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Abstract
We give a detailed account of an ab initio spectral approach for the calculation of energy spectra
of two active electron atoms in a system of hyperspherical coordinates. In this system of
coordinates, the Hamiltonian has the same structure as the one of atomic hydrogen with the
Coulomb potential expressed in terms of a hyperradius and the nuclear charge replaced by an
angle dependent effective charge. The simplest spectral approach consists in expanding the
hyperangular wave function in a basis of hyperspherical harmonics. This expansion however, is
known to be very slowly converging. Instead, we introduce new hyperangular Sturmian
functions. These functions do not have an analytical expression but they treat the first term of the
multipole expansion of the electron–electron interaction potential, namely the radial electron
correlation, exactly. The properties of these new functions are discussed in detail. For the basis
functions of the hyperradius, several choices are possible. In the present case, we use Coulomb–
Sturmian functions of half integer angular momentum. We show that, in the case of H−, the
accuracy of the energy and the width of the resonance states obtained through a single
diagonalization of the Hamiltonian, is comparable to the values given by state-of-the-art methods
while using a much smaller basis set. In addition, we show that precise values of the electric-
dipole oscillator strengths for S P transitions in helium are obtained thereby confirming the
accuracy of the bound state wave functions generated with the present method.

Keywords: Sturmian, hyperspherical, resonances

(Some figures may appear in colour only in the online journal)

1. Introduction

The use of hyperspherical coordinates in describing strongly
correlated two-electron atomic systems has provided a deep
insight into electron dynamics. In this system of coordinates,
the structure of the Hamiltonian is the same as for atomic
hydrogen: the electrostatic potential can be written as

WC R( ) , where R is an hyperradius which determines the size
of the system and WC ( ) is an effective charge depending on a
hyperangle describing radial correlations, and on the polar
and azimuthal angles of both electrons. Initially, Bartlett [1]

and Fock [2] were the first to study with this system of
coordinates, the ground state wave function of helium and to
derive a series expansion, known as the ‘Fock expansion’ that
accounts for all the singularities occurring when both elec-
trons are close to each other and when each electron is close
to the nucleus. Later on, and in order to study doubly excited
states of He and H−, Macek [3] introduced an adiabatic
expansion that has the same form as a Born–Oppenheimer
expansion providing a convenient framework to elucidate the
symmetry of these doubly excited states (see also [4]).
Although most of the theoretical work based on this approach

Journal of Physics B: Atomic, Molecular and Optical Physics

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 235005 (15pp) doi:10.1088/0953-4075/49/23/235005

0953-4075/16/235005+15$33.00 © 2016 IOP Publishing Ltd Printed in the UK1

mailto:abdouraman.bakari@gmail.com
http://dx.doi.org/10.1088/0953-4075/49/23/235005
http://crossmark.crossref.org/dialog/?doi=10.1088/0953-4075/49/23/235005&domain=pdf&date_stamp=2016-11-18
http://crossmark.crossref.org/dialog/?doi=10.1088/0953-4075/49/23/235005&domain=pdf&date_stamp=2016-11-18


[3, 5, 6] has mainly focused on qualitative interpretation of
two-electron processes, it has also produced quantitative
results on the energy eigenstates of He and H− as well as on
cross-sections for photon and electron impact collisions with
atoms [7]. Very accurate results have been obtained by
including non-adiabatic coupling terms, making the efficiency
of this method at least comparable to other highly sophisti-
cated approaches [8].

Spectral approaches employing hyperspherical coordi-
nates have also been used to solve directly both the stationary
and the time-dependent Schrödinger equation (TDSE) (see for
instance [9]). The simplest method is based on expanding the
hyperangular wave function in a basis of hyperspherical
harmonics [10]. Such spectral approaches are particularly
indicated in the treatment of electron impact ionization of
atomic hydrogen and double photoionization of two-electron
atomic systems since in the hyperspherical system of coor-
dinates, the double continuum wave function takes a very
simple analytical form when the electrons are both asymp-
totically far from the residual ion [11]. However, it turns out
that the convergence of such an expansion in hyperspherical
harmonics is usually very slow [12, 13]. In fact, hyper-
spherical harmonics are not suitable for describing a situation
where one electron is very far from the other.

In order to study low-energy fragmentation states of
three-charged particle systems, and in particular, Wannier’s
threshold laws, Macek and Ovchinnikov [14] replaced the
basis of hyperspherical harmonics by a very small size basis
of what they called angle Sturmians. These functions that
depend on all the angles, are orthonormal with respect to the
effective charge WC ( ) and, as a result, describe very well the
angular motion of the electrons in situations where one
electron stays confined while the second one moves slowly
away. In the present contribution, we follow a similar idea
and introduce a basis of hyperangular Sturmian functions of
the hyperangle. These functions are solutions of a Sturm–

Liouville equation in which the weight function is an effective
charge that includes the electron–nucleus interaction poten-
tials and the first term of the multipole expansion of the
electron–electron interaction term. Those functions form a
complete and discrete set of 2-integrable functions that are
orthogonal with respect to this effective charge. By compar-
ison, hyperspherical harmonics whose dependence on the
hyperangle is expressed in terms of Jacobi polynomials, are
solutions of a Sturm–Liouville equation that does not involve
any effective charge. As a matter of fact, these functions give
a poor description of the electron angular motion.

In this contribution, we show that accurate values of the
bound state eigenenergies and of the energy and width of the
doubly excited states for He and H– may be obtained from a
single diagonalization of the atomic Hamiltonian calculated in
a Sturmian basis of moderate size of which is significantly
smaller than for example a basis set of hyperspherical har-
monics. In addition, in order to assess the accuracy of the
bound state wave functions, we calculate the electric-dipole
oscillator strengths for S P transitions in helium. Our
results obtained in the length gauge demonstrate that the wave
functions are very accurate even at large distances.

The paper is divided in two sections. The first one is
devoted to the general theory. After briefly reviewing the
hyperspherical coordinates, we introduce our sets of hyper-
angular and hyperradial Sturmian functions used for the
spectral analysis of the solution of the time independent
Schrödinger equation with or without complex rotation of the
Hamiltonian. The reasons why hyperangular Sturmians are
more appropriate than Jacobi polynomials, are discussed in
great detail. We also compare Sturmian expansions in sphe-
rical and hyperspherical coordinates. In particular, we show
that the optimization of the Sturmian basis in terms of free
nonlinear parameters may be carried out in both systems of
coordinates. Results for the energy of bound states, energy
and width of doubly excited states for He andH– and electric-
dipole oscillator strengths in the length gauge for S P
transitions in He are presented, discussed and compared to
very accurate existing data. To conclude, we show in what
context the use of such a basis of hyperangular Sturmians is
pertinent. Atomic units are used throughout unless otherwise
specified.

