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species (Kennedy et al. 2011; Roy et al. 2013; Põlme et al. 
2013). On the other hand, other tree species show low spec-
ificity, and sometimes an ample array of fungi associated 
throughout their distribution, as for example Pseudotsuga 
sinensis (Wen et al. 2015).

Salix humboldtiana Willd. (Salicaceae), Alnus acumi-
nata Kunth (Betulaceae) and Nothofagaceae Kuprian. trees 
are known to be associated to ECM fungi (Becerra et al. 
2005a; Becerra et al. 2005a; Becerra et al. 2005a; 2009a; 
2009b; Fracchia et al. 2009; Pritsch et al. 2010; Nouhra 
et al. 2012a, b, 2013; Fernández et al. 2015; Wicaksono 
et al. 2017) in Argentina. These tree species have wide-
spread distributions, spanning in the case of S. humbold-
tiana, from northern Mexico to the Patagonia region in the 
south of Argentina, occurring principally in riparian zones 
in the Yungas, Andean valleys, and periphery of the Ama-
zonia towards the Andes (Gallo et al. 2021). On the other 
hand, A. acuminata is distributed from southern Mexico to 
north-west Argentina through Central American mountains 
and along the Andes mountains (Weng et al. 2004), while 
Nothofagaceae species are present in sub-Antarctic forests 
along the southern Andes in Argentina and Chile below 30º 

1 Introduction

The association patterns of plant and mycorrhizal fungi are 
influenced by numerous factors (Taylor 2008; Tedersoo et 
al. 2012), among them, the presence and dominance of spe-
cific host plants (Haskins and Gehring 2005; Bahram et al. 
2012; Tedersoo et al. 2012, 2013, 2014; Roy et al. 2013; 
Urbanová et al. 2015) has been postulated as an important 
driver of the fungal community.

Within the diversity of ectomycorrhizal (ECM) plant lin-
eages, a degree of preference and specificity for the associ-
ated ECM fungi is observed (Smith and Read 2008; Molina 
and Horton 2015). In this way, some tree genera are highly 
specific and associate to a reduced group or set of spe-
cific fungi throughout its distribution, as it is among Alnus 
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Abstract
The preference in the ectomycorrhizal (ECM) - plant association exhibits a wide degree of variation and depends on the 
identity of the plant but also of the fungal species. Evaluating the degree of specificity of the plant species toward ECM 
symbionts is an important clue for understanding the functioning of the ECM symbiosis itself. In this work we set out to 
investigate the patterns of association and specificity of Salix humboldtiana in a wide range of distribution. To do this, 
we evaluated in a greenhouse experiment if this species establishes symbiosis with ECM fungi belonging to its own rhi-
zosphere (using soil from three provenances of S. humboldtiana distribution in: north, center and south of Argentina) and 
the rhizosphere of Alnus acuminata and Nothofagaceae species, with which share distribution in the north and the south 
of Argentina, respectively. Trees of S. humboldtiana associate with ECM fungi belonging to its rhizosphere in the north, 
center and south of Argentina and from the A. acuminata rhizosphere, but not with those belonging to the Nothofagaceae 
rhizosphere. Furthermore, PERMANOVA showed that the composition of the associated ECM fungi differed between 
inoculum provenances. Our results suggest that S. humboldtiana shows low specificity on ECM symbiosis, associating 
with a small group of fungi that differ in abundance and composition throughout their distribution in Argentina.
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S latitude (Nouhra et al. 2019). In Argentina, these tree spe-
cies show different distributions along the Andes mountains 
in the latitudinal gradient. In the northwest, A. acuminata 
occurs in the subtropical Yungas region reaching its south-
ernmost distribution in the Catamarca province (Becerra et 
al. 2005c), overlapping with S. humboldtiana distribution 
(Ragonese et al. 1987) along the lower altitudinal vegeta-
tion belt of the Yungas. However, S. humboldtiana extends 
further south through the flat central Pampa and Chaco 
regions into northern Patagonia. In the latter area, isolated 
populations of S. humboldtiana thrive in lower sections of 
watersheds that are occupied upstream in the Andean high-
lands by Nothofagaceae species such as Nothofagus alpina 
(Poepp. & Endl.) Oerst., N. obliqua (Mirb.) Oerst., N. ant-
arctica (G. Forst.) Oerst., N. dombeyi (Mirb.) Oerst. and N. 
pumilio (Poepp. & Endl.) Krasser (Moreira-Muñoz 2011), 
some of them reaching Cape Horn at 55 degrees south.

