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Abstract. This paper deals with naturally reductive pseudo-Riemannian 2-

step nilpotent Lie groups for which the metric is invariant under a left action.

The case of nondegenerate center is characterized as follows. The simply

connected Lie group can be constructed starting from a real representation

of a certain Lie algebra which carries an ad-invariant metric. Also a naturally

reductive homogeneous structure is given and applications are shown.

1. Introduction

In this work we focus on naturally reductive pseudo-Riemannian 2-step nilpo-

tent Lie groups. The 2-step nilpotent Lie groups equipped with a left-invariant

metric have been extensively investigated in the Riemannian situation for a long

time; in the case of indefinite metrics, there are significant advances as showed in

[2, 6, 7, 11, 15, 16, 17, 27] but there are still several open problems.

Our aim here is to find conditions on the underlying algebraic structure for the

existence of a naturally reductive pseudo-Riemannian 2-step nilpotent Lie group.

Important studies concerning the structure of a naturally reductive Riemannian

Lie group G were given by D’Atri and Ziller [8] and Gordon [14].

In the nilpotent case Gordon proved that a naturally reductive Riemannian

nilmanifold N must be at most 2-step. Lauret [20] exploited this result to afford

a classification of naturally reductive Riemannian connected simply connected
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nilmanifolds. According to Wilson’s results [32] such a manifold can be realized

as a 2-step nilpotent Lie group equipped with a left-invariant metric.

Here we characterize the naturally reductive 2-step nilpotent Lie group with

nondegenerate center (N, 〈 , 〉). The starting point is a result of Cordero and

Parker [6] stating that the isometry subgroup fixing the identity for metrics with

nondegenerate center coincides with the group of isometric automorphisms. This

enables to specify the action of the isometry group in our case. Let n denote

the corresponding 2-step nilpotent Lie algebra furnished with the metric 〈 , 〉 for

which the center is nondegenerate. Then n can be decomposed into an orthogonal

direct sum

(1.1) n = z⊕ v with v = z⊥

and the Lie bracket on n induces for x ∈ z the linear map j(x) : v→ v given by

〈[u, v], x〉 = 〈j(x)u, v〉 for x ∈ z, u, v ∈ v,

which is skew-adjoint with respect to 〈 , 〉v. Assume that j is injective. Then if

the metric is naturally reductive, the set {j(z)} with z ∈ z builds a Lie subalgebra

of so(v, 〈 , 〉v), Lie subalgebra which admits an ad-invariant metric (Theorems 3.2

and 3.3). The converse also holds and it is consequence of the same theorems.

We also give a naturally reductive homogeneous structure for these cases. Re-

call that the notion of homogeneous structure was introduced by Ambrose and

Singer [1] to characterize connected simply connected and complete homogeneous

Riemannian manifolds, revalidated to the pseudo-Riemannian case by Gadea and

Oubiña [12].

Our results here improve the understanding of some geometrical features such

as the isometry group -Proposition 3.5- and it sets up the construction of new

examples; in particular we get naturally reductive metrics in the Heisenberg Lie

group H2n+1 for n ≥ 1. We also bring into focus the underlying geometry with

a study of 2-step nilpotent pseudo-Riemannian Lie groups with nondegenerate

center, study which completes the work in the paper.

We note that a construction of naturally reductive pseudo-Riemannian Lie

groups was proposed by the author in [25]. In particular by this method one

obtains naturally reductive k-step nilpotent Lie groups with k ≥ 3, which are not

symmetric. A next step in our investigations is to generalize the results of the

present paper to those cases.
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2. Preliminaries

In this section we set the basic notions for the study of the geometry of a 2-

step nilpotent Lie group equipped with a left-invariant pseudo-Riemannian metric.

Here and along the paper left-invariant means invariant under a left action. We

focus on those metrics for which the center is nondegenerate. At the end of the

section we give the definition of natural reductiveness.

A metric on a real vector space v is a nondegenerate symmetric bilinear form

〈 , 〉 : v×v→ R. Whenever v is the Lie algebra of a given Lie group G, by identify-

ing v with the set of left-invariant vector fields on G, the metric induces by mean

of the left translations, a pseudo-Riemannian metric tensor on the corresponding

Lie group. Conversely a pseudo-Riemannian metric on G invariant under left

translations is completely determined by its value at the identity tangent space

TeG.

Let n denote a 2-step nilpotent Lie algebra furnished with a metric 〈 , 〉 for

which the center is nondegenerate. Then n can be decomposed into a orthogonal

direct sum

n = z⊕ v with v = z⊥

where as usual z denotes the center of n. The Lie bracket on n induces for x ∈ z

the skew-adjoint linear map j(x) : v→ v given by

(2.1) 〈[u, v], x〉 = 〈j(x)u, v〉 for x ∈ z, u, v ∈ v.

Conversely let (z, 〈 , 〉z) and (v, 〈 , 〉v) denote vector spaces endowed with (not

necessarily definite) metrics. Let n denote the direct sum as vector spaces n = z⊕v
and let 〈 , 〉 denote the metric given by

(2.2) 〈 , 〉|z×z
= 〈 , 〉z 〈 , 〉|v×v

= 〈 , 〉v 〈z, v〉 = 0.

Let j : z→ End(v) be a linear map such that j(z) is skew-adjoint with respect

to 〈 , 〉v for all z ∈ z. Then n becomes a 2-step nilpotent Lie algebra if one defines

a Lie bracket by the relation in (2.1) and so that z is contained in the center of n.

