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a b s t r a c t

A rate-dependent self-consistent (VPSC) polycrystal-plasticity model, in conjunction with the MK
approach, has been used successfully to address and explain plastic deformation features and
localization conditions that cannot be treated with the full-constraint (FC) Taylor scheme. Signorelli
and Bertinetti [On the role of constitutive model in the forming limit of FCC sheet metal with cube
orientations, International Journal of Mechanical Sciences, 51: 473–480, 2009] investigated FCC sheet-
metal formability, focusing on how the cube texture affects localized necking. In the present work, we
extent this research to include two types of textures experimentally observed in aluminum alloys: the
{100} 〈001〉 Cube orientation rotated 451 with respect to the sheet normal direction; and the {100} 〈uvw〉

orientations. The effect of these orientations on the FLD is studied numerically, and a detailed
comparison between MK-FC and MK-VPSC, derived from orientation stability and geometrical hard-
ening, is made. The classical MK model, based on strain-rate imposed boundary conditions, was
generalized in order to explicitly and correctly includes stress boundary conditions for materials with
changes in anisotropy during deformation. In plane-strain stretching, the enhanced formability of the
rotated 451 {100} 〈001〉 orientations has been correlated with texture evolution. In equi-biaxial
stretching, the MK-FC approach predicted greater limit-strain values than did the MK-VPSC model.
Qualitative differences in geometrical hardening/softening were also found.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Most sheet metals employed in stretch forming operations are
produced by a combination of rolling and annealing. As a con-
sequence, typical preferred orientations are inevitably present in
rolled sheets. These orientations cannot be completely trans-
formed into an entirely random state by annealing. Investigation
of the behavior of these orientations contributes to a deeper
understanding of material deformation mechanisms, microstruc-
tural evolution and mechanical anisotropy. It is widely recognized
that crystallographic textures strongly affect the formability of
polycrystalline sheet metals. In rolled FCC sheets, crystallographic
textures are frequently classified in terms of the ideal rolling and
recrystallization components. FCC materials can show many dif-
ferent recrystallization textures, even for similar alloys having the
same deformation texture, as was underlined in the review of

Grewen and Huber [1]. For example, Duckham et al. [2] analyzed
the evidence that precipitate nucleation at shear bands leads to a
randomization of the recrystallization texture in a 1 wt% Mg
commercial-purity aluminum alloy and studied how this materi-
al's texture is related to the accumulated deformation and tem-
perature. They founded that there is a remarkable increase in the
Cube volume fraction (from 30 to 40%) as the deformation
temperature increases from 300 to 3501C, with a corresponding
decrease in the random component. Crumbach et al. [3] studied
three aluminum alloys, cold rolled to different thickness reduc-
tions and annealed at different temperatures. They pointed out
that the final textures differed substantially, but all were typical of
recrystallized aluminum alloys. These deformation textures con-
tained not only the Cube component but also the {001} 〈uvw〉 (ND-
Cube) orientations. Because aluminum alloys generally exhibit less
ductility than might be desired (less than steel alloys for example),
increasing their formability by controlling the texture remains
highly relevant.

Many researchers have investigated, experimentally and com-
putationally, the influence of different starting textures and work-
hardening behavior on the deformation of aluminum sheets,
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including the development of material anisotropy. Among others,
Choi et al. [4] studied the macroscopic anisotropy of AA5019A
sheets, containing the typical texture components of the H48 and
O temper conditions. The cold-rolled material (AA5019A-H48) has
a strong rolling texture and weak Cube component, while the
AA5019A-O sheet contains a strong Cube and minimal rolling
texture components. Their experimental investigation included
tensile tests to measure yield stresses and plastic–strain ratios, and
they combined these results with predictions of plastic properties
performed with both Taylor (FC) and viscoplastic self-consistent
(VPSC) models. They concluded that the FC model not only
underestimated r-values, particularly for loading at 451 to the
rolling direction, but incorrectly predicted the orientational
dependence of yield stress. To the contrary, the VPSC simulations
were in good agreement with the experimental results. Lopes
et al. [5] extensively studied a recrystallized, strongly Cube
textured AA1050-O sheet in order to gain insight on how crystal-
lographic texture affects strain-hardening anisotropy in propor-
tional tensile loading. In their research, the authors deformed
tensile specimens oriented at 01, 451 and 901 to the rolling
direction (RD), measuring the stress–strain behavior. They
observed that the 451 orientation exhibited much higher strain
hardening, and as a result, had greater uniform elongations, 30%
and 25% more than the 01 and 901 specimens respectively.
Similarly, the measured strain-rate sensitivity exponent, m, at
451 was higher than that in the transverse direction (TD). They
suggested that post-uniform elongation ductility could be higher
for 451 tension, making this direction very resistant to plastic-flow
localization. Later, Yoon et al. [6] investigated the same AA1050-O
alloy, confirming a preponderant {100} 〈001〉 Cube texture in the
{111} pole figure for the as-received material. They also observed
that the strain hardening was higher at 451 than in the rolling and
transverse directions. Recently, Chiba et al. [7] used the Marciniak
test technique to measure an AA1100-H24 sheet's forming-limit
strains. This information was then used to verify the phenomen-
ological Yld2000-2d and FC Taylor-type crystal-plasticity models.
Both mechanical properties and measured texture data provided
input to calibrate the models. They found that both models had
limitations in the prediction of the measured limit strains.

Recently, Yanaga et al. [8] performed biaxial tensile tests of
aluminum alloy sheets with different Cube-orientation intensities,
which they referred to as High Cube (HC) and Low Cube (LC)
textures. They found greater through-thickness thinning at the top
of a bulged LC textured sheet –with respected to the HC material –
and the opposite at the periphery, near the die profile, explaining
this in terms of the differences in the shapes of the HC and LC
work contours. Plane-strain elongation at the periphery was
accelerated in the case of the HC material, producing the greater
reduction in thickness. They determined that the difference in HC
and LC crystallographic texture produced different flow-stress
relations between equi-biaxial tension and plane-strain tension,
in the two sheets. The observed uniaxial responses along 01, 451
and 901 were consistent with the higher ductility of the Cube-type
material at 451 to the rolling direction.

Within a computational framework, Wu et al. [9] analyzed
forming limits for a family of Cube textures that had orientations
spreading around the ideal {001} 〈001〉. They found, unexpectedly,
that near biaxial stretching the calculated forming-limit diagrams
(FLDs) are significantly higher for texture dispersions of 111 and
151 around the ideal Cube orientation than for a random texture.
Yoshida et al. [10] made the same observation, finding that it is
only the Cube-texture component that produces this result. More-
over, they reported that the forming-limit curve for a Cube texture
is significantly increased when the sheet is stretched along the 451
(R-Cube) direction relative to the rolling direction. This effect is
pronounced near plane-strain forming paths. Such a result is in

agreement with the work reported by Yanaga et al. [8] for a higher
hardening exponent at 451 than at 01 and 901 in the case of a High
Cube textured 6061-T4 aluminum alloy sheet. Nevertheless,
Yoshida and co-workers found that the predicted limit-strain
drops drastically in uniaxial stretching for an ideal R-Cube texture
with a Gaussian spread of 151. Subsequently, Yoshida et al. [11]
showed that the {001} 〈uvw〉 (ND-Cube) texture enhances the
forming-limit curve for the full range of linear strain paths. They
concluded that, for a general stamping operation, the {001} 〈uvw〉

texture is highly advantageous because of its high formability
irrespective of blank's orientation. However, the authors note that
these results are entirely computational, based on the polycrystal–
plasticity model. They also acknowledge that both the strain
hardening and forming limit have not been observed experimen-
tally for the strong Cube textured and/or rotated Cube textured
aluminum alloy sheets. These sheets were numerically subjected
to plane-strain and equi-biaxial stretching modes. It is important
to mention that all calculations performed by Wu and by Yoshida
were based on a generalized FC Taylor-type polycrystal model in
conjunction with the Marciniak–Kuczynski (MK) instability analy-
sis [12]. Signorelli and Bertinetti [13] revisited the Cube-texture
results discussed by Wu et al. [9], but used a VPSC formulation
plus the MK approach. The simulations carried out within this
framework gave qualitatively different results than the MK-FC
approach when limit strains were calculated from the ideal Cube
orientation through various dispersions to the random texture.
The MK-VPSC approach predicted a smooth transition in the
calculated failure strains. Also, these MK-VPSC calculations pre-
dicted that a random texture would give the greatest biaxial
formability, as expected. These results demonstrate that the
constitutive model selected is critically important for predicting
the behavior of materials that evolve anisotropically during
mechanical deformation. More recently, Yoshida and Kuroda [14]
simulated plastic-deformation characteristics and stretchability of
textured aluminum alloy sheets using a crystal-plasticity model.
They reexamined the influence of texture and r-value on stretch-
ability and concluded that the material's capacity to strain-harden
in plane-strain deformation is a key factor in producing superior
formability over the entire biaxial-stretching range.

