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Caenorhabditis elegans (C. elegans) is a model organism widely used to

evaluate the mechanistic aspects of toxicants with the potential to predict

responses comparable to those ofmammals. We report here the consequences

of developmental lead (Pb) exposure on behavioral responses to ethanol (EtOH)

in C. elegans. In addition, we present data on morphological alterations in the

dopamine (DA) synapse and DA-dependent behaviors aimed to dissect the

neurobiological mechanisms that underlie the relationship between these

neurotoxicants. Finally, the escalation to superior animals that parallels the

observed effects in both experimental models with references to EtOH

metabolism and oxidative stress is also discussed. Overall, the literature

revised here underpins the usefulness of C. elegans to evidence behavioral

responses to a combination of neurotoxicants in mechanistic-orientated

studies.
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Introduction

As a model organism first described by Brenner in 1973 (Brenner, 1973),

Caenorhabditis elegans (C. elegans) is a suitable model to study the neurobiological

basis of toxicity. This small living invertebrate has provided invaluable evidence for the

neurotoxic mechanisms of several elements, including lead (Pb) (Chen et al., 2013; Jiang

et al., 2016; Soares et al., 2017). Additionally, many responses to ethanol (EtOH), not only

inmovement-related behaviors, but also in other parameters, have revealed its potential to

study the neurobiological bases of drugs of abuse (Grotewiel and Bettinger, 2015;

Engleman et al., 2016; Katner et al., 2019).

Thus, in the present review, we intended to provide evidence to support the role of

C. elegans as a prominent organism for the study of the mechanisms underpinning the

adverse effects of Pb and the specific factors involved in the vulnerability to EtOH

addiction (Bettinger and Davies, 2014; Engleman et al., 2016; Khanh, 2018).

Furthermore, its potential translational value from studies in mammals was also

considered.
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C. elegans as a model in toxicological
studies

This transparent, free-living nematode has the potential to

predict responses comparable to mammals (Anderson et al.,

2004; Hunt et al., 2018; Meneely et al., 2019), without the

ethical issues involved in higher animal experimentation

(Casey et al., 2015). The simplicity of the cell lineage and the

existence of a variety of transgenic animals determine that C.

elegans has become a model widely used in toxicity tests to

evaluate the mechanistic aspects of a myriad of substances (Hunt

et al., 2020). Its well-described nervous system allows for

studying the cellular mechanisms that underlie

neurodegeneration (Caldwell et al., 2020), including

Parkinson’s disease (Maulik et al., 2017; Cooper and van

Raamsdonk, 2018; Gaeta et al., 2019) and Alzheimer’s diseases

(Paul et al., 2020; Y. Wu and Luo, 2005), along with the pesticides

and metals possibly involved in their etiology or progression

(Gonzalez-Hunt et al., 2014; Soares et al., 2017; Sedensky and

Morgan, 2018; Martins et al., 2022). To this end, manganese,

mercury, and Pb in particular are the metals considered the most

potentially hazardous to human health (Avila et al., 2016; Caito

and Aschner, 2016; Lu et al., 2018; Akinyemi et al., 2019).

Lead

This toxic, persistent, and non-essential metal that

accumulates in the environment and living organisms induces

damage to all systems, including the central nervous system

(Virgolini and Aschner, 2021). Early-life Pb exposure may cause

an imprint that can be evident later in life or in response to a

variety of challenges (Silbergeld, 1992; Mitra et al., 2017;

Vorvolakos et al., 2016; Virgolini et al., 2019). At the

functional level, many neurotransmitters have been studied

after Pb exposure (Xing et al., 2009a; Xing et al., 2009b;

Sudama et al., 2013), with the deleterious effects on DAergic

neurons among the best described in different experimental

models (Zuch et al., 1998; NourEddine et al., 2005; Szczerbak

et al., 2007).

Several studies show that short periods of Pb exposure during

adulthood (less than 12 h) resulted in decreased locomotion

(Boyd et al., 2003; Wang and Xing, 2009), changes in

movement patterns (Wang and Xing, 2008), or reduced

feeding behavior (Anderson et al., 2001, 2004). Other reports

indicate that acute exposure to this metal decreased memory (Ye

et al., 2008) or associative learning in a thermotaxis assay (Zhang

et al., 2010), effects that are reversed by the pretreatment with

antioxidant agents such as dimethyl sulfoxide (DMSO) or

N-acetylcysteine (NAC) (Wu et al., 2012). These results

suggest that oxidative stress could be involved in the

mechanism of neurotoxicity exerted by this metal (Virgolini

and Aschner, 2021). Importantly, Guo et al. observed defects

in the reproductive capacity of the worm (decreased egg-laying

numbers and lengthened generation of progeny), alterations

present across all stages, with developing larvae being more

vulnerable to Pb than young adults (Guo et al., 2009).