By using left translations the corresponding connected Lie group N is endowed

with a pseudo-Riemannian metric.

In the situation where the metric is definite, the inner product 〈 , 〉+ produces

a decomposition of the center of the Lie algebra n as a orthogonal direct sum as

vector spaces

z = ker j ⊕ C(n),

where C(n) denotes the commutator and moreover j is injective if and only if there

is no Euclidean factor in the De Rahm decomposition of the simply connected
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Lie group (N, 〈 , 〉+) (see [14]). This does not necessarily hold in the pseudo-

Riemannian case (see the next example where ker(j) = [n, n]).

Example 2.1. Let R × h3 be the 2-step nilpotent Lie algebra spanned by the

vectors e1, e2, e3, e4 with the Lie bracket [e1, e2] = e3. Define a metric 〈 , 〉 where

the nontrivial relations are

〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e4〉 = 1.

After (2.1) one can verify that j(e3) ≡ 0, while

j(e4) =

(
0 −1

1 0

)
.

Notice that e4 /∈ C(R× h3) and kerj = Re3 = C(R× h3), that is kerj = C(n).

Let O(v, 〈 , 〉v) denote the group of linear maps on v which are isometries for

〈 , 〉v and whose Lie algebra so(v, 〈 , 〉v) is the set of linear maps on v that are

skew-adjoint with respect to 〈 , 〉v. To describe the group of isometries we shall

make use of the next result.

Proposition 2.2. [6] Let N denote a 2-step nilpotent Lie group endowed with

a left-invariant pseudo-Riemannian metric with respect to which the center is

nondegenerate. Then the group of isometries fixing the identity coincides with the

group of orthogonal automorphisms of N .

Denote by H the group of orthogonal automorphisms and by N also the sub-

group of isometries consisting of `n: the left translation by the element n ∈ N .

Consider the isometries of the form h`n where h ∈ H and n ∈ N , and denote it

by Ia(N). Then N is a normal subgroup of Ia(N), N ∩ H = {e} and therefore

for I(N) the isometry group in our situation one has

I(N) = Ia(N) = H nN.

Whenever (N, 〈 , 〉) is simply connected, we do not distinguish between the

group of automorphisms of N and of n. Thus one obtains that the group H is

given by

(2.3) H = {(φ, T ) ∈ O(z, 〈 , 〉z)× O(v, 〈 , 〉v) : Tj(x)T−1 = j(φx), x ∈ z}

while its Lie algebra h = Der(n) ∩ so(n, 〈 , 〉) is

(2.4) h = {(A,B) ∈ so(z, 〈 , 〉z)× so(v, 〈 , 〉v) : [B, j(x)] = j(Ax), x ∈ z}.
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In fact, let ψ denote a orthogonal automorphism of (n, 〈 , 〉). Thus ψ(z) ⊆ z

and since v = z⊥ then ψ(v) ⊆ v. Set φ := ψ|z and T := ψ|v , thus (φ, T ) ∈
O(z, 〈 , 〉z)× O(v, 〈 , 〉v) such that

〈φ−1[u, v], x〉 = 〈[Tu, Tv], j(x)〉 if and only if

〈j(φx)u, v〉 = 〈j(x)Tu, Tv〉
which implies (2.3). By derivating (2.3) one gets (2.4).

Proposition 2.3. Let N denote a simply connected 2-step nilpotent Lie group

endowed with a left-invariant pseudo-Riemannian metric with respect to which the

center is nondegenerate. Then the group of isometries is

I(N) = H nN.

where N denotes the set of left translations by elements of N and the isotropy

subgroup H is given by the isometric automorphisms (2.3) with Lie algebra as in

(2.4).

Example 2.4. Let n be a 2-step nilpotent Lie algebra equipped with an inner

product denoted by 〈 , 〉+. Let Jz ∈ so(v, 〈 , 〉+) denote the maps in (2.1).

We shall consider an indefinite metric 〈 , 〉 on n by changing the sign of the

metric on the center z; thus the metric on v remains invariant for each of these

two metrics and we take

〈zi, zj〉 = −〈zi, zj〉+ for zi, zj ∈ z and 〈z, v〉 = 0.

By (2.1) the maps j(z) for the metric 〈 , 〉 on n are

−〈z, [u, v]〉+ = −〈J(z)u, v〉+ = 〈j(z)u, v〉 = 〈z, [u, v]〉, for z ∈ z

that is j(z) = −J(z) for every z ∈ z.

We work out an example on the Heisenberg Lie group H3. This is the simply

connected Lie group whose Lie algebra is h3 which is spanned by the vectors

e1, e2, e3, with the nontrivial Lie bracket relation [e1, e2] = e3. The canonical

left-invariant metric 〈 , 〉+ is that one obtained by declaring the basis {e1, e2, e3}
to be orthogonal and the map J(e3) for 〈 , 〉+ is(

0 −1

1 0

)
.

A Lorentzian metric 〈 , 〉 is obtained onH3 by changing the sign of the canonical

metric on the center. Kaplan showed that (H3, 〈 , 〉+) is naturally reductive [18].

In the next sections we shall see that (H3, 〈 , 〉) and generalizations of it, are also

naturally reductive in the pseudo-Riemannian context.
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By (2.3) the group of isometries for any of these both metrics is (R×O(2))nH3,

where the action of the isotropy group is given by (λ,A) · (z + v) = λz + Av for

z ∈ z and v ∈ v = span{e1, e2}, λ ∈ R and A ∈ O(2).

