 = − ρ
v1
z22 − v2

v1
z2 +

t
v1
; so that it can not be on

the right side of a straight line (for example, if z1 < min{− γ
α ,

t
v1
}, then (z1, 0) ∈ {z : F (z) < 0}

but does not satisfies (2)).

The other case follows similarly.

� �

4.1. S-Procedure. In [17], Polyak gave several applications of his convexity theorem. Most of them can

be extended to infinite dimensional spaces using our result. In this final subsection we briefly present as

an example one of these extensions. Let H be a real Hilbert space and A0, A1, A2 ∈ L(H). Given two

quadratic forms

fi(x) = 〈Aix, x 〉 , i = 1, 2

in H and α1, α2 ∈ R; the problem is to characterize all f0(x) = 〈A0x, x 〉 , α0 ∈ R such that

(3) f0(x) ≤ α0 for every x ∈ H such that f1(x) ≤ α1, f2(x) ≤ α2.

Proposition 4.2. Let H be a real Hilbert space, 3 ≤ dim(H) ≤ ∞. Suppose that there exist µ1, µ2 ∈

R, x0 ∈ H such that

µ1A1 + µ2A2 > 0,(4)

f1(x
0) < α1, f2(x

0) < α2.(5)

Then, (3) holds if and only if there exist τ1 ≥ 0, τ2 ≥ 0 such that

A0 ≤ τ1A1 + τ2A2,(6)

α0 ≥ τ1α1 + τ2α2.(7)

Proof. Consider

F := {f(x) : x ∈ H}, f(x) := (f0(x), f1(x), f2(x)).

Then, all the assumptions of Theorem 2.10 hold; hence F is convex. Then, the results follows using the

same arguments as those found in the proof of [17, Theorem 4.1]. �

Examples 4.1, 4.2 and 4.3 of [17] show that all the conditions of Theorem 4.2 are necessary.

A version of Proposition 4.2 where one of the inequalities fi(x) ≤ αi is replaced by an equality can be

proven with an extra condition. See also [17, Proposition 4.1].

Proposition 4.3. Let H be a real Hilbert space, 3 ≤ dim(H) ≤ ∞ and α2 6= 0. Suppose that there exist

µ1, µ2 ∈ R satisfying (4), x0 ∈ H such that

f1(x
0) < α1, f2(x

0) = α2.(8)
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Then,

f0(x) ≤ α0 for every x ∈ H such that f1(x) ≤ α1, f2(x) = α2,

if and only if there exists τ1 ≥ 0 such that (6) and (7) hold.

5. Conclusions

An important result due to Polyak [17] states that the joint image of two non-homogeneous quadratic

forms defined on R
n is a convex closed set of R2. This class of result has many applications, for instance

to S-lemma type results.

In this article we extend the convexity part of Polyak’s result to an arbitrary infinite dimensional real

Hilbert space H, see Theorem 2.10 and Proposition 3.1.

We present examples involving diagonal operators showing that the closedness part of Polyak’s theorem

does not hold on infinite dimensional spaces for quadratic forms determined by (compact or invertible)

positive definite operators. Moreover, we show that if A1 is a compact operator on H with 0 in its

numerical range and A2 is a positive and invertible definite operator, then the joint image of two non

necessarily homogeneous quadratic forms determined by A1 and A2 is closed, see Proposition 3.3.

For further research, it would be interesting to find necessary and sufficient conditions that allow to

prove the closedness part of Polyak’s theorem in the infinite dimensional setting.
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