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A general analytical method to determine the mode I stress intensity factor for thin-walled
beams is presented. This method is based on the concept of crack surface widening energy
release rate, which is expressed in terms of the G� integral and the thin-walled beam
theory. A distinctive aspect of this technique is the incorporation of the warping effect,
which is a common feature in thin-walled beams that significantly influences in the stress
distribution. This characteristic gives generality to the method, allowing the analysis of
crack scenarios that have not been yet considered by other authors. The results show a
good agreement with shell finite element solutions and other results available in the
literature.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled beams are widely employed in modern engineering structures. For this reason, the study of crack behavior in
these structural components represents a topic of crucial importance. The mode I stress intensity factor is a very significant
parameter in the integrity evaluation and risk analysis of structures. The determination of an exact solution for the stress
intensity factor is usually a difficult enterprise. In thin-walled beams, the presence of sectional warping constitutes an addi-
tional problem. Although some approaches have recently been proposed in this direction [1–3], no one have regarded flex-
ural–torsional loads, which activate the warping effect.

The purpose of this article is to present a technique to determine the mode I stress intensity factor for cracked thin-walled
beams. This technique is based on the G� integral concept and the thin-walled beam theory. G� integral [4] is derived from
the conservation law and the concept of crack mouth widening energy release rate. It has shown to be easy to employ in the
determination of closed forms for the stress intensity factors in several crack problems [1,2,5]. Thin-walled open beam the-
ory [6–8] considers the warping effect derived from the natural flexural–torsional coupling of this kind of structures. In the
determination of mode I stress intensity factor, warping is taken into account by considering the energetic contribution of
the bimomental force.
ional, 11
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Nomenclature

a crack depth (also semi-major axis of the elliptic crack)
~a boundary of the elliptic crack
A cross-sectional area
b dimension of a flange
B bimomental beam force (also point B, origin of the system B: x, s, n)
c semi-minor axis of the elliptic crack
C center of gravity of the uncracked cross section
Cij element of order (i, j) of the inverse of the constitutive matrix
Cw warping constant
G⁄ crack mouth widening energy release rate
Gc vector containing elements of the inverse of the constitutive matrix
h dimension of the web
Ii identity matrix of size i
Iy, Iz second moments of area
Iyz product moment of area
Iyx, Izx product of warping
J constitutive matrix
KI mode I stress intensity factor
L length of the beam
n coordinate normal to the cross-section middle line
N axial beam force
My, Mz bending moments
Q vector of generalized forces
Qc vector containing squares and products of the generalized forces
r radial coordinate
s circumferential coordinate
S cross-sectional perimeter
Sy, Sz first moments of area
Sx first moment of warping
t beam thickness
T stress vector
Tx, Ts elements of the stress vector
u axial displacement
u displacement vector
U strain energy
U0 strain energy density
v circumferential displacement
x, y, z Cartesian coordinates
Y, Z coordinates of a point located in the middle line of the cross-section
ai coefficients of the axial stress in cracked cross-section
c vector of shape functions associated to cracked cross-section
C integration path
D vector of generalized strains
gx, gs components of the unit outward normal vector
h angular coordinate
hx warping variable
hy, hz bending twists
k auxiliary integration variable
m Poisson’s ratio
n crack location (axial coordinate)
P total potential energy
rxx axial stress
xp primary warping function
(�)(0) superscript associated to the uncracked cross-section
(�)(c) superscript associated to the cracked cross-section
(�)(R) superscript associated to the cracked flange or web of the beam

250 V.H. Cortínez, F.E. Dotti / Engineering Fracture Mechanics 110 (2013) 249–257



V.H. Cortínez, F.E. Dotti / Engineering Fracture Mechanics 110 (2013) 249–257 251
2. G� integral and mode I stress intensity factor

From the conservation law, the two-dimensional G� integral can be defined as
G� ¼ t
Z

C
U0gx � T

@u
@x

� �
dC; ð1Þ
where U0 is the strain energy density, g = {gx, gs} the unit outward normal, T = {Tx, Ts} the stress vector applied on the outer
side of the path C and t the thickness of the beam. The vector u = {u, v} contains the displacements from the Irwin–West-
ergaard field [9,10]. Let the crack in Fig. 1b. be a two-dimensional simplification of the three-dimensional edge-crack in
Fig. 1a. For the path Cdfg, G� represents the energy release rate due to the moving crack boundary dfg in the x direction.
As the crack mouth widens, G� can be regarded as the crack mouth widening energy release rate [4].

