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Abstract 

Megaplatypus mutatus is an ambrosia beetle that attacks several species of trees by making galleries in 

the trunks where its larvae and associated fungi develop. This damage spoils the wood for commercial 

use and cause stem breakage in front of strong winds. Due to the insect's cryptic lifestyle, gallery 

analyses have usually been studied by destructive methods. However, they alter the homeostasis of the 

insect-fungi interaction, modifies the topology of the gallery and, more importantly, does not reveal the 

100% complex structure made by the insect. Therefore, a novel way to study this structure is by imaging 

the galleries by means of computerized axial tomography (CT). This method allows obtaining a three-

dimensional representation of the gallery and the pupal chambers to be studied, while the wood and 

insect sample is not disturbed and generates a high amount of data. The isolation of the galleries and 

pupal chambers from the CT background images is not simple, because there is not enough contrast 

between the grey levels of the galleries and the marks generated by internal components of the trunk 

itself. In this paper, we present a robust algorithm that allows automating the isolation of the galleries 

and pupal chambers from CT trunk images which can be used in a broad spectrum of image analysis.  
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Introduction 
 

Platypodid ambrosia beetles (Platypodinae) are an important group of weevils found in forest 

ecosystems that usually are among the first wood-degrading agents arriving on weakened or dead trees 

consumption (Vanderpool et al. 2017, Ceriani-Nakamurakare 2022). However, Megaplatypus mutatus 

(Curculionidae: Platypodinae) is an ambrosia beetle native to South America that causes damage to 

vigorous trees. This species exhibits generalist habits and is considered a key pest that threatens the 

expanding forest industry in countries such as Argentina, Brazil, Colombia, Italy, Uruguay, Paraguay 

and Peru (Alfaro et al. 2007). Preferred hosts include widely planted and traded genera such as 

Eucalyptus and Populus, but have a broad spectrum of susceptible host tree species. Despite the 

importance of this insect, gallery studies are practically null, mainly because of the cryptic lifestyle and 

the complexity involved in the study. Santoro (1963) estimated the length of the gallery manually by 

analyzing a small number of samples. Most probably, because it is an activity that is highly time-

consuming and obtains variable results depending on the observer and the methodology itself, i.e., the 

possibility of leaving portions of the tunnel undiscovered at the moment of cutting the sample. An 

approach that circumvents these limitations is the use of non-destructive methods enhanced with image 

recognition algorithms, thus helping to preserve the sample integrity and reduce processing time and 

human error to constant and minimal values. 

Ceriani-Nakamurakare et al. (2016) made considerable progress in the study of the gallery 

topology of M. mutatus using Computed Axial Tomography (CT). The X-ray CT technique provides 

slice grey-level images of the sample that correspond its mass density distribution This advanced 

technique allows imaging the tunnels inside the trunks, thus being able to visualize the three-

dimensional structure of the galleries, which facilitates the study of the beetle dynamics, its behavior, as 

well as the estimation of descriptive parameters of the galleries. However, the isolation (i.e. the 

separation of the of the structures of interest from the background) of the galleries and pupal chambers 

alone is not a simple task due to the tomographic images contain the different regions and components 

forming the trunk, like the growth rings, internal branches, regions of different densities, among others, 

highlight the complexity of automatic isolation procedure. There is not a clear contrast between the grey 

level of the galleries and pupal chambers and other regions in the trunk imaged by the tomographic 

procedure. Depending on the tomographic resolution of the tomograph and the longitude of the trunk 

section to be studied, the whole set of tomographic slices can be composed of several hundreds of 

images, making the manual technique highly time consuming. So, the isolation must usually be made by 

a manual procedure consisting in spotting the galleries in each slices of the CT. Besides, the manual 

procedure becomes monotonic and can lead to errors causing an imprecise marking of the objects of 

interest in the tomography. In contrast, a computer algorithm applies the same detection rules to the 

whole set of images in the tomography, which provides a more reliable result. Because of that, the 

development of efficient recognizing algorithms results of great interest in the field of biological image 

processing (Uchida 2013). Biological images have been also used as input data in computer simulations 

for the analysis of structural color in the field of biomimetics (Dolinko 2009, Dolinko 2021) and the 

analysis of electrostatics forces in the release of pollen in anemophilous and buzz pollination (Dolinko 

2018, Galati 2019). 

