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Dedicated to the memory of our beloved Eleonor Harboure.

ABSTRACT. In this paper we give sufficient conditions on a measurable func-
tion p : (0,00)™ — [1,00) in order that harmonic analysis operators (maximal
operators, Riesz transforms, Littlewood—Paley functions and multipliers) as-

sociated with a-Laguerre polynomial expansions are bounded on the variable
2a+1 g2

i
Lebesgue space LP()((0,00)", pta), where dpua(z) = 27 H] 1 %F(aﬁ

being o = (a1,...,an) € [0,00)" and = = (z1,...,2n) € (0,00)™.

dz,

1. INTRODUCTION AND MAIN RESULTS

In this article we establish LP() —boundedness properties of harmonic analysis
operators appearing in the context of Laguerre polynomials.

For every a > —1 and k € N:= {0,1,2,...}, the normalized Laguerre polyno-
mial of type a and degree k is defined by the formula (c.f. [24], [13])

F(O& + 1) _ dk _ k
La — « xT +a .
@ =\ Tarrrome & @ e, we )

Let a = (aq,...,a,) € (=1,00)". For every k = (ki,...,k,) € N™, the k—th
Laguerre polynomial of type o and degree k := k; + - - - + k,, is defined by

o(x) = HL?(:EZ), r=(21,...,2n) € (0,00)" :=R.

The sequence of polynomials {L{}renn is an orthonormal basis for L*(R"}, v, ) being
z; 9 e %
dv(z) = H? 1 mdz a non-doubling measure defined on R}, see [24, §4.21]
for the orthonormality of the family.
We define, for each k € N, L3 (x) = [[}2, Ly (27), = (21,...,2,) € R}, The

sequence {Ly }renn is an orthonormal basis for LQ(R’L o) Where
n
d = d
pa(@ 1;[ o)
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is the pull-back measure from dv, on R’} through the one-to-one and onto change
of variables ¥ : R7 — R% defined as ¥(z) = z? := (2f,---,22), for ¢ =
(1, ,xn) €RY.

We consider the differential Laguerre operator defined on R’} as follows

I . [ d? 20 + 1 d
A, = — — J — 9. )
j=1 J

It turns out that the polynomials L£f} are eigenfunctions of the operator A,, with
Ao LE = KL for every k € N™.
For every f € LQ(RQL_, le) and k € N, we denote

@0 = [ L@ f@)da (o).

We define the operator A, by
Aaf = Z )‘kcg(f)ﬁga f € D(Aa)a

keNn

where A\, = k for every k = (k1,...,kn) € N* and

D(A,) = {f€L2 )i > e (f <oo},

keNn

is the domain of A, on L?(R", o). Note that A, f = Ao f for every f € C(R%),
the space of smooth and compactly supported functions on R .

The operator A, is symmetric and positive, and —A,, generates a semigroup of
operators {W}¢o in L*(R%, puq) where, for every t > 0,

= > e MLy, f e LPRY, pa).
keNn

According to the Hille-Hardy formula ([24, (4.17.6)] with 2 and y replaced by 2
and y? respectively, and t by e~?), we have that

ot mer T Tl 1) L
S ettt = [[ o (o) " (B2
j=1

keNn
et 2, .2
X exp = (x5 +vji) |

forz = (21,...,20),y = (Y1,...,¥yn) € R} and t > 0. Here I, is the modified Bessel
function of the first kind and order v > —1. We can write, for every f € L*(R"}, uq)
and t > 0,

(1.1) Wi (f) (@) = A W (@, 9) f(y)dualy), =eRY,
"
being
T +1) ¢ e 2e 23y, (a2 +y?)
Wiz, y) = Hl—e (6 /xjyj) Loy | T e 7

for v = (x1,...,2n), ¥y = (Y1,--.,yn) € R} and ¢t > 0. The integral in (1.1) defines,
for every t > 0, a contraction on LP(R’, f14), for every 1 < p < co. By defining, for
each t > 0, W2 by (1.1), the family {W*}1>0 is a symmetric diffusion semigroup
in Stein’s sense in (R7, i) (see [12, p. 65]).
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The Poisson semigroup { P2 };~0 associated with the operators —v/A, is defined
by
PR(f) =D e VML, f e LARY, pa),t > 0.
keNn
By using the subordination formula, we have that

e =
(1.2) P 2\/_/ (f)du, feL*RY,pa),t>0.
We can write, for every ¢ > 0 and f € L*(R'}, p1a),
(13) PN = [ PR f0)dualy), o <R,
¥
where

« 3 0067% « n
Pt (z,y)ﬁ/o u% Wu(;'r,y)du, z,y€R+,t>0.

