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Abstract
In this work we use principal components analysis to characterize dynamic speckle patterns. This
analysis quantitatively identifies different dynamics that could be associated to physical
phenomena occurring in the sample. We also found the contribution explained by each principal
component, or by a group of them. The method analyzes the paint drying process over a hidden
topography. It can be used for fast screening and identification of different dynamics in
biological or industrial samples by means of dynamic speckle interferometry.
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1. Introduction

Dynamic speckle patterns inform about the temporal char-
acteristics of the underlying physical phenomena in the
sample. Usually, several phenomena concur and contribute to
the final observed intensity variations, including scattering,
Doppler effect, polarization rotation, etc [1]. Since the same
effects can be due to one or more of these origins, it is dif-
ficult to identify the actual mechanisms at work, and the
quantification of their individual contributions.

Several techniques for analyzing dynamic speckle pat-
terns have been proposed in the literature [1]. Many of them
are heuristic in origin and others are specific to some
applications. Recently, some artificial intelligence tools have
been developed. They include both supervised [2] and non-
supervised learning algorithms [3]. They make use, simul-
taneously, of several measuring techniques for screening
some effects. Nevertheless, the problem is not fully solved
and the identification and segmentation of regions showing
different inner dynamics is of considerable interest, for
example, in biology and agronomy. In this work we analyze
sequences of images of dynamic speckle using a multivariate
technique: the principal components analysis (PCA) [4].

This method can distinguish processes occurring in a video
sequence which is characterized by different correlation
structures. The computational resources and time necessary
to perform PCA are proportional to the data volume (number
of frames × number of pixels at each frame) and it is in the
range of tens of seconds. This processing time is much
longer than the time consumed in evaluating other figures
of merit [5]. However, PCA retrieves more information
about the dynamic characteristics of the physical process
providing temporal parameters beyond the acquisition and
processing time duration, along with spatial structures. To
show how PCA works in dynamic speckle analysis we apply
it to a quite explored experimental situation: the drying
of paint on a surface of hidden topography [1, 6]. In this
case the sample is a coin. This kind of object has been used
in the literature to compare the performance of different
algorithms.

To understand the method and its limitations, in section 2
we briefly present the PCA technique and its practical
implementation for the analysis of a video sequence.
Section 3 explains how the results of the PCA describe the
inner dynamic of the physical process that is observed, and
how the results can be applied to any other video sequence of
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dynamic speckle patterns. Finally, in section 4 we summarize
the main findings of our contribution.

2. The principal component analysis applied to a
sequence of frames

PCA, a multivariate technique, analyzes the structure of the
variance of a collection of statistical realizations of a set of
variables [4]. Among other applications, it reduces the
dimension of a set of data by generating a collection of new
variables that do not exhibit correlation among them, and
selecting the most meaningful. These new variables are linear
combinations of the original, and therefore they represent the
same magnitude. In this work, the original variables are the
collection of N consecutive frames organized as a video
sequence, grabbed by a CCD camera from an active sample
producing dynamic speckle pattern when illuminated by laser
light. In this paper, we name F the following N-dimensional
variable: = … …{ }F F F F F, , , , ,t N1 2 , where Ft represents the
t frame in the temporal sequence. To properly account for

inner correlations between frames, the mean of each frame is
removed from each one. The PCA transformation provides a
new set of frames that we label as F̄ . We also know that each
frame represents a bi-dimensional distribution of irradiance
having R rows and C columns. From an statistical point of
view, each pixel is a realization of F. Then, the number of
realizations of the original variable F is = ×M R C. If we
maintain this bi-dimensional arrangement, we would need to
deal with a data cube of consecutive frames. However, it is
possible to transform each R × C frame into a M vector by a
simple rearrangement of the data. Both the removal of the
mean and the rearrangement of the pixel’s values are rever-
sible procedures, so the original frames can always be
retrieved.