Regarding long exposures, Tiwari et al. inform alterations not

only in locomotor activity, but also in the growth pattern in

nematodes exposed to sublethal Pb concentrations (3 μm,

15 μm, or 30 μm Pb) for 24 h. In these studies, they reported

dose-dependent alterations in reverse movements, a decrease in

body length, and an increase in the peristaltic velocity (Tiwari et al.,

2020). In this line, other researchers reported reduced body bends,

head movements, and reverse movements after Pb exposure,

mitigated by pretreatment with selenium (Li et al., 2013).

In terms of chronic treatments, Wang and Yang (2007)

showed that sustained exposure to Pb for 3 days induces

FIGURE 1
Lead and ethanol exposure protocols in two animal models and possible underlying toxic mechanisms resultant of their interaction.
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multiple dose-dependent biological effects in the nematode,

including shortened half-life, decreased body size,

reproductive abnormalities, and defects in the function of the

nervous and muscular systems, with many effects transferable to

the progeny (Wang and Yang, 2007). In the same line, Yu et al.

reported growth inhibition and changes in movement patterns,

which turned out to be more evident in the second generation,

data that reinforces the importance of the developmental stage at

which Pb exposure occurs (Yu et al., 2013). Interestingly, Pb-

induced changes in growth, feeding, and reproduction persisted

for up to four generations and may even be more noticeable in

the last one (Yu et al., 2016). Moreover, transgenerational

alterations in parameters such as growth rate, motility,

feeding, and/or reproduction have been reported when Pb

exposure occurred during stages spanning gonad and egg

development (Wang and Yang, 2007; Yu et al., 2013, 2016).

Regarding behavioral alterations, Sun et al. (2016) reported a

decrease in locomotor activity as well as a shorter lifespan in

worms exposed for 36 h to 8.5 μMPb(NO3)2, from the L1 stage to

the adult L4 (Sun et al., 2016). Interestingly, Monteiro et al.

(2014) observed the opposite phenomenon: exposure to

moderate to high Pb doses for 4 days reduced larval

movement and reproduction (Monteiro et al., 2014). However,

after low concentrations (less than 0.5 µm), a stimulatory effect

on reproduction and growth was observed, possibly due to

survival or a dispersal strategy manifested in a stressful

environment (Roh et al., 2006; Monteiro et al., 2014). This

behavior may be indicative of hormesis, a phenomenon that

occurs when low concentrations of a toxicant elicit an adaptive

response, which is stimulant in this case, protecting the organism

against subsequent exposures to higher doses of the same

pollutant (Wang and Xing, 2009; Zhao and Wang, 2012).

Overall, although still scarce, the reported evidence

demonstrates that C. elegans is a suitable model to study the

adverse effects of Pb exposure in immature and adult organisms

in terms of developmental neurotoxicity (Ruszkiewicz et al.,

2018) and transgenerational studies (Zhao et al., 2022).

Ethanol

Ethanol (EtOH) is an easily accessible drug of abuse that

induces biphasic responses in living organisms depending on its

metabolism and effects on the CNS (Pohorecky, 1977; Hendler

et al., 2013; Virgolini and Pautassi, 2022). In humans, acute

exposure to low EtOH doses induces hyperactivity and euphoria,

mild doses are anxiolytic, while high exposures cause impaired

coordination and balance, sedation, and even death (Zhu et al.,

2014). Although these behaviors can be a sensitive indicator of

toxicity, they are a complex phenomenon hard to quantify in

higher organisms. Based on these considerations, C. elegans

allows the assessment of simple behaviors that are shown as

alterations in locomotion and measurable as changes in speed or

direction closely related to behaviors observed in humans. It has

been demonstrated that worms exposed to EtOH evidenced

initial hyperactivity followed by immobility, which is reversed

when EtOH exposure ceased (Wu et al., 2019). Similarly, low

EtOH concentrations (17–52 mM) produce hyperactivity,

whereas amounts between 100 and 400 mM decrease motility

(Dhawan et al., 1999; Morgan and Sedensky, 1995; reviewed in

Scholz and Mustard, 2013). In addition, acute exposure to this

drug induces a dose-dependent depression in locomotion and

egg-laying behavior at comparable internal EtOH concentrations

known to induce intoxication in humans and other mammals

(Alaimo et al., 2012).