Definition 1. A homogeneous manifold M is said to be naturally reductive if

there is a transitive Lie group of isometries G with Lie algebra g and there exists

a subspace m ⊆ g complementary to h in g, h the Lie algebra of the isotropy

group H, such that

Ad(H)m ⊆ m and 〈[x, y]m, z〉+ 〈y, [x, z]m〉 = 0 for all x, y, z ∈ m.

Frequently we will say that a metric on a homogeneous space M is naturally

reductive even though it is not naturally reductive with respect to a particular

transitive group of isometries (see Lemma 2.3 in [14]).

For naturally reductive metrics the geodesics passing through m ∈ M are of

the form

γ(t) = exp(tx) ·m for some x ∈ m.

Indeed pseudo-Riemannian symmetric spaces are naturally reductive. In par-

ticular 2-step nilpotent Lie groups equipped with a bi-invariant metric provide

examples of naturally reductive pseudo-Riemannian 2-step nilpotent Lie groups

where the center is degenerate (see for instance [24]).

3. Naturally reductive metrics with nondegenerate center: a

characterization

In this section we achieve a characterization of naturally reductive pseudo-

Riemannian simply connected 2-step nilpotent Lie groups with nondegenerate

center. We also find the corresponding naturally reductive homogeneous struc-

ture.

Lemma 3.1. Let (n, 〈 , 〉) denote a 2-step nilpotent Lie algebra equipped with a

metric for which its center z is nondegenerate and assume j is injective. Let

h = so(n, 〈 , 〉)∩Der(n) denote the Lie subalgebra of the group of isometries fixing

the identity element in the corresponding simply connected Lie group N . Then

i) h leaves each of z and v invariant.

ii) For φ ∈ h,

φ|z = j−1 ◦ adso(v) φ|v ◦ j;
in particular φ→ φ|v is an isomorphism of h onto a subalgebra of so(v, 〈 , 〉v).

iii) Let φ ∈ so(v, 〈 , 〉v). Then φ extends to an element of h if and only if

[φ, j(z)] ⊆ j(z) and j−1 ◦ adso(v) φ|v ◦ j ∈ so(z, 〈 , 〉z).
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Proof. i) is easy to prove. We shall show (ii) and (iii). Let A ∈ so(z, 〈 , 〉z) and

B ∈ so(v, 〈 , 〉v), the linear map φ which agrees with (A,B) ∈ z⊕v lies in h if and

only if

〈j(Ax)u, v〉 = 〈(Bj(x)− j(x)B)u, v〉 for x ∈ z, u, v ∈ v

which is equivalent to j(A(x)) = [B, j(x)] the last [ , ] denotes the Lie bracket in

so(v, 〈 , 〉v) and since j was assumed injective one gets A = j−1◦adso(v)(B)◦j. �

The proof of the next theorem coincides with that one given by C. Gordon in

[14]. For the sake of completeness we include it here. However the consequences

are quite different from the Riemannian situation.

Theorem 3.2. Let (N, 〈 , 〉) denote a 2-step simply connected Lie group equipped

with a left-invariant pseudo-Riemannian metric such that the center is nonde-

generate and assume j is injective. Then the metric is naturally reductive with

respect to G = H n N being H the group of orthogonal automorphisms, if and

only if

(i) j(z) is a Lie subalgebra of so(v, 〈 , 〉v) and

(ii) [j(x), j(y)] = j(τxy) where τx ∈ so(z, 〈 , 〉z) for any x ∈ z.

Proof. Let g = hnn be the Lie algebra of G = HnN and assume N is naturally

reductive with respect to g = h⊕m. Set π : n→ h so that

m = {x+ π(x) : x ∈ n}.

The condition for natural reductiveness says

〈[x+ π(x), y + π(y)]m, z + π(z)〉m = −〈y + π(y), [x+ π(x), z + π(z)]m〉m
where 〈 , 〉 is the pseudo-Riemannian metric on m, so that the previous equality

can be interpreted on n as

(3.1) 〈[x, y] + π(x)y − π(y)x, z〉 = −〈y, [x, z] + π(x)z − π(z)x〉.

where π(x) is view as a linear operator on n and one writes π(x)y = [x, y] when

x, y ∈ n. Since π(x) ∈ so(n, 〈 , 〉) the terms involving π(x) cancel and (3.1) yields

(3.2) ad(y)∗z + ad(z)∗y = π(y)z + π(z)y for all y, z ∈ n.

Since [h, n] ⊆ n and [h,m] ⊆ m, one has

[π(x), y + π(y)] = π(x)y + [π(x), π(y)] ∈ m

and therefore

(3.3) π(π(x)y) = [π(x), π(y)] for all x, y ∈ n.
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If z ∈ z and y ∈ v, ad(z)∗y = 0 and (3.2) says

(3.4) j(z)y = π(y)z + π(z)y.

But π(y)z ∈ z and π(z)y ∈ v, so (3.4) implies

π(z)|v = j(z) ∈ so(v, 〈 , 〉v) for every z ∈ z.

It then follows that

[j(x), j(z)] ⊂ j(z) and [j(x), j(y)] = j(τxy) for τx ∈ so(z, 〈 , 〉z), x, y ∈ z.