Considering plane strain and employing elementary concepts from Theory of Elasticity, the integral in expression (1) can
be solved as [1,4,5]
G� ¼ K2
I ð1� m2Þt

pE
; ð2Þ
where KI is the mode I stress intensity factor, E is the Young modulus and m the Poisson ratio.

3. Energy release rate for cracked thin-walled beams

3.1. A cracked thin-walled beam

The points of the beam are referred to a Cartesian coordinate system (x, y, z), which origin C is located at the centroid of
the uncracked cross-section. A circumferential coordinate s and a normal coordinate n are also defined in the middle line of
the cross-section. A point lying on this middle line has coordinates Y and Z.

A crack with depth a and location x = n is regarded as an elliptical hole under the condition of c ? 0 [1,4,5]. Thus, the crack
boundary can be expressed as
~aðxÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx� nÞ2

c2

s
: ð3Þ
3.2. Constitutive expression for mode I loading

The constitutive equation associated to a thin-walled beam in mode I loading can be written as [8]
Q ¼ JD; ð4Þ
where Q is the vector of generalized beam forces, J the constitutive matrix and D the vector of generalized strains. Their
expressions are
Q ¼ fN;My;Mz;BgT
; ð5Þ

D ¼ @u
@x
;� @hy

@x
;� @hz

@x
;� @hx

@x

� �T

; ð6Þ
crack
surface

(a) (b)
Fig. 1. (a) Three-dimensional edge-crack in a generic beam and (b) its corresponding two-dimensional simplification.
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J ¼ E

A Sy Sz Sx

Iy Iyz Iyx

Iz Izx

Cw

2
6664

3
7775: ð7Þ
The generalized beam forces have been defined in Eq. (5): N as the axial force, My and Mz as the bending moments and B as
the bimoment. The cross-sectional constants are
A ¼ t
R

S ds; Sy ¼ t
R

S Zds; Sz ¼ t
R

S Yds; Sx ¼ t
R

S xpds;

Iy ¼ t
R

S Z2ds; Iz ¼ t
R

S Y2ds; Iyz ¼ t
R

S YZds;

Iyx ¼ t
R

S Zxpds; Izx ¼ t
R

S Yxpds; Cw ¼ t
R

S x2
pds;

ð8Þ
where S denotes the contour perimeter of the cross-section and xp is the primary warping function [8]. The generalized
strains in vector D are defined in terms of the generalized displacements: u as the axial displacement, hy and hz as the bend-
ing rotations and hx as the warping variable.

3.3. Strain energy

The axial stress distribution on the cracked cross-section is assumed to be of the same mathematical form as in the case of
an uncracked thin-walled beam. The following expression is then proposed for the axial stress acting on the cracked cross-
section [11]
rðcÞxx ¼ a0 þ aZY þ aY Z þ axxð0Þp ; ð9Þ
where xð0Þp corresponds to the warping function of the uncracked cross-section. As an approximation, xð0Þp is taken to be valid
also in the cracked zone. Considering that static equilibrium must be preserved, coefficients a0, aY, aZ and ax are obtained by
solving the following linear system.
Njx¼n ¼ t
R

SðcÞ r
ðcÞ
xx ds

Mzjx¼n ¼ t
R

SðcÞ YrðcÞxx ds

Myjx¼n ¼ t
R

SðcÞ ZrðcÞxx ds

Bjx¼n ¼ t
R

SðcÞ x
ð0Þ
p rðcÞxx ds

8>>>>><
>>>>>:

; ð10Þ
where S(c) is the contour perimeter of the cracked cross-section, which depends on the x coordinate, since it depends on ~aðxÞ.
With axial stress fully defined, the associated strain energy of the beam in Fig. 2. can be expressed as
U ¼ 1
2