For each t > 0, the integral in (1.3) defines a contraction on LP(R",q) when
1 < p < 0. By defining P® as in (1.2), {Pf}+>0 is a Stein symmetric diffusion
semigroup in (R, jiq).

The study of harmonic analysis in the Laguerre setting was initiated by Muck-
enhoupt ([29, 30]). Muckenhoupt’s context is transferred to ours by applying the
transform mapping ¥ mentioned above (see, for instance, [41]).

The maximal operators W and P are defined by

W2 (f) =sup W (H)l, - P2(f) = sup [PF(f)].
t>0 >0

From [42, p. 73], it follows that both W and P are bounded on LP(RY, tq)
for every 1 < p < oo. Muckenhoupt ([29]) proved that W2 is bounded from
LY (R, po) into LY (R4, pe). He considered the one-dimensional case. This result
was extended to higher dimensions by Dinger ([20]). Note that the subordination
formula (1.2) allows us to deduce the LP-boundedness properties for P¥ from the
corresponding ones of W&. The holomorphic Laguerre semigroups and the maximal
operators associated with them where studied in [40].

Taking into account the spectral decomposition of A, and [33, §7.2] we define
the first order Riesz-Laguerre transform associated to A, as

R.f = Z V_awc“( ) (), f € LR, o).

keN™\{(0,..

Thus the operator RY, turns out to be bounded on L*(R%, p,).
Moreover, we can also define the higher order Riesz-Laguerre transforms as an
extension of the first order ones in the following way

1 a o
ROf = Z T/QDfﬁk (@)ci (f),
KEN™\{(0,...,0)} Ag

with 3 € N*\ {(0,...,0)} and Df = ﬁ. They are also bounded on

L*(R", p1a), see [33]. Let us remark that R’ f = RS f with e; the i-th unit vector
and f € L*(RY, pa).

For every b > 0 we define the fractional integral AZ® as the —b power of A,
given, for every f € L*(R}, ), by

AJVf = Z Al (f

keNm\{0}
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Let us notice that for any number b > 0 in [11] it was proved that the integral
kernel for AZ? is given by

Ka(eo) = 1 | T (W) — 1) de

() Jo

! 1 -1 a dr
- m/o (*logr)b (W_logT(:c,y) — 1) —

If f e C&(RY) we have that, for every f € N™\ {(0,...,0)},
RO f=DoAZPI2f.

According to what was done in [11] we can also conclude that the operator R,
off the diagonal, is given by the smooth kernel DfKé (x,y), ie.
2

Rif(x) = | DJK;(x,y)f(y) dpaly),
R 2
for all « ¢ supp(f) when f € C(R%).

From [8, Theorem 1.1], [41, Theorem 1.1} and [32, Theorem 13|, we deduce that
RS can be extended from L*(R", uo) N LP(RY, p1a) to LP(R™, 1) as a bounded
operator on LP(R", p1) when 1 < p < oo. It can also be extended from L' (R, pq)
into LV (R%, p,) for B < 2 and from L* (R}, wi,) into LY (RY, p1a), with w(y) =
(14+/Ty))?~2, for B > 2 (see [21]). We continue denoting by R? to those extensions.
Furthermore, there exists a constant cg such that, for every f € LP(R, pq), 1 <
p < 00,

Ry(f)(x) = caf(x) + lim RE(x,y)f (y)dpa(y),  ae zeRY,
=0t JyeRy, |z —y|>e
where
R (z,y) = — / tgletha(z,y)dt,
I‘(g) 0
(1.4)

for z,y € R, x # y.
We consider the Littlewood—Paley functions gg*k defined for Poisson semigroups
{P?}¢>0 for k € N and § € N™ such that k£ + 8 > 0, as follows