In this paper, we present a three-step procedure algorithm with minimum intervention of a 

human operator. The procedure consists of three separated algorithms that use the tomographic digital 

images of tress trunks as input data to analyse galleries and pupal cameras made by boring insects. The 

first algorithm is the main algorithm and represents the key part of the procedure. It consists of an image 

recognition algorithm that sweeps each tomographic slide searching for objects sizes compatible with 



galleries and pupal chambers. The second algorithm basically performs a postprocessing on the output 

of the main algorithm making a thresholding. Lastly, the third algorithm identifies among galleries and 

pupal chambers recognized by the first two algorithms. Finally, this information can be used to visualize 

the complete structure and be able to quantifies different geometric parameters of the three-dimensional 

structure composed by the galleries and pupal chambers to charaterize the galleries. In the following, we 

describe these algorithms and discussed the obtained results with real tomographic sets of affected 

trunks with damages caused by  ambrosia beetle. 

 

The algorithms  
 

As mentioned above, the processing of the tomographies is performed by means of three 

algorithms. The first algorithm recognizes any spot or mark in the image with a characteristic size of the 

galleries and pupal chambers. In particular, the algorithm searches for spots or marks with the 

dimensions of the diameter of the gallery or pupal chambers. As the output, this algorithm provides a set 

of images, each one corresponding with its original tomographic image, but in these output images, the 

gray levels of the pixels are related with a measure of an abstract Euclidean distance that measures the 

similarity of the marks in the original image to a certain kernel image with the characteristic size of the 

gallery or pupal chamber diameter. More precisely, a pixel near-black color (near 0 gray level) indicates 

that the image in that region has a pattern with a size very near to the characteristic size of the gallery 

and pupal chamber size. On the contrary, a white color (near 255 gray level) indicates that in that region, 

there is no mark with the required size. The second algorithm thresholds the output of the first 

algorithm. Its output is a set of binary images, each one corresponding with its original tomographic 

image, in which the galleries and pupal chambers have a value of one and any other region have a value 

of zero. These images are written down to the hard disk to be able to do a final manual cleaning to erase 

any residuary noise or spurious marks. Lastly, the third algorithm analyses the binary images and 

recognizes the pixels corresponding to galleries from the pixels corresponding to pupal chambers. This 

algorithm generates a new group of images where gallery pixels are labeled with a value equal to 1 and 

pupal chamber pixels are labeled with a value equal to 2. 

 

Main algorithm: gallery isolation from tomographic images 
 

The main algorithm is an image recognizer that evaluates the similarity of the size of any spot in the 

image with the characteristics of the diameter of the galleries and pupal chambers. Since the diameter of 

galleries and pupal chambers is roughly similar, there is just one characteristic size dch to be identified 

(i.e. the pupal chamber or gallery diameter). The procedure begins by creating a small patch image 

containing a circular spot whose diameter corresponds to the characteristic size dch. From now on, we 

call this image the kernel image. The kernel image should be adjusted for each tomographied trunk since 

tomography parameters, image amplification and trunk dimensions must vary among different 

tomographies samples (see Figure 1).  

 



 

-Figure 1: Galleries and pupal chambers in the tomographic image slice (transverse slice of tree trunk) 

and the generation of the kernel image of characteristic size dch . - 

 

Euclidean norm between the grey levels of both images along with several diametral cuts of the images 

at different angles, for searching, if in the image there is at any angle a spot with the characteristic size 

dch. Therefore, this abstract distance will give a measure of geometric similarity of the images.  