The frames are connected through the co-variance matrix,
S, of the zero-mean original data set, F̄ . As expected, S shows
non diagonal elements accounting for the inner correlation
among frames. However, it is possible to diagonalize this co-
variance matrix by moving to another set of variables that
now are uncorrelated. This transformation, that can be inter-
preted as a rotation within a N-dimensional space, is made by
the PCA method. This rotation moves from the frame

Figure 1. Representation of the PCA transformation as a rotation from the frame reference system, …{ }F F F F, , , , N1 2 3 , to the principal
component reference system, …{ }PC , PC , PC , , PCN1 2 3 . To illustrate this rotation we have plotted both the frames and the PC along with
the corresponding the eigenvectors, αe . These images are extracted from the analysis made to the dynamic speckle sequence analyzed in this
paper. In this figure, we show the first three elements of each set.
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reference system, F, where the images are correlated, to a new
reference system, PC, where the correlation between frames is
zero. Figure 1 shows the transformation, including the ori-
ginal frames (F F,1 2, and F3) that can be interpreted along
directions …(1, 0, 0, , 0), …(0, 1, 0, , 0), and

…(0, 0, 1, , 0), respectively. The new uncorrelated variables,
named as principal components, are related to the original
variables by the following linear relation:

∑=α α
=
e FPC ¯ . (1)

t

N

t t

1

,

The dimensionless coefficients, αe t, , of the linear combination
describing this transformation are the eigenvectors, αE , of S.
In figure 1 we interpret these coefficients as the new direc-
tions, e1, e2 and e3, along the new PC reference system. In this
figure we have also presented the images corresponding to the
given principal components. Although the original images—
represented as F1, F2, F3—are quite similar among them, the
new images—described by the principal components PC1,
PC2, and PC3—are already different and show no correlation.
The criterion to obtain each direction is that the corresponding
principal component should contain the maximum amount of
variance of the remaining data set. As a matter of fact, the
variance of the resulting component images will be an
important result of the analysis, and the method provides
these values in decreasing order. It can be demonstrated that
the αe t, coefficients obey the following relation:

λ− =α α( )S I E 0, (2)

where I is the ×N N identity matrix. The eigenvalues λα
obtained from the previous equation represent the variance
associated with each principal component, αPC . Therefore,
the fraction of the total variance explained by each PC, Ωα, is
given by

Ω λ
λ

=
∑α

α

α α=
. (3)N

1

We may also note that the principal components are organized
in decreasing order of their contribution to the total variance
of the data, being the sub-index α = 1 the one corresponding
with the most relevant PC. The eigenvectors, αE , can be
arranged as a ×N N matrix. If both the original variables, F̄t,
and the principal components, αPC are organized as two

×M N matrices, the transformation given in equation (1) can
be written as: = FEPC ¯ . Using this matrix relation, or
equation (1), we obtain the original frames from the principal
components as:

∑=
α

α α
=

F e¯ PC . (4)t

N

t

1

,

This equation reconstruct the original data (except for the
mean of each frame that can be easily added to the result of
equation (4)) using all the principal components. However,
the sum can be carried out by selecting some meaningful
principal components to produce a filtered, or rectified, ver-
sion of the original data.

As a general tool of multivariate analysis, one of the main
drawbacks of the PCA method is the accurate interpretation of
the results for a given application. However, this statistical
origin is also an advantage of the method because its sound
foundation. In fact, PCA has been successfully applied to a
variety of fields both in optics: spectroscopy, facial recogni-
tion, etc; and other areas as econometrics, or computational
linguistics [4]. Our case is similar to the analysis of the noise
in a sequence of video frames.