Conversely if (i) and (ii) hold, extend j(x) to an element π(x) of h such that

the restriction of π(x) to z is given by the left-hand side of (ii). Extend ρ as a

linear map of n by declaring π|v ≡ 0. We claim (3.3) holds for all x, y ∈ n. In fact

it is easy to verify it if at least one of x, y ∈ v. Assume x, y ∈ z, then

π(π(x)y)|v = j(j−1[j(x), j(y)]) = [j(x), j(y)]

and therefore (3.3) is true after (3.1) ii). Define

l = π(n), m = {x+ π(x) : x ∈ n}, and k = l⊕m.

By (3.3) l is a Lie subalgebra of h and [l,m] ⊆ m and since k = l ⊕ n, k is a Lie

subalgebra of g.

We assert that (3.2) is valid. This can be easily checked whenever at least

one of x, y ∈ v. If both x, y ∈ z the left-hand side of (3.2) is zero. The right-

hand side lies in z ∩ ker(π), but ker(π) = ker(j) and since j is injective one has

z ∩ ker(π) = {0}, which proves (3.2). By following the argument preceding (3.2)

backwards, one can see that M is naturally reductive with respect to k. �

In the conditions of Theorem (3.2) it follows that if (N, 〈 , 〉) is naturally re-

ductive then the bilinear map τ defines a Lie algebra structure on z and the map

j : z → so(v, 〈 , 〉v) becomes a real representation of the Lie algebra (z, τ). Fur-

thermore the metric on v is j(z)-invariant and since τx ∈ so(z, 〈 , 〉z) the metric

on z is ad(z)-invariant, where ad denotes the adjoint representation of (z, τ).

Conversely let g be a real Lie algebra endowed with an ad(g)-invariant metric

〈 , 〉g and let (π, v) be a faithful representation of g endowed with a π(g)-invariant

metric 〈 , 〉v and without trivial subrepresentations, that is,
⋂
x∈g kerπ(x) = {0}.

Define a 2-step nilpotent Lie algebra structure on the vector space underlying

n = g⊕ v by the following bracket

(3.5)

[g, g]n = [g, v]n = 0 [v, v] ⊆ g

〈[u, v], x〉g = 〈π(x)u, v〉v ∀x ∈ g, u, v ∈ v
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and equip n with the metric 〈 , 〉 obtained as the product metric

(3.6) 〈 , 〉|g×g
= 〈 , 〉g 〈 , 〉|v×v

= 〈 , 〉v 〈g, v〉 = 0.

Take N the simply connected 2-step nilpotent Lie group with Lie algebra n

and endow it with the left-invariant metric determined by 〈 , 〉.
Since (π, v) has no trivial subrepresentations, the center of n coincides with g.

Moreover v is its orthogonal complement and the transformation j(x) defined as

in (2.1) is precisely π(x) for every x ∈ g. Since (π, v) is faithful, the commutator

of n is g: C(n) = g. Since the set {π(x)}x∈g is a Lie subalgebra of so(v, 〈 , 〉v) we

conclude that (N, 〈 , 〉) is naturally reductive.

Theorem 3.3. Let N denote a naturally reductive simply connected 2-step nilpo-

tent Lie group with Lie algebra n and metric 〈 , 〉. Assume j is injective. Then

τxy = j−1[j(x), j(y)] defines a Lie algebra structure on z and 〈 , 〉z×z is ad-

invariant on (z, τ).

Conversely let g denote a Lie algebra equipped with an ad-invariant metric 〈 , 〉g
and let (π, v) be a real faithful representation of g without trivial subrepresenta-

tions and endowed with a π(g)-invariant metric 〈 , 〉v. Let n denote the direct sum

of vector spaces

n = g⊕ v

endowed with the Lie bracket given by (2.1) and furnished with the metric 〈 , 〉
as in (3.6). Then the corresponding simply connected 2-step nilpotent Lie group

(N, 〈 , 〉) is a naturally reductive pseudo-Riemannian space.

Remark 1. Suppose the representation (π, v) of g is not faithful. Thus

z ∈ kerπ ⇐⇒ 〈z, [u, v]〉 = 0 ∀u, v ∈ v

=⇒ z ∈ C(n)⊥. Since the metric on the center g is indefinite, kerπ ∩ C(n) could

be nontrivial, so that the sum as vector spaces kerπ + C(n) is not necessarily

direct.

When π has some trivial subrepresentation,

u ∈ ∩x∈gπ(x)⇐⇒ 〈π(x)u, v〉 = 0 ∀v ∈ v,

=⇒ 〈x, [u, v]〉 = 0 for all x ∈ g, thus [u, v] = 0 for all v ∈ v which says u ∈ z(n).

Remark 2. In the Riemannian case, the condition of the metric to be positive

definite says that g must be compact. In the general case the Lie algebra g carries

an ad-invariant (definite or not) metric.
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Example 3.4. The Killing form on any semisimple Lie algebra is an ad-invariant

metric.

Any Lie algebra g can be embedded into a Lie algebra which admits an ad-

invariant metric. In fact, the cotangent T∗ g = gncoadg∗, being coad the coadjoint

representation, admits a neutral ad-invariant metric which is given by:

〈(x1, ϕ1), (x2, ϕ2)〉 = ϕ1(x2) + ϕ2(x1) x1, x2 ∈ g, ϕ1, ϕ2 ∈ g∗.

Notice that both g and g∗ are isotropic subspaces in T∗ g.