 

The algorithm begins by sweeping each tomographic image. The entire set of images is swept pixel by 

pixel from left to right and from up to down, getting a patch of the image with the same size as the 

kernel. Then, the diametral cross-section profile of the patch for each angle from 0 to 90 is compared 

with the diametral cross-section profile of the kernel at the same angles (see Figure 2).  

 



 

-Figure 2: (a) The kernel used as reference; (b-e) kernel profile at different angles; (f) and (k) patch 

image at two different locations of a tomography slice; (g-j) and (l-o) corresponding profiles for images 

(b) and (c) at different angles (blue solid line) compared to the kernel profile at the same angle (green 

dashed line) and their corresponding Euclidean distance. - 

 

Both profiles are compared by using an Euclidean norm defined as 
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where dsim
θ
 is an abstract euclidean distance, i is the i-th pixel of the profiles of longitude N, Pf

Im
 is the 

profile taken on the patch at an angle θ and Pf
Krn

 is the profile at the same angle taken on the kernel. 

Then, dsim
θ
 quantifies the similarity between two one-dimensional profiles. When the distance is near to 

0, this indicate that the profile at that angle is similar to that of the kernel at the angle θ. Then, the 

minimum distance dsim
Min  

among the set of explored angles θ is taken and the central pixel of the patch 

is filled with this value of distance. Lower distances indicates that a gallery cross-section or pupal 

chamber was detected. For each patch position, the comparison is explored with angles from θ=0 to 90. 

Ideally, this should be made in THE step of 1 degree. However, to minimize the computation time of 

each complete image and serie, it was verified that exploration in steps of 45 degrees gives acceptable 

detection results. (i.e. just the set θ=0,45 and 90 degrees is explored). In this manner, any spot with the 

characteristic transversal size dch  in some direction in the image is enhanced through of low values of 

dsim
Min

. Finally, the output of this algorithm is an image of the same size as the original where each pixel 

has a value of dsim
Min

.  

 

Figure 2 shows an example of the evaluation for two different patches (fig. 2(f) and 2(k)). fig. 2(a) 

shows the kernel used in this case, while fig 2(b) to 2(e) the diametral kernel profile at different angles, 

which are shown in different tones of red dashed line in fig 2(a). Figs 2(g-j) and 2(l-o) show the profiles 



(solid blue line) for the patches shown in fig. (f) and (k), respectively, compared to the profiles of the 

kernel (dashed green line) at the same angles. The Euclidean distance dsimθ at each angle is shown for 

each angle for both example cases. For each patch, the value of minimum euclidean distance dsim
Min

 is 

highlighted in yellow. In this manner, the direction in which the corresponding patch adjustS to the 

kernel profile is detected. In the case of patch in fig. (f), a gallery profile is detected at 45 degreeS. In the 

case of fig. 2(k), although a minimum value of is obtained, these values are high, indicating that no spot 

of characteristic size dch  is detected, indicating that the evaluated patch image has no gallery or pupal 

chamber nor part of them in it.  

 

Finally, a new image called distance map, with a distribution of the obtained values dsim
Min

 is generated. 

This new image, which has the same size of the original tomographic image, is obtained as follows: the 

value of  dsim
Min

  obtained for each patch in the tomographic image is associated with the central position 

pixel of this patch in the distance map. The distance map looks similar to the original tomographic 

image with the difference that in the distance map the spots corresponding to the galleries and pupal 

chambers are enhanced in relation to the rest of the image. Any spot with a different characteristic size 

dch is attenuated (towards white tones), while any spot in which any diametral size corresponds to dch is 

enhanced (towards black tones). As shown in figure 3, it can be observed that the only enhanced spots 

(darker) in the figure corresponds to the galleries and pupal chambers in the tomographic slice. 

 

 

 

 

-Figure 3: Distance map dsim
Min

  resulting from the application of the main algorithm corresponding to 

the tomographic slice showed in figure 1. 