2.1. Grouping and classification of principal components

As we previously noted, one of the most difficult tasks in
analyzing the results from PCA is the identification of the
meaningful principal components. Some authors suggest a
qualitative criterion: the scree test, based on the trend of the
eigenvalues [7]. The cumulative variance contribution may
also serve as a quantitative criterion. In this case, the
threshold value for this cumulative value is somehow differ-
ent for each case. An automatic method to identify properly
the meaning of the principal component results is based on
the calculation of the uncertainties of the variance of a given
PC (equation (3)) [8, 9]. If two consecutive eigenvalues are
equal within their uncertainties, then they should be con-
sidered together because they explain contributions to the
variance that are not distinguishable. When this happens, they
merge within the same process [8]. With this criterion, two
principal components, αPC and α+PC 1, with overlapping
variances in their uncertainties must be considered as a single
unity. Then, it is not meaningful, nor statistically correct, to
reconstruct the signals using each of them separately. This
reasoning can be extended to a higher number of PCs if the
uncertainties of their variances successively overlap. A more
detailed explanation of the statistical reasoning of this cri-
terion is given in [8]. This grouping strategy has been suc-
cessfully applied in several fields [10]. Therefore, single-
component and multicomponent processes are defined. The
single-component that appear isolated, i.e., whose variance
uncertainty does not overlap with any other, can be con-
sidered as relevant or independent. Typically, these isolated
principal components show a harmonic dependence in their
corresponding eigenvectors. We can relate their variance with
a given frequency. In this case, the corresponding eigenvalue
represents the value of the power spectrum density (PSD) of
the underlying process (see [11]).

When we consider the last PCs, i.e., those with a mini-
mum contribution to the variance of the original data, we
typically find a process that merges together a large amount of
PCs [8]. Often, their contributions to the variance overlap
continuously. Besides being linked by their uncertainties,
their associated eigenvectors vary very rapidly and cannot be
identified with a specific value of frequency but a mix of
them. They represent a residual noise that contains, not only
the measurement uncertainties, but also a high frequency
contribution involving a wide frequency band-width.

The previous classes of principal components (a set of
isolated principal components, and a continuous overlapping
principal components) have already been analyzed [8, 10, 12–
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15]. However, some other structures may appear in the data
set. Then, grouping and classification will help associate
groups of principal components with different physical pro-
cesses. >From here, we will perform an analysis of a sequence
of dynamic speckle of a painted coin.

The application of the PCA method requires the diag-
onalization of the covariance matrix, the evaluation of dif-
ferent statistics of the data set, and the reconstruction of a
filtered set of frames by using a matrix product. For a typical
data set containing some few hundreds of frames, and having
around 105 pixels, the time consumed by these numeric
procedures is proportional to the data volume.

3. Application of the PCA method to dynamic
speckle sequences

In this contribution PCA is applied to a sequence of 398
images obtained at a frame rate of 30 fps (sampling fre-
quency, =f 30Sampling Hz) with a size of
512 × 512 = 262144 pixels and lasting 13.3 s. The analysis
has been made with a personal computer with an Intel-i7
processor, 16 Gb of RAM, under the Matlab environment.
The PCA results are obtained after 21 s. If the data follow a
normal distribution, the grouping and classification are
straightforward and consumes less than 1 s. However, if the
normality assumption fails, then it is necessary to calculate
fourth order cumulants (see reference [8]) and the grouping
process takes around 4 min. Finally, the reconstruction of the
frames using a selected set of frames is evaluated in 2 s. The
computational time can be reduced when using dedicated and
compiled algorithms.

Our sequence of images contains the dynamic speckle
produced by a coin covered with paint along the drying of the
paint coating [1]. The underlying topography cannot be

perceived during the drying process, but the coating thickness
varies accordingly, and thin paint dries before thick ones. So,
measures of dynamic activity should show the hidden topo-
graphy. The method can be straightforwardly adapted to other
dynamic processes.

We first represent the relative importance of the PC to the
total variance of the original data set (see figure 2). The first
principal component explain 41.5% of the total variance of
the data, and the following ones are contributing in decreasing
order.

Figure 3 shows a log–log plot of the percentage of the
eigenvalue contributions obtained after diagonalizing the
covariance matrix, S. They are represented as a function of the
ordinal of the associated principal component. After analyz-
ing the results, three classes of structures can be observed that
we label as P1, P2, and P3.