00 N 1/2
95k (f)(z) = (/ ‘tk-irﬁafoPto‘(f)(x)r%) , ¢ € RY.
0

For simplicity, when 3 = 0 = (0, ...,0), we shall write g* = g%*. According to [12,
Corollary 1], g* is bounded on LP(R", ji) for every k € N, k> 1 and 1 < p < oco.
In [9, Theorem 1.2] it was recently proved that g* is bounded from L*(R, 1) into
LY*°(Ry, pa). Nowak in [32, Theorems 6 and 7] proved LP-boundedness properties
for 1 < p < oo for Littlewood-Paley functions associated with Laguerre polynomial
expansions in the v,-context including one spatial derivative.

We say that a function m is of Laplace transform type when

m) = [ ot iy, a ey,
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being ¢ € L®(R4). Given m of Laplace transform type, we define the spectral
multiplier for A,, T)%, associated with m by

To(f) =Y me)ef(FLE,  fe LR}, pa).

keN™

Since m is bounded, T)% is bounded on L*(R", y1o). According to [12, Corollary 3,
p. 121], T2 can be extended from L?(R%, ua) N LP(RY, po) to LP(RY, pe) as a
bounded operator on LP(R", 1) when 1 < p < oo. In [38] it was established that
T can be extended from L*(R'}, o) N LY(R7, pa) to LY(R7, pta) as a bounded
operator from L'(R%, po) into LV (R%, yio). From a higher dimension version of
[0, Theorem 1.1] we deduce that, for every f € LP(RY, po) with 1 < p < o0,

s Ko@) f(Y)dpaly) |, ae x e RY,

y€ERY

e—0t

7)) = im [ A@f@)+ [,
where A € L*°(R;) and

K§(x,y) = /0 B(t) <%> W (z,y)dt, z,y € R}, xz#y.

A special case of multiplier of Laplace transform type is the imaginary power A¥’
of A, that appears when m(z) = 2%, for 2 € R, and 3 € R.

Our objective is to give conditions on a function p : R} — [1,00) in order
that the operators we have just defined (maximal operators, Riesz transforms,
Littlewood—Paley functions and multipliers of Laplace transform type) are bounded
on LPO(RT, uy).

Exhaustive studies about Lebesgue spaces with variable exponent (also called
generalized Lebesgue spaces or variable Lebesgue spaces) can be found in the mono-
graphs [14] and [18].

Assume that p : R} — [1,00) is measurable. We say that a measurable function
f on R% belongs to LPO) (R, p,) if the modular g, (. .. (f/A) is finite for some
A > 0, where

(@) = [ lo@Idpa(z).
R
We define on LPO)(R™, 11,) the Luxemburg norm || - ||LP<‘>(R1,#Q) associated with
Op(-) o+ that is,

~ f
HfHLP(‘)(]Ri,#Q) = inf {)\ >0 0p(),1a (X <1%.

The space (Lp(')(IR’}r, Ha)s || - ||Lp(.)(R1’M)) is a Banach function space. The vari-
able Lebesgue space LPO)(R7) := LPO)(R?,dz) and its norm | - HL"<’)(R1) =
Il - ||LP(«)(R17dm) are defined in the obvious way.

Lebesgue spaces with variable exponents appear associated to physics problems,
image processing and modeling of electrorheological fluids (see, for instance, [1],
[10] and [37)),

As it is well-known, the Hardy—Littlewood maximal function Mpyy, plays a central
role in the study of LP-boundedness properties of harmonic analysis operators. The
following conditions on the exponent p(-) arise related with the boundedness of M,
on L) (R™) ([15] and [17]):
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(a) Local log-Holder condition: a measurable function p : Q@ C R™ — [1,00) is
said to be in LHy () if there exists C' > 0 such that

c
p(2) —p(Y)| < ——,
—log |z —y|
(b) Decay log-Hoélder condition: a measurable function p: @ C R™ — [1,00) is
said to be in LH, (2) when there exists C' > 0 and po, > 1 such that

z,y€Q,0< |z —y[ <1

C
— P L ————, Q.
p(z) —p |_1Og(e+|x|) €
We define LH(2) = LHy(2) N LHoo (€2), where Q C R™.
Ifp: Q C R*™ — [1,00) is measurable, we denote by p~ = ess infgp and

pT = ess supg, p the essential infimum and supremum of p on €, respectively.