Z n�c

0
Q T Jð0Þ
� ��1

Qdxþ t
E

Z
SðcÞ

Z nþc

n�c
rðcÞxx

	 
2
dxdsþ

Z L

nþc
Q T Jð0Þ
� ��1

Qdx
� �

; ð11Þ
where J(0) is the constitutive matrix associated to the uncracked cross-section. Considering (9) and (10), the expression (11)
is reformulated as
U ¼ 1
2

Z n�c

0
Q T Jð0Þ
� ��1

Qdxþ cQ c jx¼nI10

Z 1

0
cdkþ 1

2

Z L

nþc
Q T Jð0Þ
� ��1

Qdx; ð12Þ
where I10 is the order 10 identity matrix, c is a vector of shape functions expressed in terms of the cracked cross-sectional
constants (see Appendix A for details) and
Fig. 2. Generic cracked thin-walled beam. Crack regarded as an elliptical hole (c ? 0).
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Q c ¼ N2;NMy;M
2
y ;NMz;MyMz;M

2
z ;NB;MyB;MzB;B2

n o
: ð13Þ
The additional integration variable k = (x � n)/c has been defined in Eq. (12).
3.4. Energy release rate

From Clapeyron’s theorem, the work of external loads is V = 2 U. The potential energy is given by P = U � V. Then the crack
surface widening energy release rate can be expressed as
G� ¼ lim
c!0

@U
@c
¼ 1

2
@

@c

Z n�c

0
Q T Jð0Þ
� ��1

Qdxþ 1
2

Z L

nþc
Q T Jð0Þ
� ��1

Qdx
� �

þ Q c jx¼nI10

Z 1

0
cdk: ð14Þ
This expression can be rearranged by applying the fundamental theorem of calculus to give
G� ¼ Q cjx¼n I10

Z 1

0
cdk� Gð0Þc

� �
; ð15Þ
where
Gð0Þc ¼ fC11;2C12;C22;2C13;2C23;C33;2C14;2C24;2C34;C44g; ð16Þ
and the coefficients Cij are the elements of the matriz (J(0))–1.
t
t

y

z

y

z

Fig. 3. Cross-sectional shapes used and its corresponding crack dispositions.
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(a) Stress intensity factor for a cracked thin-walled T beam under axial loading (N = 6 kN, no warping). (b) Percentage difference with respect to FEM
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Fig. 5. (a) Stress intensity factor for a cracked thin-walled T beam under bending (My = 6 kN m, no warping). (b) Percentage difference with respect to FEM
results.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
10

0

10

20

30

Normalized crack depth, a bNormalized crack depth, a b

Pe
rc

en
ta

ge
di

ff
er

en
ce

,1
00

K
I

K
IFE

M
K

IFE
M

Tada et al. 1973
Present method

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

St
re

ss
In

te
ns

ity
Fa

ct
or

,K
I

10
6

N
m

3
2

FEM
Tada et al. 1973
Present method

(a) (b)
Fig. 6. (a) Stress intensity factor for a cracked thin-walled U beam under bending (My = 6 kN m, B = 341 N m2). (b) Percentage difference with respect to FEM
results.
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4. Mode I stress intensity factor

Eq. (2) is obtained by solving the G� integral, while Eq. (15) derives from classic mechanics of materials and thin-walled
beam theory. But although both equations derive from different definitions, they both represent the crack mouth widening
energy release rate. By equating these expressions of G�, the mode I stress intensity factor can be obtained as
KIðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pE

tð1� m2ÞQ c jx¼n I10

Z 1

0
cdk� Gð0Þc

� �s
ð17Þ
Eq. (17) shows that KI depends on crack depth a, generalized beam forces in cracked cross-sectional area Q c jx¼n, material
properties E and m, beam thickness t and properties of cracked and uncracked cross-section, given in c and Gð0Þc , respectively.
Expression (17) is general and can be applied to edge-cracked thin-walled beams of any cross-section.
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5. Results and discussion

For cross-sectional shapes in Fig. 3, we present comparisons of Eq. (17) with results from finite element method (FEM)
and other authors in open literature. In FEM analysis, we employed ABAQUS 6.7 package [12,13], meshing with 8-node shell
elements (S8R5). The elements used in the neighborhood of crack tip were six-node triangular quarter-point elements
(STRI65). Around 3000 elements were used for meshing the beams. For both, T and U beams, the dimensions considered
were h = 0.2 m, b = 0.1 m, t = 0.01 m and L = 2 m. Crack location was set to n/L = 0.5.