These woody ECM species occurring in Argentina 
seem to present a wide degree of specificity on the asso-
ciated ECM fungi. A. acuminata shows relatively few but 
a highly specific set of ECM fungal taxa in the roots with 
relative no changes of composition throughout its latitudinal 
distribution (Becerra et al. 2005a, c; Kennedy et al. 2011, 
2015; Geml et al. 2014; Nouhra et al. 2015). Furthermore, 
A. acuminata is highly dependent on fungi in order to sup-
ply the high phosphorus (P) consumption demanded by the 
root actinorrhizal bacteria Frankia for the N fixation pro-
cess (Russo 1989; Benson and Clawson 2000; Becerra et 
al. 2009b; Kennedy et al. 2015). On the other hand, Noth-
ofagaceae species seem to show a less specific association 
to ECM fungi than A. acuminata, and tree species in this 
family are considered to have a wide range of receptivity 
to various fungal lineages as recently shown (Nouhra et al. 
2013; Fernández et al. 2015; Truong et al. 2017, 2019). Sim-
ilar to A. acuminata, they are highly dependent on the ECM 
symbionts for survival which seems to be related to the type 
of soils of the Andes in Patagonia (Andisols) that have a 
high natural retention of phosphorus (a limiting nutrient for 
plants), and whose availability is favored by the ECM fun-
gal growth (Diehl et al. 2003, 2008; Mazzarino and Gobbi 
2005). So far it is known that S. humboldtiana is associ-
ated with a few ECM fungal species of which only three 
were identified within the genera Inocybe, Tomentella and 
Tuber in the linage puberulum (Tuber/puberulum) and addi-
tional five unidentified ECM morphotypes (Becerra et al. 
2009a; Lugo et al. 2012; Bonito et al. 2013). Interestingly, 
a matching sequence of Tuber in the mentioned puberulum 
lineage was also found associated with Nothofagus alpina 
in Patagonia (UDB007212), raising questions on the shared 
ECM partners between these ECM hosts trees (Bonito et 
al. 2013; Nouhra et al. 2013). In addition, it is known that 

S. humboldtiana is associated with arbuscular mycorrhiza 
and dark septate fungi (Becerra et al. 2009a; Fracchia et al. 
2009).

Salix species are considered in general terms to be facul-
tative to the ECM symbiosis according to reports of some 
individuals that are not colonized in the North hemisphere 
(Meyer 1973; Cázares et al. 2005; Brundrett and Tedersoo 
2020). We refer by facultative to tree species capable of 
associating with ECM fungi but also able to thrive with-
out them (Meyer 1973; Molina et al. 1992; Cázares et al. 
2005; Smith and Read 2008). Also, it is known that many 
Salix species establishing opportunistic and generalist asso-
ciation with widely distributed and generalist ECM fungi 
that are compatible with a large number of plants taxa (Nara 
and Hogetsu 2004; Nara 2006; Tedersoo et al. 2010, 2013; 
Ryberg et al. 2011; Arraiano-Castilho et al. 2020, 2021).

In Argentina, little is known about the S. humboldtiana 
ECM associated fungal community and the level of speci-
ficity that supports the symbiosis. This species belongs to 
the subgenus Salix which is characterized mostly by tree 
habit, unlike other subgenera (Chamaetia and Vetrix) that 
are characterized by dwarf and multi-stemmed shrubs 
(Newsholme 1992). S. humboldtiana is distributed along the 
tropical and subtropical regions of Mexico, Central Amer-
ica and South America (Lauron-Moreau et al. 2015), and 
usually occurs on wetlands and riparian zones (Ragonese 
et al. 1987; Camacho-Rico et al. 2006; Isla et al. 2010). 
S. humboldtiana relationship with the environmental vari-
ables can be quite different from those Northern hemisphere 
Salix shrubby species from boreal forests and arctic habi-
tats, which in general do not thrive in wetlands and flooded 
environments (Nara 2006; Schmidt et al. 2010; Ryberg et 
al. 2011).

Our aims were to identify the ECM fungi associated with 
S. humboldtiana and determine the specificity and associa-
tion patterns of this tree with fungi from different inocu-
lum sources: (i) its own rhizosphere along the latitudinal 
gradient; (ii) the rhizosphere of neighboring A. acuminata 
populations in the north, (iii) the rhizosphere of Nothofaga-
ceae in the south. Based on the literature, and due to the 
wide and sometimes overlapped distribution of S. humbold-
tiana with other ECM woody species in Argentina, as men-
tioned above, we hypothesized that S. humboldtiana will 
show low specificity ECM associations with a reduced set 
of widely distributed ECM fungal species, including some 
taxa belonging to A. acuminata rhizosphere in its northern 
distribution, and some belonging to Nothofagaceae rhizo-
sphere in the south. In order to address this hypothesis, we 
evaluated in a greenhouse experiment if S. humboldtiana 
plant roots will indistinctly establish symbiosis with ECM 
fungi belonging to its own rhizosphere and the rhizosphere 
of A. acuminata and Nothofagaceae species.
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2 Materials and methods

2.1 Obtaining plants

S. humboldtiana plants were obtained from stem cuttings of 
two adult individuals located in La Calera locality in central 
Argentina (31°21’20.0"S; 64°21’42.1"W) in July 2015. The 
stem cuttings were 30–40 cm long and 1 cm in diameter 
approximately. In the greenhouse, rooting hormone (gibber-
ellic acid) was added to the base of the cuttings and then 
placed in pots filled with autoclaved sand on a heated table 
for 30 days until roots emerged. The pots were irrigated by 
automatic sprinklers three times per day (08:00 h., 13:00 h. 
and 18:00 h.). Growing conditions for cuttings were pro-
vided by a specialist of INTA (The National Agricultural 
Technology Institute), EEA Bariloche.