2. Theory

2.1. Basic formulae

The wave function of a two-electron atomic system with total
angular momentum L, Lz component M, and total energy bE ,
satisfies the following stationary Schrödinger equation:

+ F = Fb b b
   

H U r r E r r, , , 1L M L M
I

,
1 2

,
1 2( ) ( ) ( ) ( )

where

r1 and


r2 are the position vectors of both electrons with

respect to the nucleus. HI is the independent electron
Hamiltonian which is:

⎛
⎝⎜

⎞
⎠⎟ = - - - +H Z

r r

1

2

1

2

1 1
, 2r rI

1 2
1 2 ( )

where Z denotes the charge of the nucleus which is assumed
to be infinitely massive. U is the electron–electron interaction
Hamiltonian which can be expressed in terms of its well
known multipole expansion as follows:
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where <r =min(r r,1 2) and >r =max(r r,1 2) with q fr , ,i i i( )
the spherical coordinates of the position vector


ri (i=1, 2).

Let us consider the hyperspherical coordinate system which
are related to the spherical coordinates as follows:

q q f f a q q f fr r R, , , , , , , , , , , 41 2 1 2 1 2 1 2 1 2( ) ( ) ( )

where r1 and r2 are replaced by the hyperradius R and the
hyperangle α

= +R r r , 51
2

2
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2
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In hyperspherical coordinates, the kinematics of three particles
is reduced to that of the motion of one body of mass μ on the
five-dimensional surface of a six-dimensional sphere whose
variable radius is R. R varies from zero to infinity and the
hyperangular coordinate α varies between 0 and p 2. The
reduced mass μ is defined as m = + +m m m m m mi j k i j k( ) ,
where mi, mj and mk are the masses of the three particles. For
the case under consideration here—one nucleus and two
electrons—the reduced mass is equal to 1 in the limit of an
infinitely massive nucleus.

In this system of coordinates, the wave function of the
two-electron atomic system satisfies the stationary Schrö-
dinger equation:

a

a

+ F

= F
b

b b

 

 

H U R r r

E R r r

, , ,

, , , , 7

L M

L M

I
,

1 2

,
1 2

( ) ( )

( ) ( )

where the independent electron Hamiltonian HI and the
electron–electron interaction become respectively:
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The Casimir operator L2 appearing in equation (8) is given by:
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where l1
2ˆ and l2

2ˆ are the individual electron angular momen-
tum operators. In equation (9), the factors avq ( ) are:
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In this system of coordinates, the electron–electron and the
electron–nucleus Coulomb interactions are reduced to a
hyperspherical Coulomb interaction aC r r R, ,1 2( ˆ ˆ ) , where

aC r r, ,1 2( ˆ ˆ ) can be considered as an effective charge
depending on the angles only:
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In order to eliminate the first derivatives both in R and α

in the Hamiltonian (8) and the Casimir operator (10), it is
convenient to introduce the wave function transformation:
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With this change of function the Schrödinger equation (7) is
transformed into the following equation for aYb  R, , r , rL M,

1 2( ):
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where the reduced Casimir operator L2˜ is:
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2.2. Spectral analysis of the solution

In order to solve equation (14), for aYb  R r r, , ,L M,
1 2( ) given in

equation (13) we use the following expansion:
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where we take into account the exchange of the electrons. S is
the total electron spin taking the value 0 and 1 for singlet and
triplet states respectively. To solve equation (14) any type of
basis function can be used both for S Rn p, ( ) and
f a r r, ,p l l

L M
, ,
,

1 2
1 2

( ˆ ˆ ). However, we choose here to use Sturmian
functions both for the hyperradial and the hyperangular parts.

2.2.1. Hyperangular Sturmian functions. An apparently
natural definition for the hyperangular basis functions
results from the definition of the reduced Casimir operator
given by equation (15). In many mathematical books [15], it
is found that the eigenfunctions f a r r, ,p l l

L M
, ,
,

1 2
1 2

( ˆ ˆ ) of L2˜ satisfy
the following eigenvalue problem:
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and are written in terms of bipolar harmonics Y r r,l l
L M
,
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1 21 2
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Jacobi polynomials aP cos 2p
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where l = + +p l l2 1 2 is a non-negative integer. These
functions which are the so-called hyperspherical harmonics,
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are the eigenfunctions of the total angular momentum of the
system, but they do not include any of the correlation
produced by the Coulomb interaction. For that reason, the
convergence of expansion (16) is very slow. In order to
overcome this problem, we define here a hyperangular
Sturmian basis that includes most of the correlation
produced by the three-body Coulomb interactions.

Similarly to what was done by Macek and Ovchinnikov
[14, 16, 17] and instead of solving the simple equation (17)
we consider the following equation:

⎜ ⎟⎛
⎝
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r a f a
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which results from the Schrödinger equation (14) by replacing
R by ρ, Z by  and aC ( ) by aC̃( ) which we will call the
reduced effective charge and which is defined as follows:
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where  alHp
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,1 2 ( ) satisfies the following Sturm–Liouville

equation:
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In equation (22), λ is considered as a fixed parameter, r l2 p ( )
is the eigenvalue and aC̃( ) is the weight function. The
functions  alHp

l l
, ,
,1 2 ( ) form an orthogonal and complete set of

functions:
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To within a scale factor ( R1 ), the reduced effective charge
includes the electron–nucleus interaction and the first term

av0 ( ) of the multipole expansion of the electron–electron
interaction U given by equation (9). av0 ( ) is in fact the radial
electronic repulsion. Because aC̃( ) is the weight function in
the orthonormality relation (25), it must have a fixed sign in
its domain of definition. This implies that none of the higher
order terms of the multipole expansion of U can be included
in aC̃( ) without affecting the positive definite character of the

weight for all values of α. This contrasts with the approach of
Macek and Ovchinnikov where the full effective charge

aC r r, ,1 2( ˆ ˆ ) of equation (14) was considered. It is important
to note that our hyperangular Sturmian functions have no
known analytical solution. Instead, it is necessary to derive
them numerically. In addition to the fully numerical approach
developed in [16, 17], we use in this contribution two spectral
methods based on an expansion in Tchebychev polynomials
and also an expansion in terms of B-splines. It turned out
that the B-spline expansion is the most accurate of the
spectral methods considered here. This expansion and the
problem of the exchange of the electrons are treated in the
next section.

Let us now discuss in more detail why the hyperangular
Sturmian basis is by far, more appropriate than the Jacobi
polynomial basis in the present case. There are essentially two
reasons: the hyperangular Sturmians take explicitly into
account both the electron–nucleus and the electron–electron
interactions. In general, in an atomic two-electron system, at
least one of the electrons is localized around r 01 or r 02

in the bound states, the single continua and the excitation–
ionization channels. In these cases and for most values of R,
the corresponding states will be localized close to a  0 or
a p 2. This means that somehow we need to concentrate
the nodes of the hyperangular eigenfunctions in those regions
of α. The Jacobi polynomials do not fulfill this condition;
their nodes are spread almost uniformly along the α axis
between 0 and p 2. Taking into account aC̃( ) given by
equation (20) in (22) moves the nodes to the inner regions
close to 0 or p 2.