 



Second algorithm: thresholding of distance maps 
 

The objective of the second algorithm is to threshold the image given by the first algorithm and clean 

residuary noise resulting from erroneously detected spots in the main algorithm. Although the first 

algorithm enhanceS any spot of characteristic size dch in the image, any part in the image has a value 

dsim
Min

, as shown in figure 2, even parts that have no regions with galleries or pupal chambers. Because 

of that, a selection of adequate values of dsim
Min

 revealing the galleries and pupal chambers must be 

performed. In order to do this, the whole set of images is swept. First, the output image of the first 

algorithm IS converted to grey levels where the maximum value of dsim
Min

 is set as 1 and the minimum 

value is set to 0. Each image is threshold according to a parameter called thresholdval introduced 

manually that can range from 0 to 1 and that selectS the values of dsim
Min

 that are related to a positive 

detection of galleries and pupal chambers. Therefore, for each image dsim
Min

  a new image is generated 

where pixel values over thresholdval are set to 0 (negative detection) and values under thresholdval are 

set to 1. In this manner, a set of binary images is generated where white values reveal the galleries and 

pupal chambers and black values are set for the rest of the image area. The adequate value for 

thresholdval ranges from 0.5 to 0.7 and depends on the characteristics of the output images given by the 

first algorithm for each tomography set.. It is worthwhile mentioning that low values of thresholdval 

lead to low noise but pixels corresponding to galleries and pupal chambers could be erroneously 

avoided. On the contrary, high values of thresholdval will detect the majority of pixels corresponding to 

galleries and pupal chambers, but will result in a higher level of noise. Therefore, the precise value of 

thresholdval results in a tradeoff between THE level of detection and noise quantity, and is set for each 

tomography set by means of visual inspection of the output of the second algorithm, as shown in Figure 

4 for different values of thresholdval. Figure 4(a) shows the thresholding result for thresholdval =0.3, 

giving an under-detection image; i.e. the image appears with no noise but a part of the galleries and 

pupal chambers does not appear. On the other hand, figure 4(b) shows the thresholding result for 

thresholdval =0.8, giving an over-detection image; i.e. all the galleries and pupal chambers are shown, 

but the image results still have noise. Finally, figure 4(c) shows the optimum value for this test, given by 

a thresholdval =0.56, where all the set of galleries and pupal chambers appears and almost no noise is 

present.  

 

 

- Figure 4: Thresholding of distance map showed in figure 3 for (a) thresholdval =0.3; (c) over-

detection, with a threshold image with a high value of thresholdval = 0.8; and (d) threshold image with 

the optimum value of thresholdval=0.56.- 

 



Finally, a second strategy is applied to cancel residuary noise. Some noise results from the false 

detection of spots that are proper of the structure of the trunk and coincide with the characteristic size dch 

of the galleries and pupal chamber diameters. The particularity of these spots IS that they are 

approximately repeated along with the whole set of tomographic images of the trunk. To detect these 

type of residuary spots, their cumulative effect along the whole set of images is detected. To do this, the 

whole set of output images resulting from the second algorithm IS added up, obtaining an image, called 

cumulative map, where the value of each pixel representS the times a detected spot is repeated along 

with the whole set of images (see Fig. 5a). Knowing that galleries and pupal chambers extend along a 

few slices, the pixels with values over certain valueS indicating a repetition along a great number of 

slices are canceled. The pixels to be eliminated form a mask, which we call automask (see Fig. 5b). For 

example, since the galleries have a diameter of approximately 8 pixels, the pixels representing regions of 

galleries in the cumulative map will have values around this number. For pupal chambers, generally, 

theY extend along 30 slices, and up and down chambers are generally aligned. Therefore, values for 

pupal chambers in the cumulative map will have values ranging from 25 to less than 70. Then, by 

applying the automask to the whole set of tomographies, the repetitive noise is canceled (Fig. 5c). 