2.2 Soil selection

A. acuminata and Nothofagaceae species soil samples were 
collected from northern Argentina (Yungas) and southern 
Argentina (Patagonia) respectively, while S. humboldti-
ana soils were collected in the north, central and south of 
Argentina. Specifically, A. acuminata soil was collected 
from three sites, in Tucumán province localities: Lama-
drid, Las Lenguas and Tafí del Valle. Nothofagaceae spe-
cies (N. dombeyii, N. antartica, N. pumilio, N. alpina and N. 
oblicua) soil was collected from eight sites, three in Lanín 
National Park: Hua hum; Laguna Verde and Lahuencó and 
five in Nahuel Huapi National Park: Road to Siete Lagos, 
Brazo la Última Esperanza, Pampa Linda, Lago Mascardi y 
Cerro Tronador. Finally, S. humboldtiana soil samples were 
collected from the following locations: Lamadrid and Rio 
Chico in Tucumán province in northern Argentina; Piedra 
Parada, in Chubut province in southern Argentina and 2 
sites along Río Chico de Nono in Córdoba province in cen-
tral Argentina (Fig. 1).

At each site, soil samples were collected with a spade 
under the trees upon removal of the litter layer. Each soil 
sample consisted of a mixture of four or five sub-samples of 
approx. 2 kg randomly taken from the top 30 cm depth of 
soil around the site and separated by about two meters from 
each other. Then, soil sub-samples from each site and host 
plant were mixed to form the soil inoculums and stored at 
4 °C for a period of two weeks until the cuttings were ready 
for the greenhouse experiment.

2.3 Experimental design

For the greenhouse experiment, natural soil from A. acu-
minata, Nothofagaceae species and S. humboldtiana from 
each region were maintained separated totalizing five soil 

inoculums (Fig. 1): (1) Soil from S. humboldtiana from the 
Yungas forests in the north (hereafter SN), (2) Soil from S. 
humboldtiana from Chaco forest in the central region (here-
after SC), (3) Soil from S. humboldtiana from Patagonia, in 
the south (hereafter SS), (4) Soil from A. acuminata from 
the Yungas, in the north (hereafter A) and, (5) Soil from 
Nothofagaceae species from Patagonia, in the south (here-
after N).

The greenhouse experiment involved the rooted cuttings 
and the five inoculum treatments described above, with 12 
replicates (plants) for each inoculum and 12 replicate con-
trols per treatment. Rooted cuttings were placed individu-
ally in plastic containers (capacity of 650 ml). The substrate 
was prepared by thoroughly mixing each inoculum soil 
and autoclaved sand (in proportions 1:1). For controls, the 
inoculum soil was autoclaved, stabilized for two weeks and 
then mixed in equal proportions with sterilized sand. Auto-
claved soil for controls and sand was at 120° C and 1.5 atm 
during 1 h. To prevent cross-contamination between pots, a 
thin layer of autoclaved coarse sand was added at the top of 
each plastic container. The temperature in the greenhouse 
was between 20 and 30 °C. Plants were irrigated in the same 
way as we did for the cuttings, and fertilizer was not added. 
After seven and nine months, half of the plants per treatment 
(n = 6) were uprooted respectively, and shoots and roots were 
separated. Shoots were kept in paper bags and dried 72 h at 
70 ºC to measure biomass. Roots were gently washed with 
water to remove adhering particles and taken to the labora-
tory to observe the root tips under a stereomicroscope.

2.4 Measurements and ECM morphotype 
identification

Shoot biomass was obtained from weighing the dry shoot 
material subtracting the weight of the cutting to consider 
only the biomass produced during the experiment.