A data set (g, v, 〈 , 〉) consists of

(i) a Lie algebra g equipped with an ad-invariant metric 〈 , 〉g,

(ii) a real faithful representation of g, (π, v), without trivial subrepresentations,

(iii) 〈 , 〉 a g-invariant metric on n = g⊕v, i.e. 〈 , 〉|g×g
= 〈 , 〉g is ad(g)-invariant,

〈 , 〉|v×v
is π(g)-invariant and 〈g, v〉 = 0.

By (3.3) a data set (g, v, 〈 , 〉) determines a naturally reductive simply con-

nected 2-step nilpotent Lie group denoted by N(g, v) whose Lie algebra is the

underlying vector space n = g⊕ v with the Lie bracket defined by (3.5).

We study the isometry group in this case. Let h denote the Lie algebra of the

isometries fixing the identity element; by (2.4) an element D ∈ h is a skew-adjoint

derivation which can be written as D = (A,B) ∈ so(g, 〈 , 〉g) × so(v, 〈 , 〉v) such

that

Bπ(x)− π(x)B = π(Ax), ∀x ∈ g.

Denote by [ , ]n the Lie bracket on n and by [ , ] the Lie brackets on g and End(v).

Then

π(A[x, y]) = Bπ([x, y])− π([x, y])B = B[π(x), π(y)]− [π(x), π(y)]B

= [B, [π(x), π(y)]] = [[B, π(x)], π(y)] + [π(x), [B, π(y)]]

= [π(Ax), π(y)] + [π(x), π(Ay)] = π([Ax, y] + [x,Ay]).

Since π is faithful then

A[x, y] = [Ax, y] + [x,Ay] for all x, y ∈ g,

that is, A ∈ Der(g) ∩ so(g, 〈 , 〉g).

Proposition 3.5. The group of isometries fixing the identity on a naturally re-

ductive pseudo-Riemannian 2-step nilpotent Lie group N(g, v) as in (3.3) has Lie

algebra

h = {(A,B) ∈ (Der(g)∩ so(g, 〈 , 〉g))× so(v, 〈 , 〉v) : [π(x), B] = π(Ax) ∀x ∈ g}.
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Whenever g is semisimple, the ad-invariant metric on g is essentially the Killing

form; therefore any skew-adjoint derivation of g is of the form ad(x) for some

x ∈ g. In this case one can consider g ⊂ h where the action is given as

x · (z + v) = ad(x)z + π(x)v x ∈ g, z + v ∈ n

being ad(x) the adjoint map on the semisimple Lie algebra g. Thus an element

D = (A,B) ∈ h is of the form

(A,B) = (ad(x), π(x)) + (0, B′) x ∈ g

with B′ = B − π(x) ∈ Endg(v) ∩ so(v, 〈 , 〉v) = eg, where Endg(v) denotes the

set of intertwinning operators of the representation (π, v) of g. Since g and eg
commute, then h = g⊕ eg is a direct sum of Lie algebras, here we identify g with

the set {(ad(x), π(x)) : x ∈ g} ⊆ h. This argues the following result.

Corollary 3.6. In the conditions of (3.5) with data set (g, v, 〈 , 〉) for g semisim-

ple, the group of isometries fixing the identity element is

H = G× U U = Endg(v) ∩ O(v, 〈 , 〉v).

Proof. By (2.3) we have that

H = {(φ, T ) ∈ O(g, 〈 , 〉g)× O(v, 〈 , 〉v) : Tπ(x)T−1 = π(φx), x ∈ g}.

Hence φ = π−1 ◦Ad(T ) ◦π ∈ Aut(g). Since g is semisimple any automorphism of

g is an inner automorphism, thus there exist g ∈ G such that φ = Ad(g). By the

paragraph above, (Ad(g), π(g)) ∈ H and therefore π(g)−1T ∈ U . Hence

(φ, T ) = (Ad(g), π(g)) · (I, π(g)−1T ),

which says H = G× U . �

Remark 3. Compare with the Riemannian case [20].

3.1. A naturally reductive homogeneous structure. Ambrose and Singer

[1] achieved an infinitesimal characterization of connected simply connected and

complete homogeneous Riemannian manifolds in terms of a (1,2) tensor. This con-

dition was generalized to the pseudo-Riemannian case in the work given by Gadea

and Oubiña [12]. For naturally reductive Riemannian spaces a more restricted

condition was found by Tricerri and Vanhecke [28] (see also [29]) and generalized

to the pseudo-Riemannian case by Gadea and Oubiña (Proposition 4.1 in [13]).

While Tricerri and Vanhecke [28] achieved the classification of homogeneous Rie-

mannian structures, in the pseudo-Riemannian case, a complete classification is

still a pending item. There are studies in low dimensions as shown in [3, 4, 5].
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Theorem 3.7. A connected complete and simply connected pseudo-Riemannian

manifold (M, g) is naturally reductive if and only if there exists a tensor field T

of type (1,2) on M such that

(i) g(Txy, z) + g(y, Txz) = 0

(ii) (∇xR)(y, z) = [Tx, R(y, z)]−R(Txy, z)−R(y, Txz)

(iii) (∇x)Ty = [Tx, Ty]− TTxy

(iv) Txx = 0 for all x ∈ ξ(M).

for x, y, z ∈ ξ(M), where ∇ denotes the Levi Civita connection of (M, g) and

R the corresponding curvature tensor.

Let ∇̃ define on (M, g) by ∇̃ := T −∇, then the conditions (i)-(iii) above can

be rewritten in the following way:

(i)’ ∇̃g = 0

(ii)’ ∇̃R = 0

(iii)’ ∇̃T = 0.