If 1 <p~ <p' < ooand p € LH(R"™), then the Hardy-Littlewood maximal
function is bounded on LPO)(R™) ([13]). However, p € LH(R™) is not necessary
for this boundedness ([14, Examples 4.1 and 4.43]). The same conditions on p,
1 <p <p't <ooandpe LH(R"), assure that the Calder6n-Zygmund singular
integrals are bounded on LP()(R™) ([14, Theorem 5.39]).

In [15], Dalmasso and Scotto studied Riesz transforms in the Gaussian setting
on variable Lebesgue spaces. In order to do this, they introduced a new class of
exponents which is contained in LH. (R™). A measurable function p :  C R™* —
[1,00) is said to be in P2°(€2) when there exists C' > 0 and po, > 1 such that

[p(2) — poo] < % zeQ\{(0,...,0)}

If poo > 1, A > 0 and ¢ > 2 are given, the functions p(z) = pe + i 4

etx])?
for € R™, are in P°(R™). Main properties of the functions in P°(R™) were
established in [15]. Maximal operators defined by the heat semigroup ([28]) and

Riesz type singular integrals ([16] and [31]) associated with the Ornstein-Uhlenbeck
differential operator were studied on LP()(R™,,,) with p € LHo(R") N P2 (R™),
where dvy,, denotes the Gaussian measure.

We now state the main results of this article concerning LP()-boundedness prop-
erties of harmonic analysis operators in the Laguerre setting.

Theorem 1.1. Let o € [0,00)". Assume that p € LHo(R}) N P°(RY) with 1 <
p~ < pt < oo. We denote by T, one of the following operators:

(a) The mazimal operators W and P2;

(b) The Laguerre-Riesz transformation R, p € N*\ {(0,...,0)};

(c) The Littlewood-Paley functions g2 associated with the Poisson semigroup
{P?}i>0, where € N" and k € N, such that k + B > 0;

(d) The Laguerre spectral multipliers T2, where m is a Laplace transform type
function.

Then, Ty, is bounded on LPO) (R, uy).

Hereinafter, we prove Theorem 1.1. In Section 2, we explain the method we
develop in order to prove that the operators given in (a)—(d) are bounded on
LP(')(R’_}F,MQ). In Section 3, we introduce a global operator that will be a key
ingredient for proving our main theorem. In the following sections, we establish the
L) -boundedness for each class of operators. Our method exploits the decomposi-
tion of the operators into a local part and a global part, which is usual in the study
of harmonic analysis in the Laguerre setting, but we need a careful adaptation to
the variable exponent context.

Throughout this paper, C and ¢ will always denote positive constants that may
change in each occurrence.
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2. THE METHOD FOR PROVING OUR RESULTS

In this section we describe the method we apply to prove the boundedness results.

The polynomial measure m, on R? defined by dm,(z) = [[i_, z;* " dx; is
doubling on R”}. Thus, the triple (R, |- |, m,) is a homogeneous space in the sense
of Coifman and Weiss ([11]).

Let X be a Banach space. Suppose that K : R} x R} \ D — X is a strongly
measurable function, where D = {(z,z) : € R’} }, satisfying the following two
conditions:

(i) Size condition: there exists C' > 0 such that
C
ma(B(x, [z —y]))’

(ii) Regularity condition: there exists C' > 0 such that
Clx — 2|
—yl ma(B(z, |z - y[))

| K (z,y)||x < z,y e RY, x #y;

K (z,y) — K(z,y)llx < z

and

Cly — 2|
y| ma(B(xv |1' - y|))

for every z,y,z € R} with |z — z| < |z —y|.

When the function K verifies (i) and (ii), we say that K is an X-valued Calderén—
Zygmund kernel with respect to the homogeneous space (R}, |- |, m,) in the Banach
space X.

For every exponent ¢ : R} — [1,00), we denote by L%')(Ri, my) the X-Bochner
Lebesgue space with variable exponent ¢, defined in the natural way.