The percentage of total ECM colonization for each seed-
ling was calculated as the number of ECM root tips divided 
by the total number of root tips and multiplying by 100 
(Gehring and Whitham 1994) in a uniformed sample of roots 
displayed on a Petri dish and covering the whole surface 
(63.62 cm2). The ECM root tips were carefully extracted 
from the roots samples and sorted into morphotypes accord-
ing to their morphological and anatomical features, by using 
a Wild M5A stereomicroscope at x10-40 magnification. Cri-
teria for sorting ECM morphotypes included mantle color-
ation, mantle layers, branching pattern, emanating hyphae 
and presence of rhizomorphs and cystidia, following Ager-
er’s methodology (Agerer 1991, 1995). The percentage of 
colonization by each ECM morphotype was calculated by 
dividing the number of root tips colonized by each mor-
photype by the total number of root tips colonized in the 
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2.5 Molecular identification of ECM root samples

ECM root tips belonging to individual morphotypes were 
placed into 1.5 ml Eppendorf tubes containing 500 µl 2% 
CTAB DNA extraction buffer (2% cetyltrimethylammonium 
bromide, 100 mM Tris–HCl (pH 8.0), 1.4 M NaCl, and 20 
mM EDTA) and were stored at -20 °C. Five to eight root 

sample and multiplying by 100 (Helm et al. 1999 modified). 
Morphotype richness was calculated as the total number of 
different ECM morphotypes encountered in each treatment.

Fig. 1 Sampled sites and distribu-
tion of Salix humboldtiana, Alnus 
acuminata and Nothofagaceae 
species in Argentina. Important 
city of each region near the 
sample sites is represented with 
a black circle. A: soil from Alnus 
acuminata; SN: soil from Salix 
humboldtiana from the Yungas 
forests in the north; SC: soil from 
S. humboldtiana from Chaco 
forest in the central region; SS: 
soil from S. humboldtiana from 
Patagonia in the south; N: soil 
from Nothofagaceae species from 
Patagonia, in the south
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levels of explanatory factors with the HSD.test function 
from R package agricolae (de Mendiburu 2021). Variation 
in ECM fungal community composition, both qualitative 
(presence-absence) and quantitative (relative abundance) 
data was analyzed with permutational multivariate anova 
(PERMANOVA) with 999 permutations using the func-
tion adonis to test whether ‘Inoculum type’ affected ECM 
fungal community. Multilevel pairwise comparison of 
PERMANOVA was used to show differences between fac-
tor levels using the function pairwise.adonis from the pair-
wiseAdonis package (Martinez Arbizu 2017). To visualize 
dissimilarities (Bray-Curtis and Sorensen) in ECM com-
position we used non-metric multi-dimensional scaling 
(NMDS) from the vegan package (Oksanen et al. 2020). 
We reported the stress value that is an index to indicate 
how faithfully the high-dimensional relationships among 
samples are represented in a two-dimensional ordination 
plot. NMDS with stress values ≤ 0.1 are considered to be 
an acceptable representation (Clarke 1993). We assessed 
possible variations in multivariate dispersion (analogous to 
homoscedasticity) between groups with the betadisper func-
tion from the vegan package (Oksanen et al. 2020). All the 
graphs were performed with package ggplot2 (Wickham 
2016; Wickham et al. 2021). The analyses were conducted 
in R (R Core Team 2021).

3 Results

3.1 Colonization

Ectomycorrhizal colonization occurred in S. humboldtiana 
individuals planted in A, SN, SC and SS, while it was not 
present in those planted in N. There were significant dif-
ferences in total ECM colonization percentages between 
inocula (P = 0.027, F = 3.43; Fig. 2a). SS with a mean colo-
nization of 38.23% was higher than SC with 23.92%, while 
A and SN showed no differences and were colonized by 
26.63% and 26.92% respectively (Fig. 2a). There were no 

tips from one to five samples from each morphotype were 
subjected to DNA extraction by CTAB chloroform method 
(Rogers and Bendich 1994). Fifty (50) µL of extracted DNA 
was suspended in TE buffer. All the samples of extracted 
DNA were amplified. The full ITS rDNA repeat, includ-
ing the 5.8 S region, was amplified via PCR with ITS1F 
and ITS4 as well as ITS1F and ITS4B primer pairs (Gardes 
and Bruns 1993; White et al. 1990). One to four ampli-
fied products per morphotype were sent to Macrogen Inc. 
(Seoul, South Korea) for purification and sequencing using 
the BigDye™ terminator kit and run on ABI 3730XL. ITS 
sequence chromatograms of ECM root sequences were visu-
ally revised and manually corrected where necessary using 
BioEdit 7.0.5.3 (Hall 1999). The sequences generated for 
this study from the root tips DNA have been deposited into 
GenBank. ECM fungal taxon names were based upon the 
taxonomic level supported by online BLAST (Basic Local 
Alignment Selection Tool) results (Table 1). Sequences 
were generally assigned to species based on ITS sequence 
similarity threshold (≥ 97%) and to ECM fungal lineages 
according to Tedersoo et al. (2010). Identification was pro-
vided by running BLAST searches on the curated GenBank 
and UNITE + INSD fungal ITS sequence databases contain-
ing identified fungal sequences (Altschul et al. 1997; Nils-
son et al. 2018). We also obtained from UNITE, Species 
Hypotheses which were assigned for the taxa delimited in 
clustering on different similarity thresholds (97–99%) (Kõl-
jalg et al. 2013).