It is quite easy to understand why the inclusion of the
electron–nucleus and the electron–electron interactions affects
the location of the nodes of the hyperangular Sturmian
functions. To make this clear, let us consider equation (22) in
the case where = =l l 01 2 :

⎜ ⎟

⎡
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where we defined  l l= + + +4a
1

4

15

4( )( ) . The boundary

conditions (23) and (24) force  alHp, ,
0,0 ( ) to be zero at the

points 0 and p 2 allowing us to associate equation (27) with
the well known quantum problem of a particle in a well with
infinite walls. Let us suppose for the time being that we set
r = 0p in (27). In that case, equation (27) becomes:

⎡
⎣⎢

⎤
⎦⎥ a

a-
¶
¶

- =lH 0, 28a p

2

2 , ,
0,0 ( ) ( )

which is the same as the Schrödinger equation describing a
free particle inside an infinite well where a is the energy
eigenvalue. It is clear that the first function (p=0) has no
node, the second does have one, and the number of nodes
grows as the eigenvalue grows. The nodes are regularly
distributed along the region of α as if it were a string with
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both ends fixed. Now, let us take, e.g. r = 1p . Then, instead
of having a particle in a simple well with infinite wall, we
have still the walls but inside the well the potential varies as
shown in figure 1. In the figure we plotted the potential for
different values of  = 0.5, 1, 2 and 5. In the plot we
included also the potential corresponding to the independent
electron (no correlation) model. As the potential becomes
more attractive near the borders, the kinetic energy increases
significantly leading to fast oscillations of the wave function.
That means that the nodes are going to be mainly localized
closer to the borders of the wells in the shaded area in
figure 1. Besides, when comparing the potentials in figure 1,
we notice that the width of the potential wells decreases with
increasing  thereby implying a bigger concentration of
nodes close to a = 0 and a p= 2. The case where   0.5
is when the potential is 0 at p 4. This is the extreme situation
where the nodes are pushed away from the center and
concentrate at the edges of the angular region.

In the previous description we assumed a as being the
eigenvalue. However, in the methodology we are implement-
ing, we are taking rp as the eigenvalue keeping

 l l= + + +4a
1

4

15

4( )( ) constant. This is what turns the

 alHp
l l
, ,
,1 2 ( ) from energy eigenfunctions to angular Sturmian

functions. When keeping fixed l l+ + +41

4

15

4( )( ) we are

looking for all the potential strengths possessing that energy.
This is similar to what we do with the Coulomb potential. If
we fix the charge, the Schrödinger equation provides the
energies. If we fix the energy, the equation gives all the
charges whose corresponding potential is able to support one
state of the given energy.

In order to illustrate the above discussion, figure 2 shows
the Jacobi polynomial of index 40 and compares it to the
hyperangular Sturmian of index 40 and  = 0.5 for

= =l l 01 2 . We clearly see that in the case of the Jacobi
polynomial, the nodes are distributed quasi uniformly along
the α axis between a = 0 and a p= 2. This contrasts
strongly with the hyperangular Sturmian function the nodes of
which are clearly concentrated around a = 0 and a p= 2.
In figure 3, we show the behavior of the same Jacobi
polynomial very close to a p= 2 i.e. a = -cos 2 1( ) and
compare it to the behavior of the same hyperangular Sturmian
as before and two other hyperangular Sturmians, one

Figure 1. Plot of the potential term in the Schrödinger equation (27).
This potential term is actually the effective charge aC̃( ) represented
here for various values of  . The dashed (blue) line is obtained by
neglecting av0 ( ), the radial electronic repulsion. The nodes of the
hyperangular Sturmians concentrate in the shaded area on the
horizontal axis.

Figure 2. Plot of the Jacobi polynomial of index 40 (blue line) and
the hyperangular Sturmian function of index 40 and  = 0.5 for
= =l l 01 2 as a function of acos 2( ). 503 B-splines have been used to

generate the hyperangular Sturmian function.

Figure 3. Plot of the Jacobi polynomial (multiplied by 10) of the
same index 40 and = =l l 01 2 as a function of acos 2 very close to

a = -cos 2 1( ) (blue dashed line). This Jacobi polynomial is
compared to three hyperangular Sturmian functions of index 40 and
= =l l 01 2 : the red line corresponds to  = 1 within the

independent model; the green line corresponds to  = 0.5 with
correlation; the magenta line corresponds to  = 1 with correlation.
As in table 2, 503 B-splines have been used to generate the
hyperangular Sturmians.
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corresponding to  = 1 and the other one obtained within the
independent electron model. As expected, the density of
nodes close to p 2 increases when  decreases.

In the above discussion, we mentioned the fact that our
hyperangular Sturmian functions take into account at least
partially the electron–electron correlation. For that reason, we
expect our hyperangular Sturmian function basis to be
appropriate to describe the electron–electron dynamics. This,
is the basic brick of the three-body problem. This brings our
basis closer to the fully correlated basis as those defined in
[18–24] but using hyperspherical coordinates. However, we
must stress that our approach does not fulfill the Kato cusp
condition associated with the two-electron coalescence. This
means that the eigenenergy of mainly the ground state is
limited to 5 or 6 digits. Note that for our purpose, this is
sufficient. The other states are much less affected by this Kato
cusp condition since the electrons are most of the time far
from each other.

2.2.2. Hyperradial Sturmian functions. In the system of the
hyperspherical coordinates, the Schrödinger equation (14) has
the same structure as the equation for a hydrogen-like system.
It is possible to use generalized Sturmian functions as done in
[25], however, as suggested in [17] for hyperspherical
coordinates it is convenient to use Coulomb–Sturmian
functions that are solution of the following Sturm–Liouville
problem:
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with the following boundary conditions:
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In equation (29), ℓ and v are now half integers5 given by:

l= ¢ +ℓ 3 2, 32( )
= +v n 3 2, 33( )

where l¢ and n are positive integers with  l¢ +n 1. kv is
the eigenvalue where κ is an arbitrarily fixed parameter which
acts like a spatial dilatation factor. The choice of the value of
κ will be discussed later. Equation (29) may then be rewritten
as follows:
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Note that the centrifugal terms in equations (22) and (29) are
similar. λ and l¢ can then be chosen identical to remove the
centrifugal term from equation (14). The analytical expression

of the Coulomb–Sturmian function is:

k=l
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where kl
l
- ¢-
¢+L R2n 1

2 4 ( ) is a Laguerre polynomial. The
normalization factor l

k
¢Nn, given by:
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These Coulomb–Sturmian functions form a complete and
discrete set of functions that are orthogonal with respect to a
weight function which is the Coulomb potential R1 .

Masili and Starace [26] found that including logarithmic
terms in R in their basis expansions involving Slater orbitals
improved convergence for a non optimized basis in calculat-
ing energy levels and the static and dynamic polarizabilities
of helium. They also found that using an optimized basis of
Slater orbitals in R without logarithmic terms gave similar
accuracy. We do not include logarithmic terms in R in our
basis but use an optimized basis by varying the κ parameter
and using more than one κ.