Assume T is a bounded operator from L*(R},m,) into L% (R%, m,). We say
that T is an X-valued Calderén—Zygmund operator associated with the Calderén—
Zygmund kernel K when, for every f € CZ°(R"}),

18 (@, y) = K@ 2)llx < 7=

Tf(z)= [ K(z,y)f(y)dma(y), ae. x¢&supp(f).
Ry
Here, the integral is understood in the X-Bochner sense.

According to [23, Theorem 1.1] (see also [30]), if T is an X-valued Calderén—
Zygmund operator on (R, |-|,my), T’ can be extended, for every 1 < p < oo, from
L*(R%,my) N LP(RY,mg) to LP(R™, m,) as a bounded operator from LP(R’},m,)
into L% (R, m,) when 1 < p < oo, and from L'(R", m,) into L;w(Ri,mQ) when
p=1.

Any non-negative measurable function w on R’} is named a weight. For every
1 < p < oo, we say that a weight w on R is in the Muckenhoupt class A, (R’ ,m,)

when
w (i [ o) (g [ w(m)zfldmau))p_l <0,

where the supremum is taken over all the balls B in R}.
A weight w on R} is said to be in the Muckenhoupt class A; (R, m,) when
there exists C' > 0 such that, for every ball B C R%,

! /Bw(x)dma(z) < Cess inf w(y).

my (B) yeB
We also define Ao (R}, ma) = U,5; Ap(R7, ma).
If T is an X-valued Calderén-Zygmund operator on (R, |- |, m,), for every

w € Ap(R}, m,) and 1 < p < oo, the operator T can be extended from L*(R", mqy)N
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LP(RY,w,mqy) to LP(R%,w, m,) as a bounded operator from LP(R’,w, m,) into

L% (R, w,my) (see, for instance, [25, Theorem 1.1]).
Rubio de Francia’s extrapolation theorem works for spaces of homogeneous type
([3, Theorem 3.5]). The arguments in the proof of [12, Theorem 1.3] allow us to

deduce that if 7" is an X-valued Calderén-Zygmund operator on (R%, |- |, my), T’

defines a bounded operator from LP(')(R’}r,mQ) into L%‘)(Rﬁ,ma), provided that
1 <p~ <p*' < oo and the m,-Hardy-Littlewood maximal function is bounded on
LPO(R%  m,) (see also [19, Theorem 4.8]). We recall that according to [2, Theo-
rems 1.4 and 1.7], the Hardy—Littlewood maximal operator defined by the measure
m,, is bounded on LPO)(R?,m,) provided 1 < p~ < p* < oo and p € LH(R?) (see
also [16, Theorem 5.2]). We also notice that 7 is well-defined for f € LPC)(R?, m,)
thanks to the embedding LPC) (R, m,) < LP~ (R™,m,) + LP" (R™,m,) ([18, The-
orem 3.3.11]).

The maximal operators and the Littlewood—Paley function can be studied by
using Banach valued operators. Indeed, we can write

PX(f) = 1P (e, W) = IWE ()l e ®yy
and R
92" () = |¢+ParDipe(5)|

L2(Ry,4t)

We define .
i=1

with & = (z1,...,2n),y = WY1,---,yn) € R} and s = (s1,...,5,) € (=1,1)". We
split R xR x (—1,1)" into two parts. Let 7 > 0 and let us fix Cy > 0 whose
exact value will be specified later. The local part L, is defined by

CoT
L, =<(x,y,s) e R? xR? x (=1,1)" : \/q—(z,y,s) < 7}
and the global part G, is given by
Gr =R} xR} x (=1,1)"\ L.
By taking into account the integral representation for the modified Bessel function

I, v > —% ([24, (5.10.22)]), for every ¢t > 0, the integral kernel of W can be

written as
N 1 q— (e7?zy,s
W @”y)::ZT__E_ﬁziéﬂzlllylaq)<___£E__E_?——l'+|yﬁ Iq(s)ds

for z,y € R, where & =Y.' | o; and Io(s) =[]\, %(1 — 52)®i=1/2 for
s=(s1,-..,8,) € (—1,1)™.