The present contribution complements our previous work [13],
that investigated the role of the constitutive relation in modeling
the forming limit of FCC sheet metal with Cube orientations,
including R-Cube and ND-Cube type materials. This study focuses
on evaluating the relation between orientation stability and
geometrical hardening, and determining how this relationship
affects the forming-limit strain, particularly near the plane-strain
and balanced-biaxial stretching modes. Additionally, the classical
MK model, based on strain-rate imposed boundary conditions, was
generalized in order to explicitly and correctly include stress
boundary conditions for materials with changes in anisotropy
during deformation.

The paper is organized as follows. First, a brief review of the
basic equations and definitions for MK and VPSC theories are
presented, together with a description of the formulation used to
model necking. The predicted FLDs for the different Cube-type
textures are evaluated. Because it is known that the Cube and
R-Cube orientations are not stable for particular applications, this
theoretical study was performed using an orientation stability
analysis. Finally, we discuss the geometrical hardening/softening
effects predicted by the FC and VPSC models and how they affect
the limit-strain behavior. Results show that, in the plane-strain
mode, the observed limit-strain behavior is in agreement with the
predicted geometrical hardening. To the contrary, in equi-biaxial
tension, the FC model indicates there is a geometrical hardening
contribution to the flow stress, while a softening trend is predicted
by VPSC.
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2. Theoretical framework

We begin this section with the basic kinematic definitions of
crystal-plasticity theory. The kinematic development of a single-
crystal plasticity model has been well documented by several
authors e.g. Kocks et al. [15], Roters et al. [16]. Here we assume
that, during plastic-forming operations, it is possible to neglect the
elastic contribution to deformation. Consequently, we will restrict
ourselves to a rate-dependent plastic response at the single-
crystal level.

2.1. Viscoplastic crystal plasticity

The total deformation of a crystal is mainly the result of two
mechanisms: dislocation motion within the active slip systems
and lattice distortion [17]. A multiplicative decomposition of the
deformation-gradient tensor F can be used to take these two
aspects into account:

F¼ Fe:Fp ð1Þ
where Fp and Fe are the plastic and elastic contributions, which
account for the accumulative effect of dislocation motion and the
remaining non-plastic deformation, respectively [18]. We assume
that essentially Fp leaves the crystal lattice not only undistorted,
but also unrotated. Thus, the distortion and rotation of the lattice
is only contained in Fe, such that Fe ¼ R, and the crystallographic
rotation matrix R is specified in terms of the three Euler angles
(φ1;ϕ;φ2) � Bunge convention � as

By including this consideration in Eq. (1), the velocity-gradient
tensor can be written as

L¼ _F:F�1 ¼ _R:RTþR:Lp:RT ð3Þ
where Lp ¼ _F

p
:Fp�1 is the plastic velocity-gradient. The tensor Lp

can be determined from dislocation motion along specific planes
and directions in the crystal

Lp ¼∑
s
ns � bs _γs ð4Þ

here bs is the slip plane direction or Burgers' vector, ns is the slip
plane normal direction and _γs is the accumulative shear strain,
which determines the crystal reorientation. The Schmid orienta-
tion tensor, defined as ns � bs, has symmetric ms and skew-
symmetric qs components given by

ms ¼ 1
2
ðns � bsþbs � nsÞ; ð5Þ

qs ¼ 1
2
ðns � bs�bs � nsÞ: ð6Þ

To describe the plastic behavior of a single crystal, a constitu-
tive viscoplastic model written in terms of each slip system is
postulated. Particularly, in the present work, we adopt a visco-
plastic potential law [19] expressed as

_γs ¼ _γ0
τsr
τsc

����
����
1=m

signðτsrÞ ¼ _γ0
ms : S
τsc

����
����
1=m

signðms : SÞ ð7Þ

where _γ0 is the reference shear rate, τsr is the resolved shear stress
on slip system s, τsc is the critical resolved shear stress (CRSS), S is
the deviatoric stress tensor and m is the strain-rate sensitivity
exponent which is typically taken to be quite small (on the order

of�0.02) to represent rate independent cases. When the crystal is
subjected to stresses, slip activates when the shear stress reaches
the critical value τsr ¼ τsc on any system.

The local viscoplastic constitutive relation between the strain-
rate and the deviatoric stress, can be written in a pseudo-linear
form, defining a single-crystal, viscoplastic secant modulus, M:

D¼ _γ0∑
s

ms � ms

τsc

����ms : S
τsc

����
1=ðm�1Þ

: S¼M : S ð8Þ

In the present study, an anisotropic hardening scheme accounts
for the strain hardening between slip systems, and the evolution
of the critical shear stresses can be expressed in the following
general form:

_τc ¼∑
s
hsj _γsj ð9Þ

where hs are the hardening-moduli behaviors, which depend on γ,
the accumulated sum of the single slip contributions γs. These
moduli can be written using the initial hardening rate, h0, and the
hardening exponent n, arranged in the following power-law form:

hs ¼ h0
h0γ
τscn

þ1
� �n�1

ð10Þ

γ ¼∑
s

Z t

0
j _γsj dt

2.1.1. Taylor – full constraint model (FC)
The classical Taylor model assumes that the ensemble of grains

in the polycrystal deforms homogeneously, fulfilling the compat-
ibility condition [15]. The imposed external macroscopic strain
corresponds to the internal microscopic strain. Additionally, the
overall strain rate, deviatoric stress and viscoplastic compliance
are determined from the corresponding magnitudes at the grain
level as follows:

D¼D;

S¼ 〈S〉

M¼ 〈M�1〉�1 ð11Þ
where 〈 〉 and denote a weighted average over all grains in the
polycrystal and the corresponding magnitude at the aggregate
level, respectively. Typically the set of discrete orientations, that
characterize the material texture, could be obtained from the
recalculated ODF. Local deviatoric stress states could be evaluated
by solving Eq. (8).

2.1.2. Viscoplastic self-consistent model (VPSC)
Contrary to the FC model, the self-consistent approach repre-

sents each grain as an ellipsoidal viscoplastic inhomogeneity
embedded in and interacting with a homogeneous effective
medium (HEM). This approach fully accounts for the grain's
anisotropic properties. As initially proposed by Molinari et al.
[20] and Lebensohn and Tomé [21], the VPSC model allows each
grain to deform differently, according to its directional properties
and the strength of the interaction between the grain and its
surroundings. If a stress or deformation rate is applied to the outer

R¼
cos φ1 cos φ2� sin φ1 sin φ2 cos ϕ sin φ1 cos φ2þ cos φ1 sin φ2 cos ϕ sin φ2 sin ϕ

� cos φ1 sin φ2� sin φ1 cos φ2 cos ϕ � sin φ1 sin φ2þ cos φ1 cos φ2 cos ϕ cos φ2 sin ϕ
sin φ1 sin ϕ � cos φ1 sin ϕ cos ϕ

2
64

3
75 ð2Þ
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boundary of the HEM, the inhomogeneity induces local deviations
of the stress and the strain rate in its vicinity. When the local
response of the medium is linear, the interaction between the
grain and the HEM is solved using the Eshelby inclusion formalism
[22]. The properties of the HEM are not known a priori, and are
adjusted self-consistently to coincide with the average of all the
grains in the aggregate. Here, we outline the relevant concepts and
equations of the VPSC model. For a full description of the
formulation, the reader is referred to the original paper [21]. The
VPSC approach is characterized by an interaction equation relating
the strain rate and deviatoric stress in each grain (D, S) to the
averages over the polycrystal (D,S). This is done through the
interaction tensor ~M

D�D¼ � ~MðS�SÞ; ð12Þ
which is a function of the overall modulus and the shape and
orientation of the ellipsoid that represents the embedded grain.
Details concerning the self-consistent equations can be found in
[15] and [21]. The macroscopic (overall) secant modulus M can
be adjusted iteratively using the following self-consistent equa-
tion:

M ¼ 〈M : ðMþ ~MÞ�1 : ðMþ ~MÞ〉 ð13Þ
with D ¼ M : S.

2.1.3. Texture evolution
After convergence in each strain increment is obtained, the

crystallographic orientation of each grain must be updated accord-
ing to the total lattice rotation-rates (lattice spin) _Ω. Taking the
sample system frame as a reference, _Ω are given as follows:

_ΩFC ¼W� ∑
s
qs _γs ð14aÞ

_ΩSC ¼W� ∑
s
qs _γs þ ~W ð14bÞ

where W is the skew-symmetric part of the prescribed velocity
gradient L. For the case of self-consistent model, the tensor ~W
describes the additional rotation-rate deviation in the ellipsoidal
domain, associated with the skew-symmetric part of the Eshelby
tensor and the local strain-rate deviation in the grain.