2.2.3. Oscillator strengths. In order to assess the accuracy of
both the energy and the wave function of the bound states
obtained with our approach, it is instructive to calculate the
corresponding oscillator strengths. They are expressed in
terms of the electric-dipole matrix elements. Here, we assume
that the electric field is linearly polarized along the the z-axis.
For a transition from an initial state F ñL M

i
,∣ to a final state

F ñ¢ ¢L M
f

,∣ , these oscillator strengths are defined in the length L( )
and the velocity V( ) gauge as follows:

= -

´ áF + F ñ¢ ¢   
C E E

e r r

f

, 38

L

L M
z
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f i

f
,

1 2 i
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In expressions (38) and (39), Ei and Ef are the energies of the
initial and final states and C is a constant equal to 2 and 5/3
for S P and P D transitions respectively. In practice,
we first calculate the length and velocity gauge dipole matrix
in our Sturmian basis and then obtain the oscillator strength
by moving from the Sturmian basis to the atomic basis. The
detailed calculation of the dipole matrix elements in the
Sturmian basis is lengthy but straightforward. We briefly
describe this calculation in the appendix.

2.3. Numerical implementation of the Sturmian basis

2.3.1. The hyperangular Sturmian basis. To construct the
hyperangular Sturmian functions  alHp

l l
, ,
,1 2 ( ) in equation (22)

5 This contrasts with what we have in the system of spherical coordinates
where v and ℓ are pure integers.
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we expand them in terms of B-splines, aBi ( ), [27]

 åa a=l
=

H c B . 40p
l l

i

n

i
p

i, ,
1

1 2 ( ) ( ) ( )

It is straightforward to enforce the boundary conditions in
equations (23) and (24) by having all of the Bi equal to zero at
a = 0 and a p= 2. The B-splines are a very flexible basis
set allowing any form of mesh one would like in α and hence
allowing for an accurate description of the  alHp

l l
, ,
,1 2 ( ) near

a = 0 and a p= 2 where there are an increasing number of
oscillations. Fixing the values of l l, 1 and l2 in equation (22)
and substituting the expansion in (40) leads to a generalized
eigenvalue problem for the eigenvalues r lp ( ) and the
eigenvector components ci

p.

For =l l1 2 the solutions of equation (22) are either even
or odd with respect to reflection about a p= 4 and so in the
sum in equation (16) only the even solutions in α contribute
to singlet (S=0) states and the odd solutions for the triplet
states (S = 1). When l1 and l2 are different, for the exchange
term in (16), we can either use  a-l

pHp
l l
, ,
,

2
1 2 ( ) or  alHp

l l
, ,
,2 1 ( ).

Figure 4 gives the eigenvalue associated to each hyperangular
Sturmian  alHp, ,

0,0 ( ) as a function of the index p for various
sizes of the B-spline basis. In all these bases, equally spaced
mesh points are used. We see that for the first 50 eigenvalues,
the results are stable showing that a basis of 200 B-splines is
enough. Note that for our purpose, 50 hyperangular Sturmians
per l l,1 2( ) pair is sufficient in most of the cases. If however
higher eigenvalues are needed, figure 4 shows that bigger
sizes of the B-spline basis will be necessary while using a
density of mesh points higher near a = 0 and a p= 2.

2.3.2. Matrix formulation of the Schrödinger equation. Let us
now consider the matrix formulation of the Schrödinger
equation (14). The solution (16) is first expanded in terms of

hyperrangular and hyperradial Sturmian functions. After
substitution in equation (14) and making use of
equations (19) and (22), we obtain:
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where only one of the terms needed to make symmetric the
wave function was included to make the steps more easy to
follow. Using equation (34) with l l¢ = gives:
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The hyperangular Sturmian equation (22) provides a set of
eigenvalues that can be assimilated to a discretization of the
hyperradial coordinates. For r=R p, the first term in the
above equation cancels exactly the parts of aC r r, ,1 2( ˆ ˆ )
included in aC r r, ,1 2˜( ˆ ˆ ). Projecting on the left with the basis
functions and integrating we obtain:
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where we used t = n p l l, , ,1 2{ }. As the result of the
orthonormality relation of the Sturmian functions we have:
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It is interesting to note that using the hyperspherical
coordinates, the hyperradial and the hyperangular
integrations separate making the calculations easier.

2.3.3. Calculation of the energy and width of the doubly excited
states. The energy and width of the doubly excited states
are obtained by diagonalizing the complex scaled atomic
Hamiltonian. In the case of the hyperspherical coordinates
system, it is only the hyperradius R which is affected by the

Figure 4. Eigenvalue of the corresponding hyperangular Sturmian
aHp

0,0 ( ) eigenfunction solution of the Sturm–Liouville problem (22).
The various curves correspond to different sizes of the B-spline basis
in term of which these hyperangular Sturmian functions are
expanded.
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complex scaling

 qR Re , 46i ( )

where the scaling angle θ is real and positive. The atomic
Hamiltonian is no longer hermitian but complex symmetric
with complex eigenvalues. The imaginary part of the energy
represents half of the width of the corresponding state. For
well described bound states, the imaginary part of the energy
is zero while it is nonzero and negative for doubly excited
states. It is interesting to note that instead of complex scaling
the Hamiltonian, it is equivalent to complex scaling the
nonlinear parameter κ of the hyperradial Sturmian:

k k q-e . 47i ( )

In this condition, the hyperradial Sturmian functions become
complex and behave asymptotically as outgoing spherical
waves.

2.3.4. Optimization of the Sturmian basis. Our long term
objective is to study the interaction of a two-active electron
system with an external field by solving the TDSE. Within the
framework of a spectral method, it is crucial to reduce as
much as possible the size of the basis while keeping a good
level of accuracy in describing the two-electron wave packet.
Before describing an efficient way of optimizing this basis, it
is convenient at this stage to compare the present approach to
Lagmago’s method [28] which uses a system of spherical
coordinates. This latter method consists in expanding the
solution of the TDSE in a basis of products of Coulomb–
Sturmian functions of the electron radial coordinates and
bipolar harmonics of the angular coordinates. This method
was extremely efficient to generate accurate values for the
energy and width of a wide range of singlet and triplet
resonance states of helium [29, 30].

Lagmago’s method has however two important draw-
backs. First, the accurate calculation of the matrix associated
to the electron–electron Coulomb interaction term which
involves a double integration, requires a computer time that
becomes prohibitive when many configurations are included.
This is in fact the bottleneck of Lagmago’s method. By
contrast, this calculation in our new approach is trivial.
Secondly in Lagmago’s method, the density of single
continuum states below the double ionization threshold
obtained by diagonalizing the atomic Hamiltonian is very
low even for very large bases. We have checked that this is no
longer the case in our new approach. Nevertheless, It has to
be stressed that with a relatively small size basis, Lagmago’s
method allows one to generate very accurate energies for
singly and doubly excited states [30]. This is particularly true
when the level of excitation of both electrons is strongly
asymmetric. In this latter case, the electronic cloud is
characterized by two distinct regions of space where each
electron state is practically Coulombic, one close to the
nucleus for the inner electron and a region at large distances
for the outer electron. An efficient expansion for the wave
function should then contain both distance scales and span the
two regions simultaneously [28]. This is achieved by
associating to each electron a different value of the nonlinear

parameter κ (see equation (35)) in each product of Coulomb–
Sturmian functions. For a given atomic state, good values of
the nonlinear parameters κ are consistently obtained by
exploiting the fact that the Coulomb–Sturmian function
kS rn ℓ i,

i ( ) =i 1, 2( for electron 1 and 2 respectively) describes
exactly an electron of energy  k= - = -z n2i

2 2 2 in the
field of a nucleus of charge z [31]. In order to describe
accurately many atomic states with a single basis, it is
therefore necessary to introduce various pairs k k,1 2( ) of
nonlinear parameters. This, however, makes the basis
numerically overcomplete. It means that some of the
eigenvalues of the overlap matrix are very close or equal to
0 because the corresponding eigenvectors are linearly
dependent. In [31], it is explained in detail how to eliminate
these eigenvalues leading to a significant reduction—typically
about 30%—of the size of the basis while giving a very good
description of the electronic structure of the atom.