Also, in all the comparisons, a rearrangement of classical KI formulas was included [14], which considers the cracked
flange as an independent plate (see Appendix B for more details).

Ricci and Viola’s formula [3] was considered in the example of the axially loaded T beam with cracked web. Referring to
FEM results, the present method shows a good performance for a wide range of crack depths, as can be seen in Fig. 4. Despite
of its simplicity, classical formula yields better results for very small cracks (Referenced in Figure as Tada et al.). The ap-
proach from Ref. [3] fails to 40% difference with respect to FEM results for very small cracks.

For the T beam with bending load (no warping), the present method and Xie and Wang’s formula [1] show the best re-
sults, as can be seen in Fig. 5. Both approaches employ G� integral concept, so they were expected to give similar results.

There are no approaches in the literature for the case of the U beam with a crack only at one flange. Therefore only FEM
and adapted classical formula were considered in the comparison of Fig. 6. For this example, in which a flexural–torsional
load is considered, the difference among the present method and FEM is less than 10%, regardless of the crack depth. Classical
approach shows a good agreement for small cracks, but blows up for moderate to large cracks.

6. Conclusions

A new method to determine the mode I stress intensity factor for cracked thin-walled beams is presented. This approach
may be considered as an extension of the Xie’s method [4] in order to take into account the influence of the warping effect, a
very common feature in thin-walled beams. This is performed by considering the energetic contribution of the bimomental
force. The method proves to be more versatile and, in a wide majority of scenarios, more accurate than other methods in the
open literature. The proposed technique may represent an important contribution in the failure analysis and health moni-
toring of slender structures from civil, mechanical and aerospace industry.

In a future article, this approach will be extended in order to consider fiber reinforced plastics as constructive material.
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Appendix A. Components of vector c

The vector of shape functions c defined in Eq. (12), is given by
c ¼ c1; c2; c3; c4; c5; c6; c7; c8; c9; c10f g; ðA:1Þ
being its components expressed in terms of the cracked cross-sectional constants as
c1 ¼
1
W

IðcÞyx

� �2
IðcÞz þ CðcÞw IðcÞyz

� �2
� IðcÞy IðcÞz

� �
� 2IðcÞyz IðcÞyxIðcÞzx þ IðcÞy IðcÞzx

� �2
� �

; ðA:2Þ

c2 ¼
2
W

CðcÞw IðcÞz SðcÞy � IðcÞzx

� �2
SðcÞy � CðcÞw IðcÞyz SðcÞz þ IðcÞyxIðcÞzxSðcÞz � IðcÞyxIðcÞz SðcÞx þ IðcÞyz IðcÞzxSðcÞx

� �
; ðA:3Þ

c3 ¼
1
W

AðcÞ �CðcÞw IðcÞz þ IðcÞzx

� �2
� �

þ CðcÞw SðcÞz

� �2
þ SðcÞx �2IðcÞzxSðcÞz þ IðcÞz SðcÞx

� �� �
; ðA:4Þ

c4 ¼
2
W
�CðcÞw IðcÞyz SðcÞy þ IðcÞyxIðcÞzxSðcÞy þ CðcÞw IðcÞy SðcÞz � IðcÞyx

� �2
SðcÞz þ IðcÞyz IðcÞyxSðcÞx � IðcÞzxIðcÞy SðcÞx

� �
; ðA:5Þ

c5 ¼
2
W

AðcÞ CðcÞw IðcÞyz � IðcÞyxIðcÞzx

� �
� CðcÞw SðcÞy SðcÞz þ SðcÞx IðcÞzxSðcÞy þ IðcÞyxSðcÞz � IðcÞyz SðcÞx

� �h i
; ðA:6Þ

c6 ¼
1
W

AðcÞ �CðcÞw IðcÞy þ IðcÞyx

� �2
� �

þ CðcÞw SðcÞy

� �2
þ SðcÞx �2IðcÞyxSðcÞy þ IðcÞy SðcÞx

� �� �
; ðA:7Þ
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Fig. B1. (a) Cracked plate loaded with an axial force. (b) Cracked plate loaded with a bending moment.
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c7 ¼
2
W
�IðcÞyxIðcÞz SðcÞy þ IðcÞzxIðcÞyz SðcÞy þ IðcÞyxIðcÞyz SðcÞz � IðcÞzxIðcÞy SðcÞz � IðcÞzx