2.6 Data analysis

We fitted a one-way ANOVA to analyze the variation of 
shoot dry biomass in plants treated with inoculum using 
colonization as the factor (levels of the factor: colonized/
not colonized).

We fitted linear models in order to analyze the variation 
of ECM fungal colonization percentage in relation to fixed 
factors: “Inoculum type” and “harvest time”. Tukey’s HSD 
tests were used to detect significant differences between the 

Taxon GenBank 
accession 
number

GenBank information Unite information
Best BLASTn identified ITS match Unite SH
Specimen Iden-

tity 
(%)

Geopora sp. 1 MN381163 Geopora sp. KU991189 97.42 SH1268267.09FU
Serendipita sp. a MN381164 Sebacina sp. MH794948 99.82 SH1218835.09FU
Tomentella sp. 1 MN381166 Tomentella sp. MH795004 99.66 SH1177728.09FU
Tomentella sp. 2 MN381168 Tomentella sp. HG426008 98.72 SH1177728.09FU
Tuber sp. MN381171 Tuber sp.

JQ925631
99.64 SH0916819.09FU

Peziza sp. MN381172 Peziza sp. HM105556 95.45 SH1067858.09FU
Geopora sp. 2 MN381173 Geopora sp. KP745606 98.17 SH1268216.09FU

Table 1 Ectomycorrhizal fungal 
sequences from Salix hum-
boldtiana roots and additional 
information of the Best BLASTn 
identified ITS matches from 
GenBank and Species Hypothesis 
from Unite

a Assigned as Serendipita sp. 
instead of Sebacina sp. based in 
the Species Hypothesis name in 
Unite
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Eleven ECM morphotypes were identified in the sam-
ples and later seven of them determined through molecular 
analysis in the following taxa: Geopora sp. 1 (MN381163), 
Geopora sp. 2 (MN381173), Serendipita sp. (MN381164), 
Tomentella sp. 1 (MN381165; MN381166; MN381167; 
MN381169), Tomentella sp. 2 (MN381168), Peziza sp. 
(MN381172), and a Tuber sp. (MN381170; MN381171) 
(Table 1), belonging to the lineages /geopora, /serendipita, /
tomentella-thelephora and /puberulum (Tedersoo et al. 2010; 
Bonito et al. 2013). Peziza sp. sequence was not assigned to 
a specific lineage due it can not be assigned unambiguously 
to a well defined lineage based on the references (Tedersoo 
et al. 2010). In addition in a more recent study, Tedersoo 
and Smith (2013) stated: “Peziza sensu lato is still treated as 
a large, paraphyletic group even though it includes several 
well defined lineages that include sequestrate and epigeous 
species as well as both EcM and non-EcM taxa”. Four of 
the determined taxa belong to Ascomycota (Geopora sp. 
1, Geopora sp. 2, Peziza sp. and a Tuber sp.) and three of 
them belong to Basidiomycota division (Serendipita sp., 

differences in total ECM colonization between first and sec-
ond harvest time (P = 0.055, F = 3.92; Fig. 2b). All replicates 
of these treatments were colonized by ECM fungi except 
one planted in SC in the first harvest time, which was not 
included in the statistical analysis. As was expected, repli-
cates from control treatments were not colonized, except for 
some replicates (two in autoclaved SS, four in autoclaved 
A and eight in autoclaved N) that were weakly colonized 
by Tomentella sp. 1 in some cases and by Serendipita sp. in 
others in values minors to 5%.

There were in total five plant replicates that died during 
the experiment, one of them inoculated with SN, one with 
SC, one with SS and two with autoclaved SS soil (control). 
None of the individuals planted in N and only one individual 
planted in SC was not colonized by ECM fungi, however, 
they grew well during the experiment. There were no sig-
nificant differences in dry shoot biomass between colonized 
and not colonized plants treated with inoculum soil (ESM, 
Table S1).

ECM taxon Inoculum soil
A SN SC SS

Geopora sp. 1 - 21.6 ± 20.20 24.46 ± 24.96 -
Serendipita sp. - - 25.21 ± 23.51 -
Tomentella sp. 1 - 58.24 ± 24.08 6.97 ± 7.23 -
Tomentella sp. 2 - 3.55 ± 8.28 - -
Tuber sp. - - 0.20 ± 0.61 -
Geopora sp. 2 99.21 ± 2.12 - - -
Peziza sp. - 3.38 ± 7.51 41.97 ± 29.35 100.00 ± 0.00
ECM sp. 1 - - 0.17 ± 0.52 -
ECM sp. 2 - 5.19 ± 6.71 - -
ECM sp. 3 - - 1.01 ± 3.03 -
ECM sp. 4 0.79 ± 2.12 8.04 ± 9.93 - -

Table 2 Percentages of coloniza-
tion of each ECM fungi taxon in 
seedlings of Salix humboldtiana 
treated with A, SN, SC and SS 
inoculum. Abbreviations of the 
treatment names are the same 
as in Fig. 1. The values are 
mean ± sd