The Sturmian basis that we developed in the system of
hyperspherical coordinates can also be optimized by means of
a very similar method. The hyperradial and hyperangular
Sturmian functions depend on the two nonlinear parameters κ
and  respectively. The idea is therefore to introduce several
pairs k,( ) of nonlinear parameters within a single basis.
This raises the question of the choice of these pairs of
nonlinear parameters. In expression (35) of the hyperradial
Sturmian function, κ appears as a factor that scales the
hyperradius R which in turns defines the size of the atom. A
large κ is therefore used to describe accurately very compact
atomic states as for instance the ground state while small
values of κ will be more convenient for the description of
excited states of the atom. In practice, we proceed as follows.
For the compact ground state of helium, we take k Î 1, 2[ ].
Varying the value of κ in this interval hardly changes the
value of the ground state energy for a fixed number of
hyperradial Sturmians. If we need to describe accurately
asymmetrically excited states, it is the level of excitation of
the most excited electron which determines the value of κ.
Following what is done in [28], we choose k = n1 , where n
is the principal quantum number of the most excited electron,
assuming both electrons independent. When many excited
states of the atom have to be well described simultaneously,
we introduce several values of κ within the same basis. The
other nonlinear parameter  is associated to the hyperangle α
which in turn controls the relative distance of the electrons
with respect to the nucleus.  can be interpreted as a
weighted mean of the nuclear charges experienced by both
electrons. If electron 1 is close to the nucleus while electron 2
is far from it, both electrons experience different nuclear
charges: Z for electron 1 and s-Z for electron 2 where σ

results from screening by the inner electron. In practice, we
choose  = 2 for the ground state of helium. As a matter of
fact, the ground state energy of helium is not very sensitive to
the value of  . However, for asymmetrically excited states of
helium, it is important to choose a value of  close to 0.5
which is the smallest possible value in order to take into
account the fact that one electron may be very close to the
nucleus while the other one is far, thereby requiring a good
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description of the wave function around a = 0 or p 2. It is
precisely for  = 0.5 that the number of nodes of the
hyperangular Sturmian is the highest around a = 0 and p 2.

3. Results and discussions

In the absence of electron–electron interaction, the system of
hyperspherical coordinates ‘introduces’ artificially radial
electronic correlations. It is therefore interesting in this case,
to compare the convergence of the energy of various bound
states of helium without the electron–electron interaction term
as a function of the number N of Jacobi polynomials or
hyperangular Sturmians used in the two corresponding bases.
The results are given in table 1 for the ground state energy
and the energy of the 1s2s and 2p2 states. In the case of our
Sturmian basis, we used 10 hyperradial Sturmians and set
k = 2 and  = 2. For the ground state energy, we see that

the convergence is reached with only 7 hyperangular Stur-
mians while more than 100 Jacobi polynomials are not suf-
ficient to reach convergence. The same conclusions hold in
the case of the 1s2s and 2p2 states. A close look at the 1s2s
state indicates that in the case of the Jacobi polynomials, the
convergence of the energy toward the correct value is extre-
mely slow thereby demonstrating the real efficiency of our
new Sturmian approach.

In table 2, we analyze the convergence of the ground
state energy of H−, including the electron–electron interaction
term, as a function of the number of l l,1 2( ) pairs of electron
angular momenta. We present two sets of results. For the first
set, the number of hyperangular and hyperradial Sturmians is
equal to 5 while it is equal to 8 and 7 respectively for the
second one. In both cases, k = 0.8 and  = 0.7. Our results
are compared to those of Foumouo et al who used a system of
spherical coordinates and a basis of products of Coulomb–
Sturmians of the radial coordinates and bipolar harmonics of

Table 1. Convergence of the ground state energy as well as the energy of the first and second excited states of He within the independent
electron model as a function of the number N of hyperangular Sturmian functions and, for comparison, of the number of Jacobi polynomials
included in the basis. The exact value of each energy is given at the bottom of each column. All energies are expressed in a.u.

-E1s2 -E1s2s -E2p2

N
Hyperangular
Sturmians

Jacobi
polynomials

Hyperangular
Sturmians

Jacobi
polynomials

Hyperangular
Sturmians

Jacobi
polynomials

5 3.9999999231 3.9900995024 2.4997988721 2.4055497334 0.9999999636 0.9994140601
6 3.9999999990 3.9939504282 2.4999886272 2.4332192268 0.9999999991 0.9997154676
7 4.0000000000 3.9960485770 2.4999994522 2.4512870831 0.9999999999 0.9998496994
10 4.0000000000 3.9985612968 2.5000000000 2.4782054468 0.9999999999 0.9999682508
20 4.0000000000 3.9998096196 2.5000000000 2.4964050795 0.9999999999 0.9999987677
30 4.0000000000 3.9999427995 2.5000000000 2.4988565368 0.9999999999 0.9999998565
40 4.0000000000 3.9999757880 2.5000000000 2.4995031283 0.9999999999 0.9999999922
50 4.0000000000 3.9999876339 2.5000000000 2.4997415786 0.9999999999 1.0000000217
80 4.0000000000 3.9999970915 2.5000000000 2.4999356353 0.9999999999 1.0000000350
100 4.0000000000 3.9999985912 2.5000000000 2.4999668851 0.9999999999 1.0000000360
110 4.0000000000 3.9999989832 2.5000000000 2.4999750907 0.9999999999 1.0000000362

4.0000000000 2.5000000000 1.0000000000

Table 2. Convergence of the absolute value of the ground state energy in a.u. of H− as a function of the number of (l l,1 2) pairs included in the
basis and of the basis size. The nonlinear parameters k = 0.8 and  = 0.7. The number of hyperangular and hyperradial Sturmians is 5 for
the results in the third column and 8 and 7 respectively for the results given in the fifth column. The data in the last column are from [31] and
the accurate value of this energy has been taken from [32].