� �2
SðcÞx þ IðcÞy IðcÞz SðcÞx

� �
; ðA:8Þ

c8 ¼
2
W

AðcÞIðcÞyxIðcÞz � AðcÞIðcÞzxIðcÞyz þ IðcÞzxSðcÞy SðcÞz � IðcÞyx SðcÞz

� �2
� IðcÞz SðcÞy SðcÞx þ IðcÞyz SðcÞz SðcÞx

� �
; ðA:9Þ

c9 ¼
2
W

AðcÞIðcÞzxIðcÞy � AðcÞIðcÞyxIðcÞyz þ IðcÞzx SðcÞz

� �2
þ IðcÞyxSðcÞy SðcÞz þ IðcÞyz SðcÞy SðcÞx � IðcÞy SðcÞz SðcÞx

� �
; ðA:10Þ

c10 ¼
1
W

AðcÞ IðcÞyz

� �2
� IðcÞy IðcÞz

� �
þ IðcÞz SðcÞy

� �2
þ SðcÞz �2IðcÞyz SðcÞy þ IðcÞy SðcÞz

� �� �
; ðA:11Þ
where
W ¼ E AðcÞ IðcÞyx

� �2
IðcÞz þ CðcÞw IðcÞyz

� �2
� IðcÞy IðcÞz

� �
� 2IðcÞyz IðcÞyxIðcÞzx þ IðcÞy IðcÞzx

� �2
� �

� IðcÞzxSðcÞy � IðcÞyxSðcÞz

� �2
�

þCðcÞw IðcÞz SðcÞy

� �2
� 2IðcÞyz SðcÞy SðcÞz þ IðcÞy SðcÞz

� �2
� �

þ 2 �IðcÞyxIðcÞz SðcÞy þ IðcÞyz IðcÞzxSðcÞy þ IðcÞyz IðcÞyxSðcÞz � IðcÞy IðcÞzxSðcÞz

� �
SðcÞx

þ �ðIðcÞyz Þ
2 þ IðcÞy IðcÞz

h i
ðSðcÞx Þ

2o
: ðA:12Þ
Appendix B. Stress intensity factor for thin-walled beams from classical expressions

Classical formula of stress intensity factor proposed by Tada, Paris and Irwin [14] for thin plates is rearranged in order to
be used for thin-walled beams. The flange (or web) with a crack is regarded as independent of the rest of the beam. Formula
from Ref. [14] can be expressed as
KðTÞI ¼ KðNÞI þ KðMÞI ; ðB:1Þ
where
KðNÞI ¼ ðpba=bTÞ1=2 0:265ð1� a=bTÞ4 þ ð0:857þ 0:265a=bTÞ=ð1� a=bTÞ3=2
h i

NT=ðtbTÞ; ðB:2Þ

KðMÞI ¼ ½bT tanð0:5pa=bTÞ�1=2 0:923þ 0:199½1� sinð0:5pa=bTÞ�4

cosð0:5pa=bTÞ

( )
6MT=ðtb2

TÞ: ðB:3Þ
NT and MT correspond respectively to reduced axial force and bending moment, applied in a plate of wide bT as defined in
Fig. B1. In order to consider the beam forces than can be present in a thin-walled beam, those reduced forces are obtained
as
NT ¼ t
N
A

Z
SðRÞ

dsþMy

Iy

Z
SðRÞ

ZdsþMz

Iz

Z
SðRÞ

Ydsþ B
Cw

Z
SðRÞ

xpds
� �

; ðB:4Þ
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MT ¼ t
N
A

Z
SðRÞ

sdsþMy

Iy

Z
SðRÞ

sZdsþMz

Iz

Z
SðRÞ

sYdsþ B
Cw

Z
SðRÞ

sxpds
� �

; ðB:5Þ
where the integration domain S(R) refers to the wide of the plate.
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