The aim is to give a naturally reductive homogeneous structure for the simply

connected pseudo-Riemannian 2-step nilpotent Lie groups (N, 〈 , 〉) constructed

with the data of Theorem (3.3). Since the metric 〈 , 〉 is left-invariant, it suffices

to define such a T for left-invariant vector fields, that is, on n.

Theorem 3.8. Let N be the simply connected Lie group endowed with the left-

invariant pseudo-Riemannian naturally reductive metric induced by 〈 , 〉 on its Lie

algebra n (3.3). The following tensor T defines a naturally reductive structure:

(3.7) Tx1+v1x2 + v2 = τx1
x2 +

1

2
([v1, v2] + π(x1)v2 − π(x2)v1)

Proof. Since τx and π(x) are skew-adjoint on (g, 〈 , 〉g) and (v, 〈 , 〉v) respectively

for every x ∈ g, by computing one gets ∇̃〈 , 〉 = 0. By using the expression of

the curvature tensor in (5.6) one can compute and verify that ∇̃R = 0 and also

∇̃T = 0, thus T is a homogeneous structure. Clearly Tx+vx+ v = 0 so that T is

naturally reductive. �

Compare with [21].

4. Examples and applications

Below we expose examples of naturally reductive metrics on 2-step nilpotent

Lie groups. This is achieved by translating the data at the Lie algebra level
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to the corresponding simply connected Lie group by following the key results

provided in (3.3). We shall make use of Euclidean and semisimple Lie algebras in

order to obtained ad-invariant metrics. For further details on Lie algebras with

ad-invariant metrics see for instance [10, 22].

(i) Riemannian examples. Naturally reductive Riemannian nilmanifolds arise

by considering a data set with g compact. Recall that if g is compact then g = k⊕c
where k = [g, g] is a compact semisimple Lie algebra and c is the center (see [31]).

In [20] they were extended studied.

In the Riemannian case the converse of (*) above holds [32].

(ii) Modified Riemannian. Take any of the data sets corresponding to the pos-

itive definite case and follow the ideas in (2.4). Clearly all requirements in (3.3)

apply and so one can produce naturally reductive pseudo-Riemannian metrics of

signature (dim g,dim v).

Let N(g, v) denote a Riemannian naturally reductive nilmanifold obtained

from a data set (g, v, 〈 , 〉) (where g is compact). Let Ñ(g, v) denote the pseudo-

Riemannian 2-step nilpotent Lie group obtained by changing the sign of the metric

on g. Therefore by [32]

N(g, v) ' N ′(g′, v′) ⇐⇒ n(g, v) ' n(g, v′)

and this occurs if and only if there exists an isometric isomorphism φ : (g, 〈 , 〉+)→
(g′, 〈 , 〉′+) and a isometry T : (v, 〈 , 〉+)→ (v′, 〈, , 〉+) such that

Tπ(x)T−1 = π′(φx) for all x ∈ g.

Clearly φ : (g,−〈 , 〉+) → (g′,−〈 , 〉′+) is also a isometric isomorphism, so that

the corresponding simply connected Lie groups are isometric. Thus one has what

follows.

Proposition 4.1. If N(g, v) ' N ′(g′, v′) then Ñ(g, v) ' Ñ ′(g′, v′).

In [20] detailed conditions to get the isometries N(g, v) ' N ′(g′, v′) were ob-

tained.

(iii) Abelian center. Let R2n be equipped with a metric B, that is, B is

determined by a nonsingular symmetric linear map b such that

B(x, y) = 〈bx, y〉 being 〈 , 〉 the canonical inner product on R2n.

Let t ∈ so(R2n, B), that is t may satisfy t∗ = −btb where t∗ denotes adjoint with

respect to the canonical inner product on R2n.

Any nonsingular t ∈ so(R2n, B) gives rise to a faithful representation of R to

(R2n, B) without trivial subrepresentations. Let n be the vector space direct sum
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Rz ⊕ R2n equipped with a metric 〈 , 〉 such that

〈z,R2n〉 = 0 〈z, z〉 = λ ∈ R− {0} 〈 , 〉R2n = B.

Define a Lie bracket on n by

[z, y] = 0 ∀y ∈ n and 〈[u, v], z〉 = B(tu, v) u, v ∈ R2n.

According to (3.3) this Lie bracket makes of n = Rz ⊕ R2n a 2-step nilpotent

Lie algebra and the given metric is naturally reductive whenever the center is

nondegenerate. This Lie algebra is isomorphic to the Heisenberg Lie algebra.

Furthermore, the group of isometries fixing the identity element has Lie algebra

(4.1) h = Zso(R2n,B)(t)

where Zso(R2n,B)(t) denotes the centralizer of t in so(R2n, B), which can be verified

by applying Proposition (3.5).

In this way one gets naturally reductive metrics on the Heisenberg Lie group

of dimension 2n+1. The converse also holds.

Proposition 4.2. Any left-invariant pseudo-Riemannian metric on the Heisen-

berg Lie group H2n+1 for which the center is nondegenerate is naturally reductive.

The isotropy group has Lie algebra h as in (4.1).

Proof. Let h2n+1 denote the Lie algebra of H2n+1 and decompose it as a orthog-

onal direct sum h2n+1 = Rz⊕ v. Then the restriction of the metric to v defines a

metric B of signature (k,m). The map j defined in (2.1) is indeed skew-adjoint

with respect to B := 〈 , 〉|v×v
and it generates a subalgebra of so(v, B). Thus

z → j(z) defines a faithful representation without trivial subrepresentations since

by taking t := j(z) one has

tu = 0⇐⇒ B(tu, v) = 0 ∀v ∈ v⇐⇒ B(z, [u, v]) = 0 ∀v ∈ v.