Emplying the colorbar, it can be observed in figure 5a that galleries and pupal chambers do not exceed 

100 slices. On the contrary, a spot corresponding to the kernel of the trunk has a value over 200. In 

figure 5b, we have degenerated automask and in figure 5c, the automask was used to cancel the 

corresponding pixels with repetitive spurious spots.  

 

 

- Figure 5: Automask procedure: (a) cumulative map; (b) automask; (c) filtered cumulative map with the 

obtained automask.- 

 

Third algorithm: separation between galleries and pupal chambers 
 

The objective of the third algorithm is to distinguish between galleries and pupal chambers in the output 

binary images of the second algorithm. We propose a very simple algorithm which is based in the 

information provided by the filtered Z-cumulative map (figure 5c) which approach is similar to that of 

the automask procedure. Observing figure 5c, it can be notice that since pupal chambers are aligned in 

Z, they cover a larger number of slices than the galleries, which extend in Z along a number of slices 

corresponding to their own diameter. Then, using this fact, we generate a mask with those pixels 

exceeding a certain threshold value of repetition along Z. This threshold value corresponds to the 

maximum diameter of the gallery in the tomography being analyzed, which is called thresholdgal. The 

algorithm assumes that there will not be enough superposition of galleries in Z in any point on the 

cumulative map that will surpass the thresholdgal value. Therefore, we generate a new mask called 

cammask where pixels exceeding the thresholdgal are marked with 2 while pixels under this value are 



zero. We call to this images the camgalmap. Then, we apply this cammask to the whole set of slice. In 

this manner, in each slice, the galleries are represented by a 1 value while the pixels belonging to the 

pupal chambers are represented by a 2 value, allowing an easy way to separate both structures: the 

galleries and the pupal chambers. 

 

The algorithm described above is efficient and fast. However, it has the particularity that marking the 

region of the gallery in immediate contact with the pupal chamber as pupal chamber. This particularity 

is good or not, depending of the definition for the pupal chamber limits in relation to the gallery. That is, 

if the pupal chamber is defined as to be inserted in the gallery (see figure 6a) or over the gallery (see 

figure 6b). In the first case, the presented algorithm would result adequate. However, such a definition 

could affect the accounting for the longitude and volume of the galleries, that it would be if the pupal 

chamber would not be present. Therefore, the last definition (figure 6b) seems to be more adequate. 

 

 

- Figure 6: Definitions of limits between gallery and pupal chambers: (a) pupal chamber inserted in the 

gallery; (b) pupal chamber on the gallery. - 

 

Therefore, taking the definition presented in figure 6b, the results provided by the separation algorithm 

requires a postprocessing to assign the insertion part of the pupal chamber as part of the galleries (that is, 

converting pixels labeled as 2 to pixels labeled as 1). In order to do this, we propose a second post-

processing algoritm to be applied. The aim of the algorithm is to identify cam pixels surronded by 

enough gal pixels in each slice, in order to change those cam pixels by a gal pixels. Basically, this 

algorithm sweeps the camgalmap in Z and searches for pixels corresponding to galleries surrounding the 

pixels corresponding to cams. The algorithm evaluates each slice with a 3x3 patch. When the central 

pixel in the patch is labeled with 2 (white, i.e. belonging to pupal chamber in our coding), the algoritm 

count the number of grey pixels (labeled with 1, i.e. indicating gallery regions) in the 8 remaining 

positions of the patch. If the algorithm counts a sufficiently high number of 1-labeled pixels, it assumes 

that the 2-labeled pixel is surronded by gallery and the 2-labeled pixel is replaced by a 1-labeled pixel. 

In this manner, the postprocessing algorithm replaces those pixels of pupal chambers with pixels of 

gallery. The optimal number of grey pixels (ngrey) used to change the central pixel must be calibrated by 

test and error. If ngrey =8, the entire section of the pupal chamber will not never be detected. On the other 

hand, if ngrey =1, due to a any noisy grey-pixel (false galery part) would change a pupal-cam pixel that 

shouldn’t be changed. We obtained an ideal value of ngrey =4 (see figure 7).  