Absolute value of the ground state energy of H−

l l,1 2( ) Size Present results Size Present results Size Reference [31]

0, 0( ) 25 0.5143565816 56 0.5144929336 465 0.51449614
1, 1( ) 50 0.5264960358 112 0.5265826368 930 0.52658410
2, 2( ) 75 0.5273498205 168 0.5274362924 1395 0.52743744
3, 3( ) 100 0.5275368039 224 0.5276233311 1860 0.52762391
4, 4( ) 125 0.5275997809 280 0.5276863687 2325 0.52768618
5, 5( ) 150 0.5276266394 336 0.5277132796 2790 0.52771215
6, 6( ) 175 0.5276399520 392 0.5277266356
7, 7( ) 200 0.5276472766 448 0.5277339957
8, 8( ) 225 0.5276516285 504 0.5277383767

Accurate value [32]: 0.5277510165443
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the angular coordinates. For completeness, we also give a
very accurate value of this energy obtained by Drake [32].
The first point to underline is the very small number of
hyperangular and hyperradial Sturmians needed to get a
relatively accurate result for the ground state energy of H−.
By contrast, the Sturmian method based on the spherical
coordinates [31] requires bases of much bigger size. The
second point to underline is the slow convergence of this
ground state energy as a function of the number of l l,1 2( )
pairs. It is important to stress that the present approach like all
approaches of configuration-interaction type do not satisfy the
Kato cusp condition associated with the coalescence of the
two electrons [35]. This leads to a slow convergence which is
only acute however in the case of the ground state where both
electrons are strongly confined. By contrast, correlated bases
in which the basis functions depend explicitly on the inter-
electronic distances, do satisfy the Kato cusp condition. These
bases which usually require prohibitively large matrix sizes,
give very accurate results. For our final purpose namely the
time-propagation of a two-electron wave packet, the accuracy
reached in the present calculations of the ground state energy
is more than enough.

In table 3, we consider the ground state energy of He and
study its convergence as a function of the number of l l,1 2( )
pairs. The nonlinear parameters are k = 2 and  = 2. The
number of hyperangular and hyperradial Sturmians is equal to
5. As in the previous case, the size of the basis needed to get a
relatively accurate result is significantly smaller than in the
case where the spherical coordinate system is used [31, 33].
The same conclusions as above regarding the slow conv-
ergence of the results as a function of the number of pairs
l l,1 2( ) hold.

In table 4, we present results for the energies of the first
five singly excited singlet states of He for L=0, 1 and 2.
These data result from a single diagonalization of the
Hamiltonian matrix in our Sturmian basis. In the present case,
it is necessary to optimize the basis by introducing several set
k,( ) of nonlinear parameters. We use 10 hyperradial Stur-

mians with k = 1 and 40 with k = 0.3 as well as 6 hyper-
angular Sturmians with  = 0.7 and 44 with  = 0.5. We

have included five l l,1 2( ) pairs of electron angular momenta.
Our results are compared to Lagmago’s results [33] who used
an optimized Sturmian basis in the spherical coordinate sys-
tem. Note that this latter method is particularly suitable to
calculate the energy of high asymmetrically excited states
with an accuracy similar to the one obtained with correlated
bases. In table 4 where we consider low-lying excited states,
we see that the present results are in most of the cases slightly
more accurate than Lagmago’s results in the sense that they
are closer to the value obtained with correlated bases (see [34]
for S states and [36] for P and D states). The results for singly
excited triplet states are presented in table 5 where we use the
same Sturmian basis as in table 4. Note that Pauli’s principle
prevents the coalescence of the two electrons to occur. As a
result, the fact that the Kato cusp condition is not fulfilled has
a weaker impact on the accuracy of the results. From table 5,
we see that the results obtained with the present approach are
very close to Lagmago’s results [33] and compare rather well
with the accurate data given in [34].

In table 6, we consider the first doubly excited states of
H− for =L 0, 1 and 2. The width of these states is defined as
twice the imaginary part of the corresponding eigenenergy of
the complex scaled Hamiltonian. As for the singly excited
states of He, several pairs of nonlinear parameters have to be
used within the same basis to generate many accurate energies
within a single diagonalization. However, it is important at
this stage to pay attention to the following point. By contrast
to atoms, the spectrum of negative ions contains shape reso-
nances which do not reduce to doubly excited bound states
when the electron–electron interaction term is artificially
switched off. In that case, the choice of adequate values for κ
is no longer obvious. We checked that small values of this
nonlinear parameters have to be included in the basis. In
addition, since the width of these shape resonances is rather
large, the angle θ of complex scaling must be relatively large.
In the present case, q = 0.25 in radians and we used 20
hyperradial Sturmians with k = 0.8, 20 with k = 0.5 and 20
with k = 0.1 as well as 10 hyperangular Sturmians with
 = 0.7 and 40 with  = 0.5. For the results presented in
table 6, we checked that it is sufficient to take five l l,1 2( ) pairs

Table 3. Convergence of the absolute value of the ground state energy in a.u. of He as a function of the number of l l,1 2( ) pairs included in the
basis and of the basis size. The nonlinear parameters are k = 2 and  = 2. The number of hyperangular and hyperradial Sturmians is 5. The
present results are compared to the data from [33] and [31]. The accurate value of the ground state energy has been taken from [34].

Absolute value of the ground state energy of He

l l,1 2( ) Size Present results Size Reference [33] Size Reference [31]

0, 0( ) 25 2.8790259232 55 2.8790102261 465 2.87902797
1, 1( ) 50 2.9005099765 110 2.9004681981 930 2.90051386
2, 2( ) 75 2.9027595331 165 2.9026813178 1395 2.90276209
3, 3( ) 100 2.9033130359 220 2.9031912216 1860 2.90331321
4, 4( ) 125 2.9035099926 275 2.9033435028 2325 2.90350682
5, 5( ) 150 2.9035966612 330 2.9033917089 2790 2.90358925
6, 6( ) 175 2.9036404813 385 2.9034066146 3255 2.90362816
7, 7( ) 200 2.9036649390 440 2.9034109991 6560 2.90366100
8, 8( ) 225 2.9036796027 495 2.9034122278

Accurate value [34]: 2.9037243770341
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into account. Our results are compared to data which have
been obtained, for all of them, by means of explicitly corre-
lated bases. We clearly see on table 6 that the present basis
which is not explicitly correlated in the sense that it does not
satisfy the Kato cusp condition, provides rather accurate
results, even for shape resonances, that compare very well
with those obtained with explicitly correlated bases.

Finally, we present in table 7 our results for oscillator
strengths corresponding to S P transitions in helium.
These calculations, which have been performed in the length
gauge, allow us to assess the accuracy of the bound state
wave functions at large distances and provide a stringent test
of the quality of the wave functions. In our calculations, we
take five l l,1 2( ) pairs into account. We use within the same
basis, two values of the hyperradial Sturmian nonlinear
parameter κ (k = 11 and k = 0.12 ) with 20 hyperradial
Sturmians for each value of κ. We use 30 hyperangular
Sturmians with  = 0.6. Despite the fact that the total size of

our basis is rather small, our results compare very well with
data obtained with accurate variational methods and explicitly
correlated bases [48, 49]. We have also a good agreement
with the results of Tang et al who used the so-called hyper-
spherical close-coupling method [50] which is based on a
efficient treatment of the adiabatic expansion introduced by
Macek [3].