2.2. Necking analysis

The FLD simulations were conducted using the well-known MK
analysis. It is known that elasticity affects the initiation of material
localization, especially near the necking region and it cannot be
neglected in any local description. However, based on the previous
works, taking elasticity into account in the MK framework does
not appreciably modify the predicted limit-strain profiles, allowing
for the use of a rigid-plastic constitutive description. For example,
Wu et al. [23] examined the effect of crystal elasticity on the FLD
finding only a slightly overestimation of formability with a 100
fold increase in the elastic modulus. More recently, Wang et al.
[24], using an elastic-viscoplastic self-consistent model and the
MK approach, found that the choice of elastic modulus does not
affect the predicted FLD value by more than 0.5% under monotonic
loadings. In what follows, we outline the principal details of the
MK model together with a skeletal framework of its numerical
implementation in conjunction with the VPSC model. In the
extended approach, developed by Hutchinson and Neale [25],
strain localization occurs due to the existence of a material
imperfection or a local heterogeneity, such as a groove or a narrow
band across the width of the sheet, which is initially inclined at an
angle Ψ0 with respect to the principal axis (Fig. 1). As the
homogeneous zone is proportionally strained in the MK model,
the groove grows continuously to finally result in a localized neck.

Tensor components are expressed with respect to the global
cartesian xi coordinate system. A second set of axes referenced to
the band is used in the model, with the normal and tangential
directions of the band defining the axes in the sheet plane. The
3 direction is taken normal to the sheet itself (n,t,3). Quantities
inside the band are denoted by the subscript b.

The initial imperfection factor f0 is characterized by an initial
thickness ratio inside and outside the band

f 0 ¼
hbð0Þ
hð0Þ ð15Þ

here hbð0Þ and hð0Þ are the initial thickness in the band and in the
homogeneous zone, respectively.

The velocity gradient outside the band has the following form:

L¼ L11

1 0 0
0 ρ 0
0 0 �ð1þρÞ

2
64

3
75 ð16Þ

where the imposed strain path on the edges of the sheet is
assumed as

ρ¼ L22
L11

¼D22

D11
¼ const: ð17Þ

L
b ¼ Lþ _c � n ð18Þ
Eq. (18) is decomposed into the symmetric strain rate

tensor, D
b
, and the skew-symmetric tensor of rigid-body rota-

tion rate, W
b

D
b ¼Dþ1

2
ð_c � nþn � _cÞ;

W
b ¼Wþ1

2
ð_c � n�n � _cÞ ð19Þ

here, n is the unit normal to the band, and _c is a vector to be
determined. The equilibrium conditions required at the band
interface are given by

n σb hb ¼ n σ h ð20Þ
where σ denotes the Cauchy stress. Noting that δij is the
Kronecker symbol, the boundary condition σ33 ¼ 0 is applied
as follows

σij ¼ Sij �S33 δij ði¼ 1; 2; 3Þ ð21Þ
The integration of the polycrystalline model inside and outside

the band is performed as follows. First, an increment of strain is
applied to the material in the homogeneous zone, DΔt. Both inside
and outside the band, it is assumed that D13 ¼ D23 ¼W13 ¼
W23 ¼ 0. The equilibrium condition, Eq. (20), can be expressed in
the coordinate system referenced to the groove

σb
nnhb ¼ σnnh

Fig. 1. MK geometry.
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σb
nthb ¼ σnth ð22Þ

The compatibility condition requires equality of elongation in
the direction t,

D
b
tt ¼Dtt ð23Þ

Note that within the band, the screw component of the velocity
gradient W

b
is non-zero, so the angle of the groove changes as

deformation proceeds. Following Hutchinson and Neale [25] and
Wu et al. [26], the evolution of the groove orientation is given by:

tan Ψ ¼ exp½ð1�ρÞε11� tanΨ 0 ð24Þ

Because we are considering thin sheets with the orthotropic
symmetries in the plane of the sheet, in-plane stretching produces
a plane-stress state. As discussed by Kuroda and Tveergard [27],
when an orthotropic material is loaded along directions not
aligned with the axes of orthotropy, it is necessary to compute
the L12 component by assuming that σ12¼0. But if the axes are
along the loading directions, it is the same as imposing either of
the conditions L12 ¼ 0 or σ12 ¼ 0. For the general case, the unit
normal vector n of the band is calculated by the form

n¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
t21þt22

q �F11t01 �F12t02
F21t01 F22t02

 !
ð25Þ

Eq. (24) is a particular case of Eq. (25).
Most numerical implementations of the MK model include the

resolution of non-linear systems of equations in order to deter-
mine the mechanical state in the groove zone. We proceeded in
the same way in previous wors [13,28,29]. Most recently, Serenelli
et al. [30] and Signorelli et al. [31] used another strategy. Their
method solves the constitutive model under a mixed boundary

condition, in order to determine the groove state. Using that

approach we proceed as follows: the remaining unknowns L
b
nn ¼

D
b
nn; L

b
nt ¼DntþW

b
nt ; L

b
tn ¼Dnt�W

b
nt ; and L

b
33, σ

b
tt ; σ

b
n3; σ

b
t3 can be

evaluated directly, after solving for the state ðL;σÞ in the homo-
geneous zone and expressing the tensors in the band reference
frame, together with Eqs. (22) and (23). This lets us avoid solving a
nonlinear system with logic time benefits and a reduction of
convergence problems. It is important to note that the mixed
boundary-condition in the band reference frame is solved inside
the constitutive model.

The entire FLD of a sheet is determined by repeating the
procedure for different strain paths that were defined in terms of
the strain-rate ratios over the range �0.5rρr1 with a step of 0.1.
Since all in-plane directions are potential necking directions, a
conservative estimate of the forming-limit strain is obtained by
repeating the calculations for every 5 degrees of Ψ0. If the material
is loaded along directions aligned with the fixed coordinate direc-
tions (Θ¼01 or 901), we consider the values of Ψ0 to range from 01
to 901, and from �901 to 901 for the cases where Θ has a value
other than 01 or 901. The failure strains εn11; ε

n

22 outside the band
and the critical failure angle Ψn are obtained after minimizing the
curve εn11 versusΨ0. The sheet realizes necking when a considerably
higher strain rate occurs inside the band than within the homo-
geneous zone. Several criteria can be defined in order to stop the
incremental procedure. In the present work, failure is reached when
jDb

33j420jD33j. We consider the numerical factor 20 large enough
to verify that values close to the actual limit-strains are obtained
(the numerical value of this factor is related to the magnitude of the
imposed strain increment, typically in the range of 10�3 to 10�4).
The numerical algorithm of the MK-VPSC code is summarized in
Fig. 2. It is important to remark that with the proposed numerical
strategy it is possible to parallelize the band solutions.

The MK approach predicts the FLD based on the growth of the
initial imperfection f0. However, the strength of the imperfection

Fig. 2. Scheme of the structure of constitutive equations implemented in the MK-VPSC FLD code. Boundary conditions are explicitly shown for both zones.

M.A. Bertinetti et al. / International Journal of Mechanical Sciences 87 (2014) 200–217204



cannot be directly measured by physical experiments, since this
factor does not have a direct correlation with the imperfections
observed in real materials. Therefore, in most of the MK model
applications, f0 is calibrated by matching the experimental FLD0

(FLD0 is the limit strain for the in-plane, plane-strain tension,
loading condition). The value of f0 may vary significantly, with
numbers commonly found in the literature ranging between 0.98
and 0.9999. Many authors have analytically predicted the effect of
the initial imperfection parameter on the FLD and demonstrated,
as expected, that the forming limit strain decreases with increas-
ing depths of the initial imperfection [26,28,32]. In general, though
this factor has an important influence on the magnitude of the
limit-strain values, only minor effects can be seen in the limit-
strain profiles.