But since the center is nondegenerate then [u, v] = 0 for all v ∈ v, which implies

j(z)u = 0 and thus u = 0. Indeed any nondegenerate metric on Rz is ad-invariant.

Hence the statements of (3.3) are satisfied and the metric on h2n+1 is naturally

reductive. �

Example 4.3. Let h3 denote the Heisenberg Lie algebra of dimension three with

basis e1, e2, e3 satisfying the Lie bracket [e1, e2] = e3. Lorentzian metrics on h3
with nondegenerate center can be defined by

(1) −〈e3, e3〉 = 1 = 〈e1, e1〉 = 〈e2, e2〉
(2) 〈e3, e3〉 = 1 = −〈e1, e1〉 = 〈e2, e2〉
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Thus in the basis e1, e2 the map j1(e3) for the metric in (1) is represented by the

matrix (
0 1

−1 0

)
(compare with (2.4)) while j2(e3) for the metric (2) one has(

0 1

1 0

)
.

The construction on the Heisenberg Lie algebra, can be extended in the follow-

ing way. Set B a nondegenerate symmetric bilinear form on Rk and let t1, . . . tl
be commuting linear maps in so(Rk, B) and such that

⋂
i ker(ti) = {0}.

Set n = Rl ⊕Rk direct sum of vector spaces, equipped Rl with any metric and

n with the product metric such that 〈Rl,Rk〉 = 0.

The triple (Rl,Rk, 〈 , 〉) is a data set which induces a naturally reductive metric

on the corresponding simply connected 2-step nilpotent Lie group with Lie algebra

n.

Semisimple center. Let Rp,q denote the real vector space Rp+q endowed with

a metric 〈 , 〉p,q of signature (p, q). Let so(p, q) denote the set of skew-adjoint

transformations for 〈 , 〉p,q. This a semisimple Lie algebra and the Killing form K

is a natural ad-invariant metric on so(p, q). Indeed so(p, q) acts on Rp,q just by

evaluation. Take the direct sum as vector spaces n = so(p, q)⊕Rp,q and equipped

with the product metric 〈 , 〉n such that 〈 , 〉so(p,q)×so(p,q) = K, 〈 , 〉Rp,q×Rp,q =

〈 , 〉p,q and 〈so(p, q),Rp,q〉 = 0. Thus a Lie bracket can be defined on n by

K([u, v], A) = 〈Au, v〉p,q for all u, v ∈ Rp,q, A ∈ so(p, q).

The corresponding 2-step nilpotent Lie group equipped with the left-invariant

metric induced by the metric above, makes of N a naturally reductive pseudo-

Riemannian space -Theorem (3.3)-.

A similar construction can be done by restriction of the evaluating action to a

nondegenerate subalgebra of so(p, q).

(v) Modified tangent semisimple. The Killing form K is an ad-invariant metric

on any semisimple Lie algebra g.

Take the Lie algebra g together with the Killing form and let v denote the

underlying vector space to g endowed also with the Killing form metric. To this

pair (g, v) attach

- the metric given by 〈 , 〉g = 〈 , 〉v = K and 〈g, v〉 = 0;

- the adjoint representation ad : g→ so(v,K).
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The adjoint representation on g is faithful and there is no trivial subrepresen-

tations, so that (g, v,K + K) constitutes a data set for a 2-step nilpotent Lie

group N(g, v) and by (3.3) it is naturally reductive pseudo-Riemannian. Clearly

the signature of this metric is twice as much the signature of B and the isometry

group can be computed with (3.6).

Remark 4. Bi-invariant metrics give rise to examples with degenerate center. In

[26] the author produces an example of a naturally reductive 2-step nilpotent Lie

group with degenerate center but where the metric is not bi-invariant.

5. On the geometry of pseudo-Riemannian 2-step nilpotent Lie

groups

The aim of this section is to write explicitly some geometric features of pseudo-

Riemannian 2-step nilpotent Lie groups.

Recall that a 2-step nilpotent Lie algebra n is said to be nonsingular if ad(x)

maps n onto z for every x ∈ n− z. Suppose n is equipped with a metric as in (1.1)

then n is nonsingular if and only if j(x) is nonsingular for every x ∈ z. We shall

say that a Lie group is nonsingular if its corresponding Lie algebra is nonsingular.

Whenever N is simply connected 2-step nilpotent the exponential map exp :

n→ N produces global coordinates. In terms of this map the product for z1, z2 ∈
z, v1, v2 ∈ v can be obtained by making use of the next equality

exp(z1 + v1) exp(z2 + v2) = exp(z1 + z2 +
1

2
[v1, v2] + v1 + v2).

We shall study the geometry of 2-step nilpotent Lie groups when they are

endowed with a left-invariant (pseudo-Riemannian) metric 〈 , 〉 with respect to

which the center is nondegenerate. In the Riemannian case see the work of P.

Eberlein [9].