 

Fig. 2 Total colonization percentage of ECM fungi in Salix humbold-
tiana plants with different soil inoculum and harvest times. Abbre-
viations of the treatment names are the same as in Fig. 1. Boxplots 
represent the median, the first and the third quartile. Different letters 

in boxes indicate significant differences (P < 0.05). (a) Colonization in 
plants with A (n = 12), SN (n = 11), SC (n = 9) and SS (n = 11) inoculum. 
(b) Colonization in first (1, n = 22) and second (2, n = 21) harvest time
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between inoculum treatments appeared to be attributable to 
both differences in multivariate location and differences in 
multivariate dispersion, due to a significant beta-dispersion 
(P < 0.05). Communities from A and SS had significantly 
lower dispersion than communities from SN and SC. The 
pairwise PERMANOVA contrast indicated that the compo-
sition of ECM taxa associated with all inoculum treatments 
differed significantly from one another (P = 0.001 for all the 
pairwise comparisons). NMDS ordination showed varia-
tion in ECM fungi composition for the inoculum treatments 
forming four different groups (Fig. 3a, b).

4 Discussion

In this study, we provide evidence showing that S. humbold-
tiana seedlings establish low-specificity symbiosis with a 
set of ectomycorrhizal fungi that varies throughout their dis-
tribution in Argentina. Specifically, the results of the green-
house experiment indicate that the S. humboldtiana plants 
were colonized early by 11 ECM fungi from four of the five 
inocula tested, including those fungi from their own rhizo-
sphere from three regions along the entire latitudinal range 
of distribution in Argentina, and fungi from the A. acumi-
nata rhizosphere in the north (one region).

More specifically, we found two fungi taxa from the A. 
acuminata rhizosphere colonizing S. humboldtiana roots 
(Geopora sp. 2 almost in all the colonized roots in this treat-
ment and ECM sp. 4 in low percentage). Species of Salix 
from the northern hemisphere showed a similar pattern of 
association, sharing some ECM fungi with coexisting trees. 
For example, in a field experiment with seedlings carried out 
in Mt. Fuji, Japan, it has been shown that Salix reinii was 
associated with five ECM fungi, five of which are shared 
with Betula ermanii and three with Larix kaempferi (Nara 
and Hogetsu 2004); increasing up to 15 and 13, respectively, 
in naturally established woods where S. reinii is associated 
to a set of 21 taxa fungi in total (Nara 2006). Besides, Obase 

Tomentella sp. 1, Tomentella sp. 2). It was not possible to 
precisely determine the other four morphotypes due to the 
poor quality of the sequences, and these were named as 
ECM sp. 1, ECM sp. 2, ECM sp. 3, and ECM sp. 4.

3.2 ECM fungi composition

S. humboldtiana individuals planted in SN and SC were 
colonized by six and seven taxa, respectively, while a 
lower number of ECM taxa were found in those planted in 
A and SS that were colonized only by two and one ECM 
taxa, respectively (Table 2). The total ECM richness found 
in the whole experiment was 11 species. Four ECM taxa 
were observed in more than one treatment. In this way, Geo-
pora sp. 1 and Tomentella sp. 1 were present in individu-
als planted in SN and SC, Peziza sp. was present in those 
planted in SN, SC and SS (all the 3 inoculum soils from S. 
humboldtiana rhizosphere), and ECM sp. 4 was present in 
individuals planted in A and SN (Table 2).

The identity of the most abundant ECM varied through-
out the inoculum treatments. In individuals planted in A, we 
found Geopora sp. 2 in 99.21% of colonized roots. Instead, 
in individuals planted in SN, Tomentella sp. 1 occupied 
58.24% of the colonized roots, while Peziza sp. 41.97% of 
colonized roots in individuals planted in SC and 100% in 
those planted in SS (Table 2).

Many of the ECM taxa were rare in some treatments 
being present in low percentages (Table 2) due to being 
present only in a few plants (ECM sp. 4 in three individuals 
planted in A, Tomentella sp. 2 in three individuals planted 
in SN, Peziza sp. in two individuals planted in SN, ECM sp. 
1 in an individual planted in SC, Tuber sp. in an individual 
planted in SC, ECM sp. 3 in an individual planted in SC).

PERMANOVA test indicated that the composition 
(qualitative and quantitative) of ECM fungal species in S. 
humboldtiana seedlings differed between inoculum treat-
ments (PERMANOVA Sorensen, P = 0.001; PERMANOVA 
Bray-Curtis, P = 0.001). The differences in composition 

Fig. 3 Non-metric multi-dimensional scaling (NMDS) plots of varia-
tion in ECM fungi composition in plants of Salix humboldtiana planted 
in A, SN, SC and SS. Abbreviations of the treatment names are the 

same as in Fig. 1. (a) Qualitative (presence–absence based) NMDS; 
P = 0.001; Stress: 0.022 and (b) quantitative (relative abundance based) 
NMDS; P = 0.001; Stress: 0.029
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mycobiont of S. humboldtiana and N. alpina is not known 
(Bonito et al. 2013; Nouhra et al. 2013). In any case, it is 
clear that additional studies would be necessary to clarify 
these perspectives in our research, in particular focusing on 
knowing both the taxonomic diversity and the qualities of 
the ECM inocula used.