2.3. Stability and rotation fields analysis

In this section, we follow the work of Tóth et al. [33] to provide
a short description of the basic tenets of orientation stability
analysis. Each orientation is defined in Euler space by three angles
φ1;ϕ ;φ2. Texture evolution means that orientations move during
plastic deformation in orientation space, and the orientation
change of a given grain can be described by the rotation field, as
shown in Clement and Coulomb [34]:

_φ1 ¼ _Ω21� _φ2 cos ϕ
_ϕ ¼ _Ω32 cos φ1þ _Ω13 sin φ1

_φ2 ¼ ð _Ω32 sin φ1� _Ω13 cos φ1Þ= sin ϕ

ð26Þ

One of the conditions for either convergence or divergence of a
given orientation can be expressed by the divergence of the
rotation field _φ1;

_ϕ; _φ2

div _g ¼ ∂ _φ1

∂φ1
þ∂ _ϕ
∂ϕ

þ∂φ2

U

∂φ2
ð27Þ

The condition div _go0 and div _g40 indicates convergence or
divergence, respectively. An orientation can remain stable only if
the lattice-rotation rate vanishes and the rotation field in Euler
space is such that it converges on that point. An orientation is
predicted metastable if the lattice-rotation rate vanishes but div _g
is positive. When the lattice-rotation rate is not null and div _g is
positive, this orientation is predicted as unstable.

These stability conditions determine whether or not the
density of this orientation increases during deformation. To
characterize the degree to which the orientation of an individual
grain will persist, a second parameter related to the stability of an
orientation can be examined through the persistence value, P,

given by

P _φ1;
_ϕ ;φ2

U
;Deq

� �
¼ ln

Deq

_φ2
1þ _ϕ2þ _φ2

2þ2 _φ1 _φ
2
2 cos ϕ

 !
¼ ln

Deq

‖ _Ω‖

 !

ð28Þ

where Deq is the von Mises equivalent strain-rate. The depen-
dency of P on cosϕ is a direct consequence of the non-Euclidian
metric of the Euler space [35]. The application of this expression
is not valid over the entire range of angles, since this parameter
can be infinity when _φ1;

_ϕ; _φ2 are null or, equivalently, when
_Ω¼ 0. Arzaghi et al. [36] overcame this difficulty proposing a sort
of normalization of the lattice spin in the whole of Euler space
using the maximum value of ‖ _Ω‖. Later, Pandey et al. [37]
modified the stability parameter as follows:

P¼ ln
Deq

‖Ω‖þDeq=ePmax

 !
ð29Þ

The value Pmax¼1 in Eq. (29) was selected so that P can vary
between 0 and 1. The advantage of this equation is that it can
never lead to singularities. This scalar parameter assumes the
highest value in regions of Euler space where the orientation
persists over large strains, and the lowest value where the degree
of persistence is almost null.

3. Results and discussion

3.1. Forming-limit diagrams for the Cube, R-Cube and ND-Cube
orientations

For the purpose of investigating how the typical recrystalliza-
tion textures affect formability, we selected three different tex-
tures that are observed in aluminum sheets after certain
deformation processes. These textures were modeled by spreading
the grain orientations around the ideal Cube {100} 〈001〉, the ideal
{100} 〈001〉 rotated 451 with respect to the normal direction and
the {100} 〈uvw〉 orientations (the Cube texture rotated about the
ND). These discrete orientations were reoriented in such a way
that a Gaussian distribution results. The procedure for generating
textures is the same as used in previous work [13]. For example,
the “Cube texture” is one where the first standard deviation of
grains lies within 151 of the ideal Cube {100} 〈001〉. In this case, it
should be noted that 2/3 of the grains are inside of 151 from the
ideal orientation and 1/3 of the grains are outside of it. The
number of individual orientations was set in order to obtain an
adequate representation of the orthotropic symmetries of a rolled
sheet. Fig. 3 shows the {111} stereographic pole figures for the
Cube, R-Cube and ND-Cube distributions, where 6000 discretized
orientations were used to create the set of textures.

ND-CubeR-CubeCube

Fig. 3. Generated {111} pole figures with 6000 orientations using a Gaussian distribution with a standard deviation of 151.
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In the following FLD simulations, in both the homogeneous
zone and defect band, standard FCC {111} 〈110〉 crystallographic
slip is used, and the initial textures are assumed to be the same.
The material parameters are taken from Signorelli and Bertinetti
[13], and are fixed at m¼0.02, n¼0.24, h0¼1218 MPa and
τ0¼42 MPa. The slip-induced hardening law is isotropic for all
slip systems, and the reference plastic shearing rate for slip is
_γ0¼0.001 s�1.We took the initial ratio of the thickness inside the
band to that outside the band, f0, to be 0.99 for all computations.
Fig. 4 shows the predicted FLDs for the set of texture distributions
using both MK-FC and MK-VPSC models. Results are similar but
not equal to those reported by Yoshida et al. [10,11] when the
MK-FC approach is used. Differences appear due to the different
parameter values employed in our simulations (curves are iden-
tical when calculations are carried out with the set of parameters
employed by these authors). The results clearly illustrate the
differences between both homogenization schemes, particularly
in tensile and biaxial stretching, although the tendency is close for
the plane-strain mode (ρ¼0). In negative strain space (ρo0) both
models predict similar shapes and levels for the Cube and ND-
Cube set of orientations, although the calculated values for the
VPSC simulations are slightly greater for ND-Cube and slightly less
for Cube. The behavior is quite different for the R-Cube texture,
since the FC's predicted curve slopes downwards from plane-strain
to a tensile-stretching state with the minimum limit-strain value
at ρ¼�0.5. These values are far below those calculated for the
two other textures. This loss of formability, also predicted by
Yoshida et al. [11], does not appear when the MK-VPSC scheme is
used. To the contrary, the R-Cube texture exhibits an enhanced
formability, and the limit-strain values are still higher than those
determined from the other two textures, except at ρ¼�0.5 where
the strain value is similar to that of the ND-Cube. For the plane-
strain mode, no qualitative differences are found between
approaches, though the VPSC overestimates the limit-strain values
for the R-Cube, producing a major limit strain 1.3 times greater
than that calculated with the FC model. On the biaxial side of the
FLD, shapes and values are quite different. As we move towards
balanced-biaxial loading, the FLDs approach each other and a
certain matching is observed for the three textures, particularly for
the VPSC calculations. For the FC case, the limit-strain values for
Cube and R-Cube are identical, while values for the ND-Cube are
definitely higher than the other two, again in agreement with
Yoshida's results.

Normally, the FLD is simulated by imposing strain-rate bound-
ary conditions, which in some cases restricts a direct comparison
with experimental limit-strain data from formability tests, where
the sheet is subjected to stress-loading conditions. This limitation
is produced by the variation of r-values with straining, which

follows from the material's crystallographic texture-evolution.
Eq. (16) describes the boundary condition imposed on the homo-
geneous zone within the MK framework. The formulation can be
generalized in order to explicitly include stress boundary condi-
tions corresponding to different stress ratios, characterized by
α¼σ22=σ11

L¼
L11 0 0
0 L22 0
0 0 L33

2
64

3
75; σ¼

1 0 0
0 α 0
0 0 0

2
64

3
75σ11 ð30Þ

The velocity-gradient tensor component L33 is adjusted in order
to nullify the corresponding stress component. The stress ratio
values α¼�1, α¼0 and α¼1, correspond to pure shear, uniaxial
and biaxial test conditions, respectively. In order to contrast the
predictions with experimental data from the literature, Fig. 4
includes the limit-strains predicted by both MK-FC and MK-VPSC
models assuming uniaxial tension (UAT) boundary conditions
(α¼0) for the Cube, R-Cube and ND-Cube material textures.
Calculations carried out with the MK-FC model show that the
limit strains for the R-Cube texture are slightly higher than for
Cube and ND-Cube textures. The MK-VPSC values show a greater
formability for R-Cube than for Cube texture. This effect is closely
related to the significant change of R-Cube texture as deformation
proceeds. By imposing uniaxial loading, the different strain paths
mandated by the three textures are directly associated with the
materials' r-values (Table 1) along the tensile direction, i.e., r0
values. The smaller this parameter is, as in the case of R-Cube and
ND-Cube textures, the smaller the width strain, leading to a shift
of the strain path into the plane-strain mode. This is critical for the
R-Cube texture when the FC model is used, where uniaxial tension
conditions lead to a plane-strain deformation mode. These results
are in agreement with the flow stress curves reported by Lopes
et al. [5] and Li and Bate [38] for AA1050-O tested in the RD and TD
directions, and for tensile tests performed at 451 to the RD.
Particularly, Li and Bate reported that the 451 tensile samples
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Fig. 4. Calculated FLDs assuming a Gaussian distribution with a standard deviation of 151. Scattered-lines correspond to uniaxial tension strain paths.