4. Conclusion and perspective

In this contribution, we have developed an efficient ab initio
spectral approach to calculate the energy spectrum of a two-
active electron atom in a system of hyperspherical coordi-
nates. The key point of this approach is the introduction in our
basis of new Sturmian functions of the hyperangle. These
functions which form a complete set, are solution of a Sturm–

Liouville equation that treats exactly the electron–nucleus

Table 4.Absolute value of the energy in a.u. of the first five singly excited singlet states of helium for L=0, 1 and 2. (a) The present results,
(b) results from [33] and (c) results from [34] for L=0 and from [36] for L=1 and 2. The present results are obtained with 10 hyperradial
Sturmians with k = 1 and 40 with k = 0.3 and 6 hyperangular Sturmians with  = 0.7 and 44 with  = 0.5. Five pairs l l,1 2( ) of electron
angular momenta are included.

2S 3S 4S 5S 6S

(a) 2.14596163060 2.06126853687 2.03358530496 2.02117613863 2.01456263146
(b) 2.14594146031 2.06125528815 2.03357048378 2.02115898556 2.01453730633
(c) 2.1459740461 2.0612719897 2.0335867169 2.0211768512 2.0145630974

2P 3P 4P 5P 6P

(a) 2.12383270946 2.05514301634 2.03106820074 2.01990523641 2.01383351214
(b) 2.12382134535 2.05513631281 2.03106096815 2.01989933948 2.01382673587
(c) 2.1238430865 2.0551463621 2.0310696505 2.0199059899 2.0138339797

3D 4D 5D 6D 7D

(a) 2.05562014201 2.03127951254 2.02001564409 2.01389808784 2.01020972397
(b) 2.05561876719 2.03127873641 2.02001501876 2.01389746634 2.01020932503
(c) 2.0556207329 2.0312798462 2.0200158362 2.0138982274 2.0102100285

Table 5. Absolute value of the energy in a.u. of the first five singly excited triplet states of helium for L=0, 1 and 2. (a) The present results,
(b) results from [33] and (c) results from [34]. The same Sturmian basis as in table 4 has been used.

2S 3S 4S 5S 6S

(a) 2.17522862118 2.06868889674 2.03651201827 2.02261883997 2.01537741998
(b) 2.175227505 2.068688594 2.036511897 2.022618781 2.015377402
(c) 2.17522937824 2.06868906747 2.03651208310 2.02261887230 2.01537745299

2P 3P 4P 5P 6P

(a) 2.13316338940 2.05808086502 2.03232426495 2.02055114068 2.01420790853
(b) 2.1331604001 2.0580771526 2.0323220232 2.0205495485 2.0142057491
(c) 2.13316419078 2.05808108427 2.03232435430 2.02055118726 2.01420795877

3D 4D 5D 6D 7D

(a) 2.05562444264 2.03128358627 2.02001826151 2.01389976915 2.01021084673
(b) 2.0556360463 2.0312886903 2.0200208815 2.0139012356 2.0102118550
(c) 2.05563630945 2.03128884750 2.02002102745 2.01390141545 2.01021210596
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interaction and the radial electron–electron correlation term.
As a result, the size of the hyperangular Sturmian basis
needed for an accurate description of most of the energy
eigenfunctions is remarkably small. For the hyperradial part
of our basis, it is equally convenient to use Coulomb–Stur-
mians since in terms of the hyperradius, the problem is purely
Coulombic. In addition, both the hyperangular and the
hyperradial Sturmians depend on two nonlinear parameters
namely a weighted mean effective charge  and a wave
vector κ respectively. By introducing various sets  k,( ) of
nonlinear parameters which are chosen on physical grounds
we are able to generate a large number of atomic state ener-
gies through a single diagonalization of the Hamiltonian
while significantly reducing the size of the basis. In order to
assess the efficiency of the present method we have calculated
the energy of the ground state and various excited states of He
as well as the ground state energy and the energy and width of
the first doubly excited states of H− for three values of the
total angular momentum. Our results compare very well with
the data provided by other approaches including those which
use an explicitly correlated basis. The same conclusions apply
to the calculation of oscillator strengths in helium. By using
the length gauge, we showed that the accuracy of the bound
state wave functions generated with the present method is
very good even at large distances.

Our main objective is to use this spectral approach to
solve the TDSE to treat the interaction of atoms with strong
laser fields. Within this context, this approach has two major
advantages. First, it can be generalized easily to the treatment
of atomic systems with more than two active electrons.
Indeed, the atomic Hamiltonian keeps exactly the same

structure as for atomic hydrogen in which the electrostatic
potential is replaced by an effective charge function of var-
ious hyperangles divided by the hyperradius. Second, irre-
spective of the number of active electrons, there is always
only one coordinate, namely the hyperradius, which is
unbound. This makes easier the implementation of various
methods such as t-SURFF [43] and the time-scaled coordinate
method [44, 45] aimed at extracting from the final many
electron wave packet the information on the electron energy
spectra. However by contrast to the electronic structure cal-
culations, the Coulomb–Sturmian functions are less adapted
to describe accurately the continua. In this case, B-splines,
finite elements or even finite difference techniques may be
easily implemented.
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Table 6. Absolute value of the energy in a.u. and width in a.u. of the lowest doubly excited states of H− for L=0, 1 and 2. The present
results are shown in the last two columns. They are obtained with 20 hyperradial Sturmians with k = 0.8, 20 with k = 0.5 and 20 with
k = 0.1 as well as 10 hyperangular Sturmians with  = 0.7 and 40 with  = 0.5. Five l l,1 2( ) pairs are included in the calculations. Our
present results are compared to data, the reference of which is indicated in the table, and which have been obtained, for all of them, by means
of an explicitly correlated basis.

Reference data Reference [37] Present results

Energy Width Energy Width Energy Width

L=0

[38] 0.1487765 1.731(−3) 0.1487762 1.7332(−3) 0.1487759 1.73398(−3)
[39] 0.1260196 8.985(−5) 0.1260199 9.02(−5) 0.1260200 9.057(−5)

0.069006 1.4184(−3) 0.0690059 1.4189(−3)
0.0561434 8.8(−5) 0.0561407 8.907(−5)

L=1

[39] 0.1260495 1.165(−6) 0.12604986 1.36(−6) 0.1260498 1.3645(−6)
[40] 0.12436 6.9(−4) 0.1243856 7.0(−4) 0.1243645 6.573(−4)
[41] 0.06871675 1.1914(−3) 0.062716 1.19(−3) 0.0627167 1.1909(−3)
[41] 0.0585718 8.986(−6) 0.0585718 8.988(−6) 0.0585718 8.9873(−6)

L=2

[39] 0.12794175 3.1625(−4) 0.127937 3.12(−4) 0.1279156 3.1769(−4)
[42] 0.0659533 1.6581(−3) 0.0659531 1.6576(−3) 0.0659382 1.6612(−3)

0.0568294 2.5302(−4) 0.0568251 2.5376(−4)
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Appendix

In this appendix, we give the general expression of the
electric-dipole matrix elements in our Sturmian basis. More
details about the calculation of some of the expressions pre-
sented here are given in [46]. The electric-dipole matrix ele-
ments are denoted by DL in the length gauge and by DV in the
velocity gauge. Their integral expression is:
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In order to simplify the notations, it is convenient to define the
following function:
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where we use the usual Dirac notation. The matrix elements
involving spherical harmonics present in expressions (52) and
(53) are easy to calculate. They can be expressed in terms of
the following terms:
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Let us now consider the velocity gauge:

Table 7. Oscillator Strength corresponding to S P transitions in helium. Our results which are obtained within the length gauge are
compared to accurate data given in the literature.