The first one, P1, is formed by the first 30 PCs. This class
represents 87.2% of the total variance of the original data.
These PCs are isolated and independent because they are
single-component processes. This means that their eigenva-
lues, considering their uncertainty due to the sample, do not
overlap. Their associated eigenvectors can be fitted to sinu-
soidal functions of time (see inset of eigenvector #6 in
figure 4). Therefore, for each principal component included in
this spatial-temporal structure, the associated variance , i.e.,
the eigenvalue, is related to a single frequency. This fre-
quency is determined by the time evolution of the associated
eigenvector [10, 11]. To prove this, figure 4 shows the Fourier
transform of each eigenvector. We can observe that the
sinusoidal eigenvectors included in the P1 class present a
narrow peak if compared with the rest that are not isolated
eigenvectors. The results obtained from the PCA for this first

Figure 2. Relative contribution of the first 20 principal component to
the total variance of the original frames. The images correspond to
PC1, PC2, and PC20.
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Figure 3. Relative contributions of the eigenvalues of the principal
components analysis with their uncertainties for the coin data set.
They are expressed as a percentage of the total variance and
correspond with the relative weight given by equation (3). The
vertical lines show the limits of the three classes identified in this
analysis. The inset shows part of the variance contribution of class
P3 where the overlapping between successive eigenvalues is clearly
observed.
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structure P1, can be seen as a PSD function [10, 11]. This
interpretation is graphically presented in figure 5, that is a
log–log plot of the eigenvalues. Versus the frequencies
associated with each eigenvector. These data can be linearly
fitted showing a temporal evolution of the type α−f . Then, the

fPSD( ) is described by the following equation:

= ±
±f

f
PSD( )

30 2
. (5)

1.09 0.02

This fitting yields a value of α = ±1.09 0.02.
The third class, P3, groups together in the same multi-

component process principal components ranging from #70 to
#398. They represent 5.4% of the total variance of the original
data. In figure 4 we can see how the range in temporal fre-
quency components of these PCs is wide and contains high

frequency components until the Nyquist frequency
( = =f f0.5 15Nyquist Sampling Hz).

Finally, the second class, P2, includes those PCs from
#31 to #69 that cannot be included in P1 (representing a PSD)
nor the ones in the P3 class (representing a uncorrelated high-
frequency temporal noise). By analyzing the uncertainties in
the data represented in figure 3 and applying the grouping
strategy, we conclude that this subset of principal components
is not a single process. Nevertheless, the eigenvectors of the
P2 class share the feature of being defined by two frequencies
or even three (see figure 4 and the inset representing eigen-
value #50), instead of one as it happens in P1 class.

Once the principal components are split according to the
aforementioned criteria, we can proceed to the rectification, or
filtering, process. Rectification consists in the reconstruction
of a sequence of N frames (the same number as in the original
sequence) using only the principal components obtained in
each one of the defined classes. We select a set of principal
components when performing the sum in equation (4) and add
the mean value of each frame. We obtain three sequences of
frames, one for each class. The importance of each class can
be given by the sum of the contributions, Ωα, of the principal
components belonging to each one. The first class, P1,
involves 87.2% of the total variance of the original data, P2
represents about 7.5%, and the third class, P3, accounts for
remaining 5.4%.

Several types of analysis can be performed on the images
to find the reason behind their differences (see for example
Fujii’s method in [1]). In figure 6 we show the mean and the
standard deviation of each rectified frame set. For the three
sequences, the mean of each pixel, and its standard deviation
are calculated and shown as images. We see that the images
of the mean do not reveal useful information. However, the
standard deviation images reveal the underlying topography
of the object. In this way, a high value in the image implies a
point where the dynamic speckle varies with high amplitude

Figure 4. Fourier transform of the eigenvectors for the coin data set. The first 30 eigenvectors show a sharp peak in frequency, while the rest
have a wider spectrum. Eigenvector #6 (isolated and sinusoidal) and #50 are shown as insets. The vertical lines limit the three classes
identified in this analysis. The sampling frequency is =f 30Sampling Hz.

Figure 5. PSD adjustment for the sinusoidal isolated eigenvectors.
This analysis can be only applied to those eigenvectors included in
the P1 class. The sampling frequency is =f 30Sampling Hz.
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and fast temporal evolution. A quite similar analysis, using
the noise instead of the signal as the figure of merit, has been
successfully applied to the detection and identification of
buried land-mine objects with principal components [16].