Table 1
Predicted r-values at 01, 451 and 901 to the rolling direction, calculated at 20%
macroscopic true strain with the FC and VPSC models.

r-Values Cube R-Cube ND-Cube

FC VPSC FC VPSC FC VPSC

r0 1 1 0 0.09 0.18 0.31
r45 0 0.09 1.02 1 0.16 0.28
r90 1.04 1.01 0 0.09 0.18 0.30
r¼ ðr0þ2r45þr90Þ=4 0.51 0.55 0.51 0.55 0.17 0.29

M.A. Bertinetti et al. / International Journal of Mechanical Sciences 87 (2014) 200–217206



elongated about 25–30% more than RD and TD uniaxial tension
specimens. Moreover, heat-treated aluminum alloys (AA6063 and
AA7030) with typical recrystallization textures, Cube (151) 21.6%,
(100)-fiber (151) 65.5% and Cube (151) 48%, (100)-fiber (151) 81.3%
respectively exhibit their highest ductility at angles of between 301
and 601 to the rolling direction [39]. The predicted limit strains for
Cube and R-Cube under uniaxial tension are in close agreement
with the ductility (max elongation) observed in AA7030, including
the reported r-value at 451 (r45¼0.18). These differences in the
limit behavior under uniaxial tension loading are not well pre-
dicted by the Taylor based MK model. Other related results are
listed in Table 2 [5,38–42]. To the contrary, the validation of limit-
strain predictions in biaxial stretching is difficult. Contributions of
Lademo et al. [42] (AA7030 cold rolled annealed 350 1C 1 min),
Velmanirajan et al. [43] (AA8081 annealed 350 1C) and Pedersen
et al. [44] (AA6063 extruded and recrystallized) are examples of
FLD measurements for materials with different and non-negligible
volume fractions of initial Cube orientations. As we will see in the
following paragraph, these results show a profile closer to that
observed in the FLDs when a 50% fraction of random orientations
are added to the ideal condition that is displated in Fig. 4. We
attribute this fact to the effect that the non-Cube orientations have
on the yield surface, and consequently, on the limit behavior under
biaxial stretching. The capability of our model to satisfactory
predict the yield surface of HC and LC materials discussed in
Yanaga et. al [8] is shown in a supplementary attachment.

The effect of orientation spread about {100} 〈001〉 on forming
limit diagrams was studied previously [13]. In what follows, the
FLDs are calculated for three texture dispersions (71, 111 and 151)
around the ideal {100} 〈011〉 and {100} 〈uvw〉 orientations. Fig. 5
shows the calculated limit strains for the {100} 〈011〉 ideal

orientation using MK-FC (left) and MK-VPSC (right) models. In
the negative minor-strain range, as the spread decreases, VPSC
tends to replicate the formability behavior predicted by FC. This is
expected. Here, the smaller the spread is, the lower the limit-strain
value. The correlation with textural spread is the opposite in plane
strain. In this case, the highest limit-strain value is for the 71
spread. In biaxial stretching and within the MK-FC framework, the
profiles of the R-Cube (111) and R-Cube (151) simulations are very
close, while R-Cube (71) exhibits a degraded formability as
deformation approaches the balanced tensile-stretching state.
MK-VPSC's limit-strain values also decrease with increasing biaxial
tension. Although, all these values are lower than for the FC
approach. A comparison between models shows that the MK-
VPSC and MK-FC models behave and change similarly with respect
to the textural dispersion. In uniaxial tension the greater the
dispersion the greater the formability; in plane strain this reverses,
and in balanced-biaxial tension the trend returns.

Fig. 6 shows FLDs for the ND-Cube orientations when the
different spreads are considered. The predicted trends of the limit
strains are similar for the left-hand side of the FLD, irrespective of
whether the MK-FC or MK-VPSC model was used in the calcula-
tion. These results are also independent of the amount of orienta-
tion spread assumed. However, results are clearly different in the
biaxial-stretching region, with the differences between models
increasing continuously to a maximum in balanced-biaxial load-
ing. MK-FC calculations are very close over the complete range of
loading conditions, and we found no significant differences in the
predictions, regardless of the selected spread. To the contrary, MK-
VPSC limit strains depend significantly on ρ. The forming-limit
curves slope downwards from plane-strain to equi-biaxial stretch-
ing, and over the whole range ρ40, the formability progressively

Table 2
Reported max. elongation for uniaxial true stress-strain curves at 01, 451, and 901 to the rolling direction for some heat-treated aluminum alloys.

Material Obs. Max elongation

AA 1050-O [5] Annealed at 343 1C 45 min (Strong Cube texture). Reported r45¼0.20 RD 0.24 DD 0.34 TD 0.26
AA1100 [38] Hot and cold rolled (25 mm to 1 mm), annealed at 440 1C at a rate of 481 per hour RD 0.23 DD 0.29 TD 0.22
AA6063 and AA7030 [39] AA6063 recrystallized (Cube 21.6%, Goss 26.2% – (100)-fiber 65.5%). Reported r45¼0.40 RD 0.16 DD 0.30 TD 0.27

AA7030 recrystallized (Cube 48.0%, Goss 7.8% – (100) fibers 81.3%). Reported r45¼0.18 RD 0.13 DD 0.32 TD 0.23

AA2024-T3 [40] Heat treatment at 525 1C age-hardening 104seg. Crystallographic texture presents Cube,
Goss and S ideal orientations (vol. fractions are not reported)

Thickness (1.27 mm)
RD 0.22 DD 0.26 TD 0.19

Thickness (2.03 mm)
RD 0.24 DD 0.26 TD 0.15

AA7075-O [41] Cold rolled (7.2 mm to 2.1 mm), annealed at 4501C RD 0.16 DD 0.22 TD 0.18
AA7108 and AA7030 [42] AA7108 cold rolled at strain of 0.7, annealed at 400 1C 5 min. (Strong β-fiber) RD 0.11 DD 0.27 TD 0.23

AA7030 cold rolled at strain of 0.7, annealed at 350 1C 1 min. (Strong Cube texture) RD 0.16 DD 0.22 TD 0.16
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decreases with decreasing cut-off angles (a sharper distribution). It
is interesting to note the possibility of a simple correlation
between the limit-strain profiles of the different ideal components
and the expected limit behavior for a given textured material, even
though it is not the focus of the present paper. Fig. 7 (left) shows
the results of a simulation performed on an equal part Cube (151)
and R-Cube (151) ideal orientation texture. Furthermore, the effect
of the orientation distribution severity was included by smoothing
the material texture through the addition of 50% more grains with
random orientations. The predicted limit-strain profiles reveal that
it is not possible to analyze the behavior of the whole material as a
simple and direct blend of individual contributions, at least for this
type of ideal orientation. The enhanced formability associated
with the R-Cube texture under plane-strain conditions is rapidly
degraded by the presence of the Cube-type orientations. However,
under uniaxial tension and particularly for biaxial stretching, the
predicted limit strains are similar to that of the R-Cube. It is
observed that the predicted final texture is close to that obtained
for Cube and R-Cube materials under biaxial stretching. The
addition of a set of random orientations decreases slightly the
limit strains on the left-hand side of the FLD, while on the right-
hand side the profile exhibits less pronounce variations as the
balanced-biaxial condition is achieved [29]. Similar considerations
can be taken for the case of a mixed texture with ND-Cube
orientations (Fig. 7 right).

Several authors [5,6,11] observed enhanced formability for
strong Cube-textured aluminum sheets, when they were subjected
to uniaxial tension at 451 to the rolling direction. However, there is
still not enough experimental limit-strain and strain-hardening
data available for R-Cube and ND-Cube textured materials for us to
verify the models’ calibration and predictions in plane-strain and
equi-biaxial stretching modes.

3.2. Stability and rotation fields around Cube and R-Cube
orientations

To examine the stability of the ideal Cube and R-Cube orienta-
tions, during plane-strain and equi-biaxial stretching, the rotation
rates, their gradients and divergences were calculated using the FC
and the VPSC schemes. The degeneracy which arises at ϕ¼ 01 is
avoided by taking one of the symmetric equivalents of the Cube
and R-Cube orientations defined by the Euler angles φ1 ¼ 01;
ϕ¼ 901; φ2 ¼ 901 and φ1 ¼ 451; ϕ¼ 901; φ2 ¼ 901, respectively.
The quantities that involve a derivative with respect to the angular
values were evaluated through finite differences in the Euler
space. The full characteristics of the rotation field around a given
orientation were calculated in the initial state as well as at the end
of the simulation just before reaching the limit-strain. Numerical
results are presented in Tables 3 and 4, for Cube and R-Cube
respectively.