The covariant derivative ∇ is left-invariant, hence one can see ∇ as a bilinear

form on n getting the formula

(5.1) ∇xy =
1

2
([x, y]− ad(x)∗y − ad(y)∗x) for x, y ∈ n,

where ad(x)∗ denotes the adjoint of ad(x). By writing this explicitly one obtains

(5.2)

∇xy = 1
2 [x, y] for all x, y ∈ v

∇xy = ∇yx = − 1
2j(y)x for all x ∈ v, y ∈ z

∇xy = 0 for all x, y ∈ z

Since translations on the left are isometries, to describe the geodesics of (N, 〈 , 〉)
it suffices to describe those geodesics that begin at the identity e ∈ N . Let γ(t)
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be a curve with γ(0) = e, and let γ′(0) = z0 + v0 ∈ n, where z0 ∈ z and v0 ∈ v.

In exponential coordinates we write

γ(t) = exp(z(t) + v(t)), where z(t) ∈ z, v(t) ∈ v for all t

and ask z′(0) = z0, v
′(0) = v0.

The curve γ(t) is a geodesic if and only if the following equations are satisfied:

v′′(t) = j(z0)v′(t) for all t ∈ R(5.3)

z0 ≡ z′(t) +
1

2
[v′(t), v(t)] for all t ∈ R(5.4)

These equations were derived by A. Kaplan in [18] to study 2-step nilpotent

groups N of Heisenberg type, but the proof is valid in general for 2-step nilpotent

Lie groups equipped with a left-invariant pseudo-Riemannian metric where the

center is nondegenerate as noted in [11] and [2].

Let γ(t) be a geodesic of N with γ(0) = e. Write γ′(0) = z0 + v0, where z0 ∈ z

and v0 ∈ v and identify n = TeN . Then

(5.5) γ′(t) = dLγ(t)(e
tj(z0)v0 + z0) for all t ∈ R

where etj(z0) =
∑∞
n=0

tn

n! j(z0)n. In fact, write γ(t) = exp(z(t) + v(t)), where z(t)

and v(t) lie in z and v respectively for all t ∈ R. By using the previous equations

(5.3) one has

γ′(t) = d expz(t)+v(t)(z
′(t) + v′(t))z(t)+v(t)

= dLγ(t)(z
′(t) + 1

2 [v′(t), v(t)] + v′)

= dLγ(t)(z0 + v′).

Now by integrating the first equation of (5.3) one gets v′(t) = etj(z0)v0 which

proves (5.5).

For x, y elements in n the curvature tensor is defined by

R(x, y) = [∇x,∇y]−∇[x,y].
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Using (5.2) one gets

(5.6) R(x, y)z =



1
2j([x, y])z − 1

4j([y, z])x+ 1
4j([x, z])y for x, y, z ∈ v,

1
4 [j(z)x, y]− [x, j(z)y] for x, y ∈ v, z ∈ z,

− 1
4 [x, j(y)z] for x, z ∈ v, y ∈ z,

− 1
4j(y)j(z)x for x ∈ v, y, z ∈ z,

1
4 [j(x), j(y)]z for x, y ∈ z, z ∈ v,

0 for x, y, z ∈ z.

Let Π ⊆ n denote a nondegenerate plane and let Q be given by

Q(x, y) = 〈x, x〉〈y, y〉 − 〈x, y〉2.

The nondegeneracy property is equivalent to ask Q(v, w) 6= 0 for one -hence every-

basis {v, w} ∈ Π [23]. The sectional curvature of Π is the number K(x, y) :=

〈R(x, y)y, x〉/Q(x, y), which is independent of the choice of the basis. Now take

a orthonormal basis for Π, that is a linearly independent set {x, y} such that

〈x, y〉 = 0 and 〈x, x〉 = ±1 and 〈y, y〉 = ±1.

After (5.6) one obtains

(5.7) K(x, y) =


− 3ε1ε2

4 〈[x, y], [x, y]〉 for x, y ∈ v

− ε1ε24 〈j(y)x, j(y)x〉 for x ∈ v, y ∈ z,

0 for x, y ∈ z

being ε1 := 〈x, x〉 and ε2 := 〈y, y〉.
The Ricci tensor is given byRic(x, y) = trace(z → R(z, x)y), z ∈ n for arbitrary

elements x, y ∈ n.

Proposition 5.1. Let {zi} denote a orthonormal basis of z and {vj} a orthonor-

mal basis of v. It holds

Ric(x, y) =



0 for x ∈ v, y ∈ z

1
2

∑
i εi〈j(zi)2x, y〉 for x, y ∈ v, εi = 〈zi, zi〉

− 1
4

∑
j εj〈j(x)j(y)vj , vj〉 for x, y ∈ z, εj = 〈vj , vj〉.
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Due to symmetries of the curvature tensor, the Ricci tensor is a symmetric

bilinear form on n and hence there exists a symmetric linear transformation T :

n → n such that Ric(x, y) = 〈Tx, y〉 for all x, y ∈ n. T is called the Ricci

transformation. Let {ek} denote a orthonormal basis of n; it holds

Ric(x, y) =
∑
k

εk〈R(ek, x)y, ek〉 = 〈−
∑
k

εkR(ek, x)ek, y〉

which implies

(5.8) T (x) = −
∑
k

εkR(ek, x)ek, being εk = 〈ek, ek〉.

According to the results in (5.1) we have that z and v are T -invariant subspaces

and

T (x) =


1
2

∑
i εij(zi)

2x x ∈ v, εi = 〈zi, zi〉

1
4

∑
j εj [vj , j(x)vj ] x ∈ z εj = 〈vj , vj〉.

where {zi} and {vj} are orthonormal basis of z and v respectively.

Remark 5. The formulas above were used in [6] to prove (2.2).
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