The first class, P1, shows a high absolute value of the
standard deviation with an almost uniform spatial distribution
over the image. In the second one, P2, regional differences
appear, which are clearly visible in the third class, P3, where
the topography of the coin, letters and numbers, can be dis-
tinguished. The region surrounding the digit ‘5’ has the
strongest activity. The fundamental difference between the
second and the third classes is spatially located around the
digit, clearly visible in the third but not so much in the sec-
ond. The standard deviation decreases from P1 class values to
P2 and P3. However, in these last two classes, the spatial
distribution of the variance changes more than in P1,
revealing the underlying topography. This analysis of the
noise is possible after applying the PCA method and the
previously explained grouping strategy.

PCA can also assign time scales to these classes. >From
figures 3 and 4 we infer that the highest frequency achieved
by class P1 corresponds to about 1 s (1 Hz), and about 0.3 s

for class P2. This implies that the drying dynamics that pro-
duces P1 involves movements in the speckle in the order of
seconds or longer, and P2 between 1 and 0.3 s. The third
class, P3, is then, associated to an even shorter time scale.

We can relate topography and time sales with the drying
mechanism. The drying of paint is a rather complex process
involving several steps including solvent evaporation and
refractive index variations, features to which dynamic speckle
is sensitive [17]. The initial stage of the process is when the
solvent evaporates, and it is called the constant rate period.
Afterwards, there is a falling rate period in which the drying
rate decreases to zero. The beginning of the falling rate period
depends on the film thickness and solvent evaporation [18].
Since the thickness of the coating on the over-relief of the
coin is locally variable, the paint can be locally in different
drying stages. Thin paint regions should be in later stages
compared to thick ones. Therefore, activity in the speckle
pattern varies with the hidden coin topography [6]. The
results obtained from the PCA method shows that classes P2
and P3, associated with time periods shorter than 1 s, reveal
the hidden topography of the coin and can be related with
regions at later drying stages. From the results obtained for
the P3 class, we observer that the standard deviation is
smaller in those regions where the paint coating in thinner.
This means that the contribution to the rapid variation of the
P3 class is proportional to the thickness of the paint. At the
same time, class P1, is identified as having a time period
longer than 1 s and following a f1 PSD. We should
emphasize that this information has been obtained from a
sequence frame lasting 13.3 s. Although this time period is
much shorter than the total drying time, the results obtained
from PCA already reveal different processes that last longer
than acquisition time.

4. Conclusions

We presented the application of a multivariate technique, the
PCA method, to the analysis of a sequence of images of
dynamic speckle interferometry. We obtained quantitative
results of different processes that can be related with the inner
dynamic of the drying process of paint coating a coin. The
classes identified here are related with temporal and spatial
distributions at different spatial-temporal scales. Additionally,
these results have been obtained from a sequence lasting just
13.3 s. This time duration is much shorter than the typical
drying times of paint, allowing fast monitoring of the process.
The method provides a quantitative evaluation of the reported
classes of spatial-temporal evolutions. Most of the variance of
the original data (87.2%) is explained as a f1 PSD with a
time scale longer than 1 s. The remaining variance (13% of
the total) presents a temporal evolution with time constants
faster than 1 s. Furthermore, they already reveal the hidden
topography that is associated with later drying states. The
capability of the PCA method to section the variance of the
data into independent components allows a meaningful ana-
lysis relating physical sources to different classes of spatial-
temporal evolution.

Mean STD

P1

P2

P3

Figure 6. View of the mean and the standard deviation of each pixel
for the rectified frames for coin data set. The rectification is for P1
class (top), P2 class (middle) and P3 class (bottom). The numbers
show the percentage of the total variance explained by each class.
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The computational time duration of the PCA method
makes difficult its real-time application with current and
standard computational capabilities. In these conditions, PCA
can be seen as a fast pre- and post-processing tool that allows
filtering of the data and provides parameters with time char-
acteristics longer than the time duration of the analyzed
sequence. Also, PCA results are given in terms of PSDs and
spatial maps of characterizing parameters. This identification
relates the observed classes with the dynamic processes
associated to evaporation of solvent, displacement of pig-
ments at different sizes or scales. The method provides new
information, allows the trimming of the components of
interest, and does not require previous knowledge of the
dynamics of the phenomenon under investigation as it adapts
itself to the signal.
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