As in [11], we consider a smooth function ¢ on R} x R} x (—1,1)" such that
0<p=<1,
( ) = 1, (x,y,s) € Ly,
PRI ) ¢ L,
and
¢ n n
IVap(,y, 5)| + [Vyp(a, y,5)] < @y B eRY, se(-1,1)"

We also define, for z,y € R} and ¢ > 0,

eit/zm, ,8
exp (—q(lﬁy) + |y|2>
Wt?éloc(‘r’y) :/ Ha(s)go(x,y, S)ds

(=1,1)n (1 —et)nta
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and
W (x,y) = Wta(xa y) - W ('Tay)

,glob Jloc

Suppose that T, is one of the operators considered in Theorem 1.1. This operator
is defined by using the heat integral kernel W (z,y). We decompose the operator
T, as

|Toz| < |Ta,loc| + |Ta,glob|;

where Ty, 1oc is defined as T, but replacing W (z,y) by Wt”"loc(x, y), and in Ty giob
the kernel W (z,y) is replaced by W¢, 1, (2, y).

We shall prove that both T4 1oc and T4 glob are bounded on Lp(')(R’}r, o) Pro-
vided that p satisfies the hypotheses imposed on Theorem 1.1.

In order to prove the LPO)-boundedness of T glob, We introduce, for every € €
[0,1), a positive measurable function H, . defined on R’} x R’} verifying that the
operator Hq . given by

Hocl @) = [ Hoclo.)fW)dalw). o€ R

is bounded on LP() (R, y1,). Then, we prove that there exists € € [0, 1) for which
|Ta,globf($)| < Ha,a(|f|)($), T e RT—:—-

Secondly, we prove that T, 1oc is bounded on Lp(‘)(R?r, le). We consider the
following Banach spaces

X(W2) = X(P) = L*(R),
for every k € N and 8 € N such that k + B > 0,

dt
X (gg,k) =L <R+ﬂ 7) )
and for every 8 € N\ {0} and every multiplier m of Laplace transform type,
X (Rg) = X(Tm) =C.
We can write

|Ta,IOC(f)| = ||Ta(f)||X(Ta)
where, for x € RY,

T = [ Maley ot s 1)imas)

Here, the function M, : R x R} x (=1,1)" = X (T,) is strongly measurable and
the integral is understood in the X (7T, )-Bochner sense. We write

Ma(z,y) = / Ma(e,y, 8)p(@,y, $)La(s)ds, @,y € RY.
(_171)71,

Thus, M, : R} x RY \ D — X(T,) is strongly measurable.

The operator T, is bounded from L?(RY}, mq) into L%, (R}, ma). We prove
that T, is an X(7T,)-valued Calder6n—Zygmund operator associated with M.
Then, according to the above-mentioned arguments, T, defines a bounded op-

erator from LP(") (R}, m,) into L};(('()Ta)(Ri, my). We are going to see that T, is also

bounded from LPO)(R7, u,) into L})’(('()Ta) (R, pia). Note that the measure ji, is not
doubling on (R7, |- ).

As stated in [39, Lemma 4], there exists a sequence {z(¢)}sen C R such that,
if we set
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the following properties hold

(i) Ry = U By
LeN
(ii) for every ¢ > 1, the family {0 B¢} sen has bounded overlap;
(ili) there exists C' > 1 such that, for every ¢ € N and every measurable subset

E of Bg,
1 2
5@*““)' Mo (B) < pa(E) < Ce™#OF m (B).
Furthermore, for every n > 0, there exists § > 1 such that, if / € N, x € B, and
y ¢ 0By, then (z,y,s) ¢ L, for each s € (—1,1)" (see [39, Remark 5]).
We have that

ITeflige) e sy = T Ll oo g )

so, according to [18, Corollary 3.2.14],

ITafllpre), @ <2 sup /n ITof (@)l x (1) | F' (@) |dpt ()

+7Na)
1107y <12

Here, p’ denotes the Holder conjugate exponent of p, i.e., p(l) +
z € RY.