The calculated values for the ideal Cube orientation in plane-
strain, at an initial state of deformation, were verified with those
reported by Zhou and Neale [45]. It is seen from Table 3 that there
is a little or no change of the rotation rates ( _φ1,

_ϕ, _φ2) during
plane-strain and equi-biaxial stretching for the FC case; one of the
three terms in the divergence expression is positive, one is zero
and the other is negative for ρ¼0, while one is zero and the others
are positive for ρ¼1. This implies that, during plane-strain,
orientations rotate towards Cube along the direction of the φ1
axis, but move away along the ϕ axis. However, for balanced-
biaxial loading, there is a two-dimensional divergence of rotation,
and orientations move away along the ϕ and φ2 axes. The changes
of φ2 are rather small in the plane-strain condition. Under the
VPSC scheme the same tendency is observed, but the calculated
values for the gradients are much larger than those of FC, implying
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that the rotation away from the ideal Cube orientation will be
faster than for the FC predictions. Based on the rotation rates and
the gradient values given in Table 4, FC predicts that the R-Cube
texture is metastable in both, plane-strain and equi-biaxial condi-
tions, either at the initial state of deformation or close to failure. To
the contrary, the VPSC calculations show the same tendency only
in the initial stages of straining, and the difference between both
models is only given by the magnitude of the divergence terms.
Values for the VPSC model are nearly three times greater than
those for the FC calculation. Close to failure, the VPSC computa-
tional values show that the R-Cube becomes more stable as it
approaches the ideal Taylor orientation in plane-strain, while in
balanced-biaxial tension the R-Cube turns in an unstable
orientation.

In order to visualize the reorientation tendencies and evolution
in Euler space of an individual orientation in the vicinity of the
ideal one, typical cross-sections of the rotation field: ϕ�φ1,
φ2�φ1, and φ2�ϕ, were plotted. Each cross-section was evalu-
ated in the range 101�101 around the selected orientation with a
21 spacing over a regular grid. The arrows specify the directions of
orientation change and their lengths indicate the corresponding

magnitudes. The absence of arrows in the graphics corresponds to
a negligible value of the calculated lattice-rotation rate. At this
time, it is important to note two points with respect to the
construction of the lattice-rotation field map associated with a
deformed state: (i) when the Lagrangian approach is used to
describe the texture evolution, orientations initially distributed
in the form of a regular grid do not maintain this regularity in the
deformed state, (ii) two orientations which are close in the
deformed state may come from different initial orientations,
which results from different deformation histories, consequently
different accumulated shear, critical tensions, etc. can be found. To
overcome these problems, we added a fictitious set of orientations
(i.e. their associated volume fractions are null) to the ensemble of
orientations that described the material texture, in order to
evaluate the rotation field at these predefined grid positions.
Furthermore, it is necessary to assume that the internal variables
associated with these orientations – point charges – have the same
microstructural state as the ideal orientation being investigated. In
this sense, the calculated rotation-field map is not absolute. The
starting orientations have to be specified in the analysis and their
validity should be restricted to the vicinity of the orientation
studied.

Lattice-rotation field maps for the Cube and R-Cube orienta-
tions were calculated, in plane-strain and balanced-biaxial tension
at the beginning of deformation and are displayed in Figs. 8a and b
and 9a and b, respectively. It can be seen from Fig. 8a that, in the
plane-strain condition, orientations around the ideal Cube behave
symmetrically with respect to the axes for the three cross-sections
analyzed. This characteristic is observed for both FC and VPSC
models. The calculated rotation field converges in the φ1 direction
and diverges away from it in the ϕ direction, while a negligible
rotation occurs along the φ2 axis, particularly those orientations
very close to the ideal Cube. Both schemes predict a flow of the
rotation field that tends to move away in the direction of ϕ (i.e.
towards the Goss orientation). Orientations rotate slowly during
this process; however the predicted magnitudes of the lattice-
rotation rates are stronger for the VPSC than for the FC model. In
balanced-biaxial loading, the flow around the Cube orientation is a
two-dimensional divergent in the ϕ;φ2 directions; the term
∂ _φ1=∂φ1 is null and no rotation occurs along this axis. This effect
can be clearly seen in the φ2�ϕ section (Fig. 8b). Again, the
changes in the magnitudes are rather small in the FC calculations.

Results based on the rotation rates and gradient values indicate
that the R-Cube orientations are metastable in both, the plane-
strain and the balanced-biaxial conditions. This is shown in Table 4
and depicted in Fig. 9a and b. It can be seen in Fig. 9a that, during
plane-strain deformation, a three-dimensional divergence is pre-
sent in the rotation field around the ideal R-Cube. Computations
indicate that both schemes predict the same behavior; however, as
shown for the Cube case, the magnitudes are nearly three times
larger for the VPSC calculations. As a consequence, a surprisingly
large reduction in the intensity of this component occurs. The
main lattice rotation takes place in the directions ϕ;φ2, towards
the Taylor orientation, and only a weak divergence is observed
along the diagonal line; this can be more easily seen in the φ2�ϕ
section. The values simulated for equi-biaxial stretching and
plotted in Fig. 9b indicate that there is no rotation along the φ1
axis. The farther an orientation is from the ideal position, the
higher its rotation rate is in the ϕ;φ2 directions. The two-
dimensional divergence of rotation observed for balanced-biaxial
loading is seen in both Cube and R-Cube orientations, and it is
entirely attributed to the symmetry of the test.

Fig. 10 shows the initial and final (at the limit-strain level)
inverse pole figures for the Cube and R-Cube textured materials for
plane-strain and equi-biaxial stretching. The inverse pole figures
predicted at failure by both models are in close agreement with

Table 3
Orientation rate, gradient, divergence and persistence of the ideal Cube orientation
in plane-strain (L11¼1, L22¼0, L33¼�1) and balanced-biaxial (L11¼1, L22¼1,
L33¼�2) loading calculated with the FC and VPSC models.

FC VPSCa

initial close to failure initial close to failure

ρ¼0 ρ¼1 ρ¼0 ρ¼1 ρ¼0 ρ¼1 ρ¼0 ρ¼1

φ1 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00
ϕ 90.00 90.00 90.00 89.99 90.00 90.00 90.21 90.08
φ2 90.00 90.00 90.00 89.86 90.00 90.00 89.99 89.35
_φ1 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
_ϕ 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.03
_φ2 0.00 �0.01 0.00 �0.01 0.00 0.11 0.00 �0.20
∂ _φ1=∂φ1 �1.00 0.00 �1.00 0.00 �2.53 0.00 �3.31 �0.01
∂ _ϕ=∂ϕ 1.00 3.00 1.00 3.00 2.41 9.38 2.83 13.74
∂ _φ2=∂φ2 0.00 3.00 0.00 3.00 0.00 9.36 �1.11 14.38
div _g 0.00 6.00 0.00 5.99 �0.12 18.66 �1.58 28.11
P 1.00 0.99 1.00 0.98 0.97 0.81 0.95 0.71

a A Gaussian distribution of 15 degrees was assumed as the HEM.

Table 4
Orientation rate, gradient, divergence and persistence of the ideal R-Cube orienta-
tion in plane-strain (L11¼1, L22¼0, L33¼�1) and balanced-biaxial (L11¼1, L22¼1,
L33¼�2) loading calculated with the FC and VPSC models.

FC VPSCa

initial close to failure initial close to failure

ρ¼0 ρ¼1 ρ¼0 ρ¼1 ρ¼0 ρ¼1 ρ¼0 ρ¼1

φ1 45.00 45.00 44.97 45.00 45.00 45.00 b,41.52 45.00
ϕ 90.00 90.00 90.02 90.01 90.00 90.00 70.16 90.12
φ2 90.00 90.00 90.08 89.86 90.00 90.00 110.98 89.35
_φ1 0.00 0.00 �0.01 0.00 0.00 0.00 �0.18 0.00
_ϕ 0.01 0.00 �0.02 0.01 �0.01 0.00 �0.42 0.04
_φ2 0.00 �0.01 0.02 �0.01 0.01 0.00 0.52 �0.19
∂ _φ1=∂φ1 1.00 0.00 1.00 0.00 3.49 0.00 1.83 �0.01
∂ _ϕ=∂ϕ 2.50 2.98 2.49 3.00 7.02 9.52 �5.85 15.04
∂ _φ2=∂φ2 2.50 3.02 2.50 3.00 7.02 9.46 �6.30 13.34
div _g 5.99 5.99 5.99 5.99 17.53 18.98 �10.32 28.37
P 0.98 0.99 0.93 0.98 0.95 1.00 0.27 0.72

a A Gaussian distribution of 15 degrees was assumed as the HEM.
b The misorientation between (φ1¼41.461, ϕ¼70.041, φ2¼111.131) and the