Furthermore, this nematode shows two well-described

behaviors in vertebrates known as tolerance and sensitization

that are distinctive in humans in response to excessive

consumption of psychoactive substances (Lee et al., 2009;

Bettinger and Davies, 2014; Grotewiel and Bettinger, 2015).

Interestingly, continuous exposure to EtOH generates the

development of a behavioral phenomenon representative of

neuronal plasticity called “acute functional tolerance” (AFT)

(Davies and McIntire, 2004), first described in rodents

(LeBlanc et al., 1975). This behavior is evident when worms

recover part of their mobility after the decrease in the speed of

movement or locomotion on a solid agar surface as a

consequence of the exposure to high EtOH concentrations

(Raabe et al., 2014; Davies et al., 2015). Notably, both

neuronal plasticity and the mechanisms underlying AFT are

considered a compensatory response to the environmental

insult elicited by the actions of EtOH (Raabe et al., 2014).

In addition to the above-described behavior, C. elegans

exhibits the fundamental features of EtOH withdrawal

symptoms reported in higher animals, including humans

(Scott et al., 2017). Several behaviors modified by EtOH

withdrawal can be partially or fully reversed by re-exposure to

a low EtOH dose (Scott et al., 2017). In this regard, McIntire

(2010) demonstrated that during EtOH abstinence the worms

showed altered posture and impaired ability to direct themselves

towards food (McIntire, 2010). These and others researchers

(Crowder, 2004) also reported the involvement of slo-1, a highly

conserved gene encoding for the calcium- and voltage-gated

long-conductance K channel (also called BK potassium

channel or SLO-1, homologous to the same proteins in

humans). Interestingly many other responses associated with

EtOH also appear to be modulated by the expression of this gene

(Davies et al., 2003; Scott et al., 2017).

Finally, in a recent work, Sterken et al. (2021) studied the

time-course transcriptional modifications of EtOH exposure.

They reported that 400 mM EtOH induced transcriptional

profiles in many genes at long exposure periods. Oppositely,

short exposures to EtOH (up to 2 h) induced the expression of

enzymes involved in its metabolism, particularly ADH, the

enzyme involved in EtOH oxidation to acetaldehyde. On the

other side, longer exposures (8 h or more) had much more
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profound effects on the transcriptome and genes involved in

neuronal function, lipid microenvironment, and physiological

responses to EtOH, including direct targets of this drug (Sterken

et al., 2021).

Overall, this evidence demonstrates that despite some

limitations, C. elegans is a powerful tool for identifying critical

developmental periods in which EtOH could cause subsequent

delays (Lin et al., 2013). In addition, this model organism permits

the assessment of simple behaviors and the identification of

epigenetic factors, genes, and/or proteins that regulate EtOH-

related effects that may be potential therapeutic targets for the

treatment of alcohol use disorders (AUD) (Khanh, 2018).

Dopamine and the lead/ethanol
interaction in C. elegans

Dopamine neurotransmission is related to processes of

memory, motivation, reward, locomotion, and addiction,

among others (Beaulieu and Gainetdinov, 2011; Koob and

Volkow, 2016). Interestingly, C. elegans show comparable

responses to mammals and other higher organisms regarding

substances that affect the DAergic neurotransmission, including

the conditioned preference to cues previously associated with

drugs of abuse (Lee et al., 2009; Musselman et al., 2012; Katner

et al., 2016; Engleman et al., 2018). Thus, alterations in the

integrity of this synapse could determine differential responses to

neurotoxicants including EtOH, a drug that shares

neurobiological mechanisms with other substances promoting

DA release in nerve terminals (Söderpalm and Ericson, 2011).

In this line, several reports in higher organisms have

provided evidence pointing to the DAergic system as a target

of metals, including Pb-induced neurotoxicity (Cory-Slechta and

Widzowski, 1991; Pokora et al., 2002; NourEddine et al., 2005).

Moreover, multiple DAergic targets sensitive to the toxic action

of Pb are simultaneously affected, increasing the vulnerability of

this neurotransmitter to Pb toxicity in mammals (White et al.,

2007). In C. elegans Lu et al. (2018) reported that 60 µM

PbCl2 administered to adult worms damages the DAergic

neurons in 40% of the population, presenting an abnormal

phenotype that included alterations in neuronal processes

evidenced as a reduction of cell bodies. Moreover, acute

treatment with 5 mm Pb acetate to L1 worms induced signs

of alterations in almost 80% of the DAergic neurons,

accompanied by a reduction in DA levels (Akinyemi et al.,

2019). This evidence suggests that alterations in the DAergic

neurotransmission are present after both, early-life and adult Pb

exposure.