Fix F € L"O(R%, uy) with ||F||Lp/(A)(R11M) < 1. By virtue of the properties (i),
(ii) and (iii), for certain 6 > 1 we get

/]Rn I Te f (@) x (1) |1 F () |dpa ()

5 (I) =1 for every

<Z/ ITaf ()| x(70) [ ()| dpta (2)

LeN

-3 /B ITe (From) (@)l x| F(@)ldua )

<Y elOr /B ITa (£X55.) (@)l]x (7 [ () dim ()

LeN

—lz(0)]?
<C %e z HTO‘(fX(SBE)HLg((i)Ta)(Riﬁma) ||FXBe ||Lp/(4)(R1,ma)

_ 2
< CZe l=(6)l ||fXSBz”LP(‘)(]Ri,ma)”FXBZHLP/(‘)(]Ri,mQ)'
LeN

We have used Hoélder’s inequality with variable exponents (see, for instance, |
Lemma 3.2.20]).

Since p € PP(R%) and 1 < p~ < p™ < oo, we also have p’ € P°(R%) with
1< (p))” <(p/)" < oo. From [15, Lemma 2.5], by proceeding as in [15, (3.12)] and
the following lines, we get

Y

_ 2
e~ 1=l /poonXt?BeHLP(‘)(R ma) S X8l Lo @ )

and
2 ’
e 10l /p°°||FXBe||LP’<~>(R1,ma) < ||FXBE||LP'(‘)(R1,;LQ)’

where p/_ is the conjugate exponent of pu.
By means of [15, Corollary 2.8], we obtain

/R1 I Taf @)l x (1) |F(2)]dpa(z) < CZ;N £ xsB.| Loc YR, pha) ||FXB/z||LP’<~>(1R1,ua)
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<CZ

LeN

T (2m+1)/:0()
XJBe b H Oé +1/2 1/p()

LP(‘>(R1)
R ) (2a +1)/9' (1)
Fxp,e” b H a+1/2)1/p()

S Cflro @y e I Lo @2 )
Hence, we conclude that

T .
|| O‘fHLI;(((%,a)(]R"

Lp’(-)(]Ri)

oy < Ol Fllo0 @ )

We have thus proved that the operator Ty 1o is bounded on LP(‘)(R?F, o) DPro-
vided that the exponent function p satisfies the conditions of Theorem 1.1.
3. AN AUXILIARY RESULT

In this section we establish a result that will be useful to prove LP()-boundedness
for the global parts of the operators considered in Theorem 1.1.
Given « € [0,00)™ and € € [0, 1), we define the global operator

Haoe(f)(@) = | Haelz,y)f(y)dma(y), =R},
R7
where
He o(z,y) = /( : Hee(2,y,8)(1 — o(z,y, s))a(s)ds
1,1)"
and
(3.1)
e~ (=)l S 2syssi < 0,
Ha,a(‘ra Y, S) = - 5) . ) ZTll
gs (2, y, )"0 (1y12= 1212+ q+(w,y,é)q7(w,y,é)) S ziyisi > 0.
i=1

Proposition 3.1. Let a € [0,00)™. Suppose that p € LHo(R}) NP2 (RY) with
l<p <pT<oocandlet0<e< (p y A % Then, the operator Hy o is bounded
on LP¢ )(R+7 Ha)-

Proof. We decompose Hq, o(f) = (1) () + 7'[(2) (f), where

/ Hop o (2,9, 5)(1 — (2., )Mo (5)ds f () dma(y),

and
HO(f) (@) = /F Ho o (2,9, 9)(1 — oo, )Mo (s)ds f () dma (1),
being ’

EI = {(y,s) € ]Rzlr X (717 1)n : Zzzyzsz S 0}5
i=1
F, = {(y,s) e R} x (=1,1)": Zzzyzsz > 0}.