By and large, ECM associations are a prerequisite for 
many tree species to grow and survive (Smith and Read 
2008). However, our results suggest that S. humboldtiana is 
a host tree with low dependence on ECM fungi to survive, 
at least in the provided conditions during the experiment, 
considering that some of the inoculated plants (planted in 
N and a replica planted in SC) showed no colonization but 
they grew just like the colonized (ESM, Table S1).

We are aware that morphotyping followed by DNA 
sequencing of a limited number of samples could under-
estimate the diversity of ECM fungi in a system (García-
Guzmán et al. 2017). However previous studies in the 
field also reported low diversity (Becerra et al. 2009a) and 
incidence of ECM on root samples of S. humboldtiana 
subjected by seasonal flooding in central Argentina, or no 
colonization at all (Fracchia et al. 2009; Lugo et al. 2012). 
This is in agreement with previous studies that reported no 
ECM colonization on various species of Salix in the field 
(Meyer 1973; Cázares et al. 2005; Brundrett and Tedersoo 
2020). This attribute may be advantageous for S. humbold-
tiana occurring in riparian flooded soils, where the ECM 
inoculum may be scarce and the percentage of gravimetric 
water in the soil is high (Lugo et al. 2012).

In soil treatments from central Argentina we found ECM 
taxa that coincide with some described (Tuber sp. and 
Tomentella sp.) by Bonito et al. (2013) and Becerra et al. 
(2009a) in root samples obtained in the field in the same 
region. On the contrary, it was not so for Inocybe sp., which 
were registered by Becerra et al. (2009a). Tomentella, Geo-
pora, Peziza and Tuber are ECM taxa commonly found 
associated to Salix species around the world (Püttsepp et al. 
2004; Parádi and Baar 2006; Ryberg et al. 2009; Ishida et 
al. 2009; Hrynkiewicz et al. 2009, 2012, 2015; Erlandson 
et al. 2016; Arraiano-Castilho et al. 2020). The results of 
our experiment are consistent with that, having registered 
high colonization percentages of Tomentella, Geopora and 
Peziza in one or more of the treatments. These taxa are glob-
ally distributed and associated with many species of Pinus, 
Quercus, Picea and Betula (Smith et al. 2007; Tedersoo et 
al. 2008b; Leonardi et al. 2013; Taniguchi et al. 2021). On 
the other hand, Tuber sp. was rare and only present in one 
individual planted in SC, however, taxa from the /puberu-
lum clade would be adapted to dispersal over long distances 
compared to other Tuber clades, which explains why it is 
the only group present in our region (Bonito et al. 2013). 
Unfortunately, we have not found additional data on ECM 

et al. (2007) carried out a field study in Mt. Usu, Japan and 
found that S. integra, S. udensis and S. caprea share various 
ECM fungal species with neighboring Populus suaveolens 
f. suaveolens, B. pendula subsp. mandshurica and Quercus 
mongolica var. crispula. On the other hand, it was found that 
S. reticulata and Dryas octopetala in Sweden, shared 18 out 
59 ECM fungi species (Ryberg et al. 2009), meanwhile S. 
fragilis and A. glutinosa shared eight out 25 in New Zealand 
(Bogar et al. 2015). Similarly, it has been observed that dif-
ferent Salix species can share ECM fungi symbionts when 
growing side by side, suggesting that is the abiotic niche of 
fungi that determines the fungal species available to associ-
ate with host plants within an habitat (Erlandson et al. 2016; 
Arraiano-Castilho et al. 2020).