In this regard, results from our laboratory demonstrated that

developmental Pb exposure induces morphological alterations in

DAergic neurons in a concentration-dependent fashion

[0–240 μM Pb (NO3)2]. In this line, the lowest concentration

assessed [24 μm Pb (NO3)2], although showing minimal

alterations in the DAergic synapse, was sufficient to alter the

Basal Slowing Response (BSR), a behavior dependent on the

integrity of the DAergic system. Interestingly, this response was

improved after EtOH (200 mm) only in the Pb-exposed animals

that overexpress tyrosine hydroxylase (TH) or are null-mutant of

the vesicular transporter (VMAT), whereas the strains lacking

the DOP-4 receptor or TH-deficient showed a non-significant-

reversal by the drug. These results suggest that EtOHmay exert a

compensatory effect in the DAergic synapse functional

alterations reported in the Pb-exposed animals (Albrecht P. A.

et al., 2022).

Furthermore, we have recently demonstrated that control

animals treated with 200 mm EtOH reproduced the behavioral

phenomenon known as AFT (Davies et al., 2003). Oppositely,

perinatally-Pb exposed worms evidenced hyperactivity, which

along with a high rate of recovery, was related to impaired EtOH

metabolism. To this end, we demonstrated reduced ADH activity

as result of early-life Pb exposure. Notably, this effect was not

observed in response to 100 mm or 400 mm EtOH, suggesting

the requirement of optimal EtOH concentrations for its

manifestation. Finally, when another behavior was evaluated,

Pb-exposed worms evidenced positive chemotaxis to a site where

EtOH was present, revealing the preference of these animals for

the drug (Albrecht et al., 2022b, in revision).

From worms to rats: The Pb and EtOH
interaction

The above-described stimulant and motivational effects

elicited by EtOH in nematodes exposed to Pb during

development represent a behavioral phenomenon already

described by us in a rodent model. In this regard, Mattalloni

et al. reported that 35-day-old Wistar rats perinatally exposed to

220 ppm Pb self-administrated EtOH with a higher break-point

than controls. They also consumed more EtOH than their

respective controls and presented enhanced locomotor activity

after the last voluntary consumption session (Mattalloni et al.,

2013; Mattalloni et al., 2017). As with worms, we ascribed these

effects to differences in the activity of the enzymes involved in

EtOH oxidation (results not shown, reviewed in Virgolini et al.,

2017) and their interrelation with oxidative stress (Virgolini et al.,

2019), although the participation of the DAergic system was not

assessed and thus cannot be discarded. Thus, despite the

differences in the experimental design and animal model used

in these approaches, we observed in both cases enhanced

stimulant and motivational responses to EtOH as a

consequence of early-life Pb exposure. These findings raise the

possibility of a translational phenomenon from one model to

other in the behavioral responses to EtOH. Thus, despite the few

limitations of the C. elegans model such as the absence of some

neurotransmitter systems (noradrenaline) or the scarce evidence

regarding others (such as opioids), the results reported here allow

Frontiers in Toxicology frontiersin.org04

Albrecht et al. 10.3389/ftox.2022.991787

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2022.991787


us to propose mechanisms of toxicity that may be common for

both animal species (Figure 1).

Conclusions and futures perspectives

The evidence mentioned in this review underpins the

usefulness of C. elegans in mechanistic studies of

environmentally-relevant toxicants such as Pb, even at low

exposure concentrations, which may have potential adverse

effects later in life. In addition, the revised literature points to

this organism as an appropriate tool for a comprehensive

phenotypic approach to drugs of abuse, particularly EtOH and

associated AUD. This, along with C. elegans genetics can be used

to evidence the interconnections between different components

of behavior and the involvement of environmental toxicants in

the modification of drug-induced behaviors from the epigenetic

perspective (Scholz and Mustard, 2013; Scholz, 2019).

Furthermore, C. elegans can be a reliable research platform to

test the efficacy of pharmacological compounds used to treat

AUDs and the mechanisms of toxicity of environmental

contaminants mixtures. Overall, the data provided here and

the ample literature on C. elegans position this organism in

the spotlight as a first-line in vivo model to perform exploratory

toxicity assessment with potential and accurate escalation to

superior animals.
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