Transition
HSCC-method [47]

length gauge
Variational method [48]

length gauge
Variational method [49]

length gauge
Present method length

gauge

1s1s S 1s2p Pe1 1 0 0.2762 0.2761 0.2761 0.276089
1s1s S 1s3p Pe1 1 0 0.07429 0.0736 0.074 0.073417
s s S s p P1 1 1 4e1 1 0 0.03022 0.0301 0.030 0.029941
1s2s S 1s2p Pe1 1 0 0.3774 0.3760 0.3764 0.376483
1s2s S 1s3p Pe1 1 0 0.1494 0.1486 0.1514 0.151325
1s2s S 1s4p Pe1 1 0 0.0515 0.0521 0.049 0.049286
1s3s S 1s2p Pe1 1 0 −0.1437 −0.1379 −0.1453 −0.145489
1s3s S 1s3p Pe1 1 0 0.6206 0.6221 0.626 0.626260
1s3s S 1s4p Pe1 1 0 0.1435 0.1465 0.144 0.144260

13

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 235005 A Abdouraman et al



a q a q

a q
a

a a q
a

q
a q

q
a q

=áY +
¶
¶

Y ñ

+ áY
¶

¶
Y ñ

- áY
¶

¶
Y ñ

+ Y
¶

¶
Y

+ Y
¶

¶
Y

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

D
R

R

R

R

R

cos cos sin cos

sin cos
1

cos

cos sin cos
1

cos

sin

cos cos

sin

sin cos
.

61

V n p l l
L M

n p l l
L M

n p l l
L M

n p l l
L M

n p l l
L M

n p l l
L M

n p l l
L M

n p l l
L M

n p l l
L M

n p l l
L M

, , ,
,

1 2 , , ,
,

, , ,
, 2

1 , , ,
,

, , ,
,

2 , , ,
,

, , ,
,

2
1

1
, , ,
,

, , ,
,

2
2

2
, , ,
,

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

∣( ) ∣

∣ ∣

∣ ∣

( )

For the sake of clarity, let us define the following factors:

=
¶
¶

-l
k

l
k

l
k

l
k

¢ ¢ ¢R S
R

S S
R

S
5

2

1
, 62n n n n n n, , , , , ( )

= l
k

l
k

¢ ¢S S
R

S
1

, 63n n n n, , , ( )

 
a
a

q

=

´ á ñ

l l¢ ¢ ¢
¢ ¢

¢
¢ ¢

¢ ¢
¢ ¢

L H H

Y Y

cos 2

cos

cos , 64

L M L M p p
l l l l

p
l l

p
l l

l l
L M

l l
L M

, , , , ,
, , ,

, ,
,

, ,
,

,
,

1 ,
,

1 2 1 2 1 2 1 2

1 2 1 2
∣ ∣ ( )

 a
a

q

=
¶
¶

´ á ñ

l l¢ ¢ ¢
¢ ¢

¢
¢ ¢

¢ ¢
¢ ¢

P H H

Y Y

sin

cos , 65

L M L M p p
l l l l

p
l l

p
l l

l l
L M

l l
L M

, , , , ,
, , ,

, ,
,

, ,
,

,
,

1 ,
,

1 2 1 2 1 2 1 2

1 2 1 2
∣ ∣ ( )

 
a
a

q

=

´ á ñ

l l¢ ¢ ¢
¢ ¢

¢
¢ ¢

¢ ¢
¢ ¢

Q H H

Y Y

cos 2

sin

cos , 66

L M L M p p
l l l l

p
l l

p
l l

l l
L M

l l
L M

, , , , ,
, , ,

, ,
,

, ,
,

,
,

2 ,
,

1 2 1 2 1 2 1 2

1 2 1 2
∣ ∣ ( )

 a
a

q

=
¶
¶

´ á ñ

l l¢ ¢ ¢
¢ ¢

¢
¢ ¢

¢ ¢
¢ ¢

T H H

Y Y

cos

cos , 67

L M L M p p
l l l l

p
l l

p
l l

l l
L M

l l
L M

, , , , ,
, , ,

, ,
,

, ,
,

,
,

2 ,
,

1 2 1 2 1 2 1 2

1 2 1 2
∣ ∣ ( )

 a

q
q

=

´
¶
¶

l l¢ ¢ ¢
¢ ¢

¢
¢ ¢

¢ ¢
¢ ¢

U H H

Y Y

1

cos

sin , 68

L M L M p p
l l l l

p
l l

p
l l

l l
L M

l l
L M

, , , , ,
, , ,

, ,
,

, ,
,

,
,

1
1

,
,

1 2 1 2 1 2 1 2

1 2 1 2
( )

 a

q
q

=

´
¶
¶

l l¢ ¢ ¢
¢ ¢

¢
¢ ¢

¢ ¢
¢ ¢

V H H

Y Y

1

sin

sin . 69

L M L M p p
l l l l

p
l l

p
l l

l l
L M

l l
L M

, , , , ,
, , ,

, ,
,

, ,
,

,
,

2
2

,
,

1 2 1 2 1 2 1 2

1 2 1 2
( )

The new matrix elements involving spherical harmonics
which appear in the above expressions can be written as::

q
q
¶
¶

= +

- + -

¢ ¢
¢ ¢

¢ ¢
¢

¢
¢

¢ ¢
¢

¢
¢

Y Y l A C l

l A C l

sin 1

1 1 ,

70

l l
L M

l l
L M

L M L M
l l l

L L
l l l

L M L M
l l l

L L
l l l

,
,

1
1

,
,

1 , , ,
, ,

,
, ,

1

1 , , ,
, ,

,
, ,

1

1 2 1 2

1 2 2 1 1 2

1 2 2 1 1 2

( )

( ) ( )
( )

q
q
¶
¶

= +

- + -

¢ ¢
¢ ¢

¢ ¢
¢

¢
¢

¢ ¢
¢

¢
¢

Y Y l B E l

l B E l

sin 1

1 1 .

71

l l
L M

l l
L M

L M L M
l l l

L L
l l l

L M L M
l l l

L L
l l l

,
,

2
2

,
,

2 , , ,
, ,

,
, ,

2

2 , , ,
, ,

,
, ,

2

1 2 1 2

1 1 2 1 2 2

1 1 2 1 2 2

( )

( ) ( )
( )

The final expression for DV becomes:
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( )

[( )

( )]

( ) ( )

Note that the matrix elements involving the hyperradial
Sturmians may be calculated analytically. However, when
various values of the nonlinear κ parameter are used, these
matrix elements have to be calculated numerically by means
of a Gauss–Laguerre quadrature which provides an exact
result if the number of points is sufficient.
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