The results partially support our hypothesis as no ECM 
colonization occurred in the individuals planted in soil from 
Nothofagaceae species. Bogar et al. (2015) found similar 
results in a study with S. fragilis and indigenous fungal 
symbionts of Nothofagaceae in New Zealand. In general, 
Nothofagaceae species do not show high specificity and 
are considered to have a wide range of receptivity to vari-
ous ECM fungal lineages (Nouhra et al. 2013; Fernández et 
al. 2015; Tedersoo et al. 2008a, 2009a; Truong et al. 2017, 
2019). Therefore, we would expect that a number of the 
Nothofaceae associated ECM fungi to be compatible with 
S. humboldtiana. In contrast, our results shown that S. hum-
boldtiana is not able to associate with ECM fungi from the 
Nothofagaceae rhizosphere under the provided greenhouse 
conditions, suggesting that S. humboldtiana would not share 
ECM symbionts with Nothofagaceae species. This could be 
due to diverse historic biogeographic patterns in Salix and 
Nothofagaceae, e.g. the latter are associated with various 
ECM fungal lineages that are mostly of Gondwanic origin 
(Nouhra et al. 2013, 2019; Truong et al. 2017), while those 
associated with S. humboldtiana and A. acuminata, appear 
to have migrated from the northern hemisphere (Kennedy et 
al. 2011; Lauron-Moreau et al. 2015; Nouhra et al. 2019). 
Moreover, S. humboldtiana and Nothofagaceae take place in 
extremely different habitats, S. humboldtiana inhabits sub-
tropical floodable riparian zones and in general, Nothofa-
ceae is found in dense temperate forests on cool and drained 
mountain slopes (Hauenstein et al. 2005). We consider that 
these profoundly different environmental conditions did 
not favor the sharing of ECM fungal species in our experi-
ment. However, as previously mentioned, data on Tubera-
ceae biogeography, highlights the existence of sequences 
in the /puberulum lineage obtained from ectomycorrhizas 
sampled in natural stands of N. alpina from Patagonia and 
S. humboldtiana from central Argentina (Bonito et al. 2013; 
Nouhra et al. 2013). Previous data indicate that species in 
this fungi group are well adapted for long-distance disper-
sal, however, the origin and or migration pattern of this 
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5 Conclusions

This study provides novel information about the diversity 
and community composition of ectomycorrhizal root sym-
bionts in S. humboldtiana in Argentina.

Our results suggest that S. humboldtiana seedlings could 
have low specificity in their ECM associations, establish-
ing symbiotic relationships with a small pool of fungi that 
differ in abundance and composition according to different 
soils from sites sampling along its latitudinal distribution in 
Argentina. We showed that at greenhouse experiment condi-
tions, S. humboldtiana seedlings associate with ECM fungi 
belonging to its own native soils from the northern, central 
and southern sections of Argentina and from the A. acumi-
nata soils from northern Argentina where their distributions 
overlap. On the other hand, S. humboldtiana did not associ-
ate with ECM fungi belonging to the Nothofagaceae soils in 
our experiment, although additional studies would be nec-
essary to reveal if Salix humboldtiana and Nothofagaceae 
share other symbionts in the field.
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fungi associated with S. humboldtiana from other South 
American regions.

Based on our results we could say that S. humboldtiana 
also associates with widely distributed and generalist ECM 
fungi. Furthermore, some of the ITS sequences obtained in 
our study have a high percentage of identity match (greater 
than 97%) with sequences from ECM fungi from other 
Salix and Quercus tree species from distant regions of the 
world (data from GenBank database). This suggests that S. 
humboldtiana might associate with unspecific ECM fungi, 
which is consistent with other Salicaceae species associ-
ated with ECM fungi compatible with multiple hosts, over a 
large geographic scale (Tedersoo et al. 2013).

Interestingly we found high colonization rates of Geo-
pora sp. 2 which was the dominant species from the A. 
acuminata inoculum capable of colonizing S. humbold-
tiana under greenhouse conditions, and at very low rates 
the presence of ECM sp. 4. Consequently, several OTUs 
corresponding with Geopora spp. were recorded in the A. 
acuminata rhizosphere in the Yungas (Pastor N. PhD the-
sis unpublished). The absence of other ECM fungi from the 
Alnus soil inoculum on the Salix roots suggests that these 
host trees would share few ECM symbionts. This observa-
tion is consistent with the pattern of reciprocal specificity 
between Alnus and its associated set of ECM fungi (Ted-
ersoo et al. 2009b; Kennedy et al. 2011, 2015; Nouhra et 
al. 2019). The presence of Geopora sp. 2 and ECM sp. 4 
in S. humboldtiana plants inoculated with soil from the rhi-
zosphere of A. acuminata suggest that S. humboldtiana is 
capable of associating with very few ECM fungi that would 
not be exclusive to A. acuminata.

Last, the identity of the most abundant species was dif-
ferent among the inoculum sources. In other words, S. hum-
boldtiana appears to be associated with a reduced pool of 
ECM fungi that differ in their composition depending on the 
origin of the inoculum along its latitudinal distribution in 
Argentina. These results indicate that it is most likely a tree 
species of low specificity associated with a non-conserved 
pool of fungi.

Although the results of this work are preliminary, they 
are relevant since they address aspects of the specificity of 
S. humboldtiana ECM associations not previously studied. 
To our understanding, experimental studies of this type are 
necessary to understand the association patterns of ectomy-
corrhizal plants. Nevertheless, we consider that these results 
from a greenhouse experiment should be cautiously extrap-
olated to natural habitats. To fully understand the specificity 
patterns of S. humboldtiana ECM association, we desire to 
complement these results with further field research, such as 
studying ectomycorrhizae from roots samples from trees in 
natural populations along the analyzed gradient.
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