ideal Taylor (φ1¼90.001, ϕ¼27.001, φ2¼45.001) is 1.37 degrees.
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one another for the Cube material in plane-strain tension. As
biaxial stretching proceeds, differences appear, and in balanced-
biaxial stretching, the behavior of certain crystallographic orienta-
tions depends on the interaction model used. Particularly, near the
〈001〉 orientations, results of the models diverge. Using the VPSC
approach, only a few orientations remain close to 〈100〉, but for the
FC simulations this is not the case, and the grains rotate in widely
different directions. In both cases, one can trace an imaginary line
that delineates a zone with a high density of orientations and one

vacant of orientations. The grain orientations tend to rotate and
accumulate in the region approximately defined by 〈115〉� 〈114〉
and 〈104〉� 〈102〉 for FC and by 〈116〉� 〈115〉 and 〈104〉�〈305〉 for
VPSC, respectively. In addition, we found that the FC final orienta-
tions are distributed rather uniformly in the inhabited region.
Interestingly, for the VPSC calculations, there is a preference to
rotate halfway up the 〈105〉� 〈304〉 segment line. As expected,
due to the symmetry of the test, almost the same behavior is observed
for the initial R-Cube textured-material in balanced-biaxial loading.
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Fig. 8. (a) Lattice rotation-field map for the Cube orientation (φ1 ¼ 01; ϕ¼ 901; φ2 ¼ 901) in the plane-strain stretching predicted by the FC and VPSC models (multiplier
magnitude¼100). (b) Lattice rotation-field map for the Cube orientation (φ1 ¼ 01; ϕ¼ 901; φ2 ¼ 901) in equi-biaxial deformation state predicted by the FC and VPSC models
(multiplier magnitude¼50).
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Just less than ten (o1%) orientations very close to 〈001〉 show a
slight difference in their final orientations. The main discrepancies
between models take place for the R-Cube in plane-strain stretch-
ing. As deformation proceeds, the initial R-Cube orientations move
progressively to more stable positions S (φ1¼591, ϕ¼371,
φ2¼631), Copper (φ1¼901, ϕ¼351, φ2¼451) and Taylor
(φ1¼901, ϕ¼271, φ2¼451). The speed with which this happens
creates the difference between the two models’ predictions. At

failure, VPSC has 75% of Copper and Taylor, 10% of S and no R-Cube
orientations present, while the FC calculation retains an appreci-
able 20% of R-Cube and no Copper is obtained.

As mentioned above, two orientations that share a similar
position in Euler space in the deformed material may come from
different initial orientations, and consequently, present distinct
deformation histories. In what follows, we will discuss the evolu-
tion of two typical orientations, one near R-Cube (#1 φ1¼99.181,
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Fig. 9. (a) Lattice rotation-field map for the R-Cube orientation (φ1 ¼ 451; ϕ¼ 901; φ2 ¼ 901) in plane-strain stretching predicted by the FC and VPSC models (multiplier
magnitude¼50). (b) Lattice rotation-field map for R-Cube orientation (φ1 ¼ 451; ϕ¼ 901; φ2 ¼ 901) in equi-biaxial deformation state predicted by the FC and VPSC models
(multiplier magnitude¼50).
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ϕ¼3.941, φ2¼�54.081) and the other close to the Taylor compo-
nent (#2 φ1¼�90.241, ϕ¼26.841, φ2¼139.221). At failure, both
are very close to the ideal Taylor orientation. As seen in Fig. 11b,
the first one undergoes a significant reorientation, and rotates
towards the more stable Taylor orientation; this behavior is also
observed using the FC model, but the reorientation process is
slower. The persistence values change from 0.16 to 0.33 and from
0.21 to 0.60 for orientations #1 and #2, respectively, and the
calculated rotation fields (Fig. 11a and d) are in agreement with the
observed evolution of the Euler angles (Fig. 11b and e). In addition,
the almost one-dimensional convergence is compatible with the
dispersion observed in Fig. 11c and f. These pole figures display
what would happen if a fictitious set of orientations with an initial
dispersion of 31 is used to understand how individual orientations
evolve with increasing strain.

The texture evolution during rolling of a polycrystalline alumi-
num alloy with initial Cube and R-Cube textures was experimen-
tally investigated by Liu et al. [46] and Liu and Morris [47]. For the
case of the initial Cube texture, the experimental results show that
the Cube-oriented grains rotated to the β-fiber along different
paths, leading to an increase of the intensity at the Copper and
Taylor orientations. For the R-Cube texture, they found that grains
with the {001} 〈110〉 orientation are unstable, and during rolling,
they gradually rotate towards Copper and Taylor with a pro-
nounced scattering towards S. As the cold-rolling reduction
increases, the intensity of the R-Cube orientation decreases,
while the intensity of orientations shared by Copper and Taylor

increases. When the cold-rolling reduction reaches about 64%, the
intensity of R-Cube decreases to zero. VPSC predictions in plane
strain are fully consistent with Liu and Morris' measurements.

Finally, in order to complete the present analysis, we plot the
evolution of some of the ideal texture components during the
deformation process. In particular, we are interested in those
orientations predicted at failure. Fig. 12 shows a reorientation
towards the more stable positions of the initial Cube and R-Cube
textured materials, for plane-strain and equi-biaxial stretching.
Qualitatively, both models behave similarly for the main texture
components, but differ in the velocity with which the process
takes place, as was discussed previously. Tadano et al. [48]
recently highlighted similar results that show the relation
between texture intensity and a sharper lattice-rotation field
for the case of a Cube-type texture treated within the FC or
homogenization-based, finite-element-method framework. The
Cube texture shows the minor differences between both models
in plane-strain loading (Fig. 12a). However, in equi-biaxial
stretching, VPSC shows a faster reduction of the initial Cube
orientations than FC. It is interesting to note that the volume
fraction of the Cube orientations is similar for both cases at
failure, around 35–40% (Fig. 12b). Also, the R-Cube exhibits
identical behavior in equi-biaxial stretching (Fig. 12d). The main
differences in magnitude appear for R-Cube in plane-strain
(Fig. 12c). At the beginning of the deformation process, both FC
and VPSC predict similar texture evolution, but as deformation
proceeds quantitative and qualitative changes in the evolution
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Fig. 10. Equal-area inverse pole figures showing the initial (left) and predicted final (right) orientations at failure calculated with MK-FC and MK-VPSC models for the Cube
and R-Cube textured materials.
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profile are observed, in particular as the limit-strain values are
approached. Near the failure strain, no R-Cube orientations are
present in the VPSC simulated texture, while the FC calculation
maintains nearly one third of the initial R-Cube orientations.
A decomposition of the crystal orientations indicates that the
reorientation towards the two complementary Copper-Taylor
components is faster in VPSC than in FC calculations, and these
components constitute about 60% and 70% of the orientations at
failure for VPSC and FC models, respectively. The same tendency

is observed for the S orientations, but their intensities are lower
by an order of magnitude.

The final orientations depend on the imposed strain path and
the selected model. This suggests that the way in which the initial
textures evolve is the key to interpret the limit-strain profiles. In
what follows, we evaluate the relation between orientation
stability and geometrical hardening due to grain rotations, as well
as how stability and hardening affect the predicted and enhanced
forming-limit strains.

22

11

1 = 99.18o,   = 3.94o,  2 = -54.08o

1 = 90.59o,   = 31.34o,  2 = -44.57o

{100} {110}{111}
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1 =-86.89o,   = 34.96o,  2 = 133.70o

1 =-90.24o,   = 26.84o,  2 = 139.22o

{100} {110}{111}

Fig. 11. VPSC's predictions during plane-strain drawing. Starting orientation (a and c) near R-Cube and (d and f) near Taylor. (a and d) Cross-sections of the lattice-rotation
field at failure (multiplier magnitude¼50). (b and e) Inverse pole figures displaying the rotation path followed during the deformation process. (c and f) Final distribution of
orientations caused by an initial dispersion of 31. Initial orientations are in shaded grey.
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4. Geometrical hardening

Miller and Dawson [49] pointed out that both material and
geometrical hardening elevate the flow stress during straining.
Dislocation interactions increase the slip resistance, and hence the
macroscopic flow stress. This is known as material hardening. In
addition, as plastic deformation proceeds, the grains rotate chan-
ging the orientations of each slip system, which results is an
increase or decrease in the macroscopic flow stress required for
continuous plastic deformation. This effect is referred to as
geometrical (textural) hardening or softening. Yoshida et al. [11]
numerically investigated the geometrical hardening/softening
effect for textured aluminum-alloy sheets in the plane-strain
stretching mode using a generalized FC Taylor-type polycrystalline
model. Based on these calculations, they proposed that geome-
trical hardening effectively develops high-formability in sheet
metals. To rank the relative importance of the development of
anisotropy during straining (geometrical hardening) versus the
effects of the initial grain distributions, we repeated the calcula-
tions of the limit-strain values but without texture evolution.
Results for plane-strain deformation, calculated using both models
(MK-FC and MK-VPSC) are presented in Table 5. We confirm that
texture evolution promotes high formability, not the particular
initial texture we considered. When texture is not updated, the
calculated limit strains are nearly identical – between 0.26 and
0.28 – irrespective of the computational model or initial orienta-
tion. These results point out the importance of the stability
analysis conducted in the previous section.