 

- Figure 7: Patch for the evaluation of pupal cam insertion: (a) patch with central pixel belonging to 

pupal chamber and (b) its replacement to gallery pixel. - 

 

As an example, figure 8 show a slice showing chambers and pupal chambers obtained with the first 

separation algorithm where appears pupal chambers inserted in the galleries (a) while after the 

application of the second algorithm, the same part appears correctly labeled as part of the galleries.  

 

 

- Figure 8: Effect of the algorithm for detection of pupal chamber insertion: (a) original image showing 

a gallery with the insertion of the detected pupal chamber (red circle) for a given slice of the tomography 

and (b) the same region after the application of the algorithm. - 



 

Robustness of the method 

 

In order to highlight the ability of the proposed method to detect just object of the right characteristic 

size (i.e. the galleries and pupal chambers, whose characteristic size is determined by setting an 

adecuaque kernel), the set of algorithms was applied to a trunk which was mechanically sliced along its 

axial direction. Figure 9a shows a tomographic slice of this trunk, where the cuts appears as equispaced 

parallell strigth lines at the same angle. These lines could be confused with galleries by the algorithm. 

However, since the width of the cuts does not match the charactestic width of the galleries and pupal 

chambers, the distance map generated by the main algorithm show the slices atenuated while the 

galleries and pupal chambers appear more enhanced (see Fig. 9b). The application of the second and 

third thresholding algorithm to Fig 9b, correctly retrives the galleries, in grey, and the pupal chambers, 

in white (see Fig. 9c).  

 

 

- Figure 9: Robustness of the detection algorithms: (a) tomographic slice of the mechanical sliced trunk; 

(b) corresponding distance map and (c) final detection thresholded image. - 

 

Final results 

 

Once each tomographic slice was processed with the set of algorithms, the pupal chambers and galleries 

can be easily visualized in order to be analyzed and quantified. Using any visualization software, the set 

of processed images can be join together in a bulk to generate a 3D representation of the three-

dimensional structure. Figure 10 show to different points of view of the 3D structure showing the 

galleries and pupal chambers. The output of the algorithm could be used to automatically calculate the 

dimensions of the structure by means of a simple algorithm (not described in here). The following 

dimensions could be obtained:  

- Galleries total volume: 26.12 cm
3
 

- Pupal chambers total volume: 7.27 cm
3  

 

- Galleries total longitude: 215.00 cm 

- Number of pupal chambers: 41 

 



 

- Figure 10: Two different views of the 3D structure of galleries (in red) and pupal chambers (in green) 

obtained with the set of algorithms described in this work. - 

 

Conclusions 

 

Here we present a set of three algorithms to be able to isolate the images of galleries and pupal cameras 

in computerized axial tomografies of trunks affected by diffent typs of insects that bore galleries in the 

trees structure. The algorithms work concatenated. The first algorithm is the core of the procedure and 

basically it recognizes geometrical shape having a characteristic size in any direction by means of the 

definition of a certain abstract euclidean distance. The second algorithm is used to threshold the images 

provided by the second algorithm, while the third algorithm separates structures belonging to galleries 

from those belonging to the pupal chambers. We consider that the proposed methodology must find 

application in many areas of digital image processing and recognition. Future work will be aimed to find 

a set of algorithms that allow the automatic analysis of the topology of the galleries and pupal chambers 

structure, in order to be able to quantify additional parameters like number of bifurcations in the 

galleries, number of pupal chambers, curvature radiuses in the galeries, among others. In this manner, 

the analysis of several trunks could be used to obtain important biological information about the 



behaviour of the ambrosia beetle, allowing ths study of modulation factos of trunk damage, which in 

turn makes possible the implementation of measures of control of the plague. 
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