It is evident that geometrical hardening takes place for the
R-Cube and the ND-Cube cases, while no effect is observed for the

Cube texture. Moreover, the greatest influence of geometrical
hardening is predicted when the VPSC scheme is used, particularly
for the R-Cube texture, where the major limit strain is 1.3 times
greater than for the FC calculation. The difference between models
can be understood by analyzing the geometrical flow stress (i.e.
calculations are carried out assuming that material hardening does
not occur). The amount of strain nearly corresponds to the necking
limit strains. The predicted stress-strain relations are displayed in
Fig. 13, where the macroscopic flow stress σ11 is normalized by
σ11ð0Þ, which is the value of σ11 at ε11 ¼ 0. The enhanced-
formability tendency due to the geometrical hardening reported
in Yoshida's work is also observed with the VPSC scheme. Thus, it
can be clearly seen that the polycrystal-plasticity scheme substan-
tially affects the geometrical hardening, and therefore, the FLD
values.

As was shown in Section 3, only a very small amount of texture
evolution is observed when the Cube texture is deformed, regard-
less of the model. At small deformations, ε11o0.1, grain rotations
have a limited influence on the flow curve for R-Cube and ND-
Cube textures – using either FC or VPSC schemes – but from this
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Table 5
Calculated plane-strain limit values, with and without texture evolution, beginning
with Cube, R-Cube and ND-Cube textured materials.

Cube R-Cube ND-Cube

with without with without with without

MK-FC 0.28 0.28 0.47 0.28 0.34 0.28
MK-VPSC 0.27 0.27 0.59 0.27 0.38 0.26
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value the geometrical hardening has a non-negligible contribution.
As deformation progresses, the differences between models are
reflected in the slope of the plots, particularly for R-Cube. At the
beginning of deformation the normalized VPSC stress–strain curve
increases in slope up to a strain at approximately ε11¼0.30, but
from this point the rate remains constant. To the contrary, when
FC scheme is used, the geometrical hardening exhibits a uniform
slope over the entire deformation range. The resulting normalized
flow curve is greater than for the VPSC model up to ε11¼0.38, but
from that point on the situation reverses and VPSC predicts a
pronouncedly higher normalized flow stress. This response delays
the occurrence of localized necking through a continuous positive
change of the hardening rate, and therefore, the limit-strain values
are higher in the VPSC simulations. Minor differences are found
between both approaches for ND-Cube, although the same beha-
vior is observed, the higher the geometrical hardening, the higher
the limit-strain value.

The lack of geometrical hardening predicted for the Cube
material is a consequence of its stability, which are characterized
in Table 3. The divergence is zero and almost null for FC and VPSC
respectively, while the persistence value remains close to its
maximum. As mentioned above, these orientations rotate slowly

during plane-strain deformation, as the rotation fields converge in
one direction but diverge away from one another in the others. In
contrast to the flow around Cube, significant geometrical hard-
ening is observed around the R-Cube orientation. This fact is
closely associated with the stability parameters calculated for the
initial state of deformation. A three-dimensional divergence
occurs, since all the gradients are positive, as shown in Table 4.
Besides, the persistence parameters for both schemes are lower
than those of Cube. The large differences in the predicted stability
parameters correlate well with the different profiles displayed in
Fig. 13.

To the authors' knowledge, all results relating geometrical
hardening to the limit strains that are reported in the literature
focus on the plane-strain stretching mode. Therefore, we investi-
gated if this relation holds for other strain paths; in particular, we
concentrated on the balanced-biaxial mode. In the same manner
as done for plane-strain stretching, the limit strains for ρ¼1 were
recalculated but without allowing texture evolution (see Table 6).
The decrease of the predicted limit strains is verified, sharing the
tendency observed from the plane-strain analysis. For both models
due to the test symmetry, the Cube and R-Cube materials have
equal limit values, within numerical differences. Without texture
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Table 6
Calculated limit-strain values, with and without texture evolution, in balanced-biaxial mode around the Cube, R-Cube and ND-Cube textured materials.

Cube R-Cube ND-Cube

with without with without with without

MK-FC 0.38 0.21 0.38 0.21 0.47 0.34
MK-VPSC 0.26 0.16 0.26 0.16 0.26 0.18
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Fig. 14. Normalized stress–strain curves in equi-biaxial stretching.
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evolution, MK-VPSC predicts a tendency towards equilibration of
the limit-strain values, similar to that observed in plane-strain. It is
interesting to note that when texture evolution is omitted in
MK-FC, the calculated ND-Cube limit strain does not decrease
sufficiently to conclude that the remaining difference is indepen-
dent of the calculation model. As was seen in Table 5 and Fig. 13,
the increase in formability under plane-strain conditions shows a
high correlation with the predicted geometrical hardening. How-
ever, an opposite geometrical contribution is predicted in
balanced-biaxial loading. FC promotes geometrical hardening,
while VPSC lead to a geometrical softening. The normalized
stress–strain curves are displayed in Fig. 14. It is observed that
the FC geometrical hardening increases continuously at a nearly
constant rate with deformation. While, in the case of the VPSC
calculation the maximum geometrical-softening contribution
occurs close to the failure strain. Finally, regarding Table 6 and
Fig. 14, it is not possible to conclude that there is a clear correlation
between geometrical hardening/softening and the limit strain in
biaxial stretching. The greater formability predicted by MK-FC
does not directly correspond to just the associated textural hard-
ening, but it also exhibits the effects of the interaction model used.

5. Conclusions

In the present study, the role of the constitutive model in the
forming limit of FCC sheet metals with Cube, R-Cube and ND-Cube
type material textures was investigated. The enhanced formability
predicted for the R-Cube material close to a plane-strain loading
mode was explained in terms of stability and geometrical hard-
ening. The following remarks summarize this work and describe
our conclusions:

� The classical MK model, based on strain-rate imposed bound-
ary conditions, was generalized in order to explicitly include
stress loading conditions. With the goal of comparing our
predictions to experimental data, all the components of the
stress tensor were assumed zero except that in the loading
direction. To accomplish this, the velocity-gradient tensor
components L22 and L33 were adjusted in order to nullify the
corresponding stresses components. This allowed us to account
for the evolution of anisotropy during the test.

� Quantitatively and qualitatively different predictions are
obtained when using either MK-FC or MK-VPSC models in the
uniaxial and balanced-biaxial stretching. In negative strain
space both models predict similar shapes for the FLD curve
for the Cube and ND-Cube textured materials, although the
calculated values are lower for the FC simulations. The behavior
is quite different for R-Cube, since the FC's predicted curve
slopes downwards from plane-strain to uniaxial stretching
with the minimum limit-strain value at ρ¼�0.5. The opposite
is found using MK-VPSC. Nevertheless, the limit strains pre-
dicted by both models are close for R-Cube when strictly
uniaxial tensile conditions are imposed.

� The rotation rates, their gradients and divergences at and
around the individual orientations were used to examine
the stability of the ideal Cube and R-Cube textures, during
plane-strain and equi-biaxial stretching. As expected, negligible
rotation rates are predicted for the ideal Cube orientation
independent of the selected model. However, the VPSC orien-
tation gradient is higher than that for FC, implying that its
rotation rate will be faster than that predicted with the FC
model in the vicinity of the ideal orientation. This behavior is
also observed for the R-Cube orientation, although this texture
has a more pronounced metastable tendency (i.e. higher

divergency value). As a consequence, a remarkable reduction in
the intensity of this component occurs.

� The higher formability exhibited by the R-Cube and ND-Cube
materials in the plane-strain deformation mode is directly
related to the geometrical hardening predicted by both FC
and VPSC schemes. Moreover, the greatest influence is found
when the VPSC model is used, particularly for the R-Cube
texture. Although we studied three different textures, it is
texture evolution, and not the particular initial textures con-
sidered here that promotes high formability. The lack of
geometrical hardening predicted for the Cube texture is a
consequence of the slow rotation of orientations during
plane-strain deformation, as demonstrated by the calculated
stability parameters.

� The loss of formability predicted by MK-VPSC in balanced-
biaxial stretching for the three textured-materials is directly
associated to the predicted geometrical softening. To the
contrary, the high formability predicted by MK-FC for the ND-
Cube material is not only correlated with geometrical or
textural hardening, but also with the interaction model used.
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