Let f € LPO(R™, uy) be given such that 11l Lo
have that

HLN@| < [T [ 1 el )la(s)dsdma o)

" ta) < 1. For x € R}, we

(=1,1)7
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<C [ ey dma )
R%

Since € < 1/(p~)’, we can write 1 —e = £+ 1/p~ with £ > 0. Thus, by Holder’s

inequality with p~ > 1 we have

!’H“ (£)(@)
/ ) gm0
v /(@)
<C ( eI )Ipdma(y)> (/n e—é(py|y|2dma(y)>
1/p
p(y)
=0 </Riﬂ{|f>1} S dra o) /Mnﬂfgl} dﬂa(y)) =

since [p, |f ()PP dpa(y) < 1 and p, is a probability measure on R
+
Therefore, by the homogeneity of the norm,

||

< - n .
Lp(‘)(Rivl"a) - CHfHLp( )(R+7Ma)

for any f € LP(")(RQ,MQ).
We now study 7—[&2)5 We have that

[ mn@r e <c [ ([ 1w o5
" ' R? \JF.

x

. p(z)
% q+(x,y,s)"+o‘€_—(12 )(|y|2—12+\/q+(w7y7s)q(%y,s))Ha(s)dsdma(y)) dm,(z).
Note that we can write
q+ (:Ea Y, S)q— (‘Ta Y, S)

n n
- (1t ||z) (1 23

=1 i=1

2
= (|2 +1y)” — 4 (Z wﬂh&)
. 2
= |z + [y[* + 2l *[y]* - 4 (Z -lezsz>
i=1 ) 2
= (e = IyP)* +4 | oIyl - (Z xys)
i=1

2

> (jal? = [y + 4 (JaPlyl? = {1, m), (5191, spa)) )
2

> (e = 1y1?)” + 4 (J2Plyl* = [« [(s191, - -, $uy)[?)

> (|2 = y?)*

for each = (z1,...,2n), ¥y = (Y1,.--,yn) €E R} and s = (s1,...,5,) € (=1,1)".
On the other hand, according to [15, Lemma 2.5], since p € PZ°(R"}) then

_l=? lyl%—|=|? n
er) pE) ~ e P , x7y€R+,
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Here poo > 1. Whence, it follows that

_ lyl2 _ x|
Q+(x7ya S>n+a exp (7M(|y|2 - |:L'|2 + \/q+(1', Y, S)q* (ZL', Y, S)) epyiy)ip(m)
< Cgy(w,9,5)" " exp((p = 152) (ol = o) = Y52 Ve (@, 9)a-(w,,9))

< C (a1 (0,9,9)" exp (—aev/a: (2, . 9)0- (@, 9,5 >),

for every = (z1,...,2n), ¥ = (Y1,...,Yn) € R} such that (z,y,s) € Gy and
i wiyis; > 0. We recall that

Co
Glz{x,y,s eR? xR x (=1,1)" : \/q_(x,y, s 27}.

Above we have set a, = ===

and (p7) = (p')" > pl,
We get

b

2521|. Note that a. > 0 because e < 1/(p~)’

HE(P@|" dpa(z)

=1yl ~
<of < [ 15wl 1 et e o, 57
2 \Jr,

s exp (~ae/ar (.. 9)a (z,y,s>) ML (s)dsdma () dme(x).

In order to complete the study of ’Ha = we use Stein complex interpolation. We

consider firstly n = 1. For every z € C with Re(z) > f%, we define the operator
(2) b
y

2z+1

HOM)@) = [ K2 g)hly dy o5
0

= HO(h)(x) 27, xRy,

where
1
K@) () = / (4, 8)(L— (2,5, 8)) (g (2,9, )"
-1

X exp (*as\/tu(x,y, s)q—(z,y, S)) (1—s%)*"%ds, x,y€ Ry,

and a. is as above.

For every z € C with Re(z) > —3 and every simple function h defined on

(Ry, dx), Hgg (h) is a measurable function on (R, dz).

Assume that r, y, c1, co > 0, by, by, m1 and my are positive bounded measurable
functions on R, and A; and A, are two measurable subsets of Ry with finite
Lebesgue measure. We define

Fy(z) = / oy (O 0, () @)= =y, (@)d,
B(y,r

)

for z € C, Re(z) > —3. The function F, , is analyticon Q = {z € C : Re(z) > —1}.

Furthermore, for every f% <c<d< oo,

sup | Fy.(2)] < oco.
c<Re(z)<d

Thus, the family { 2} is an analytic family of admissible growth in every

strip {z € C: ¢ < Re(z) < }W1thf—<c<d<oo(see[ , §3]).
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Let Kk € N, k > 1. We take a = % — 1. For every T € R* we write z = |Z|. If 7,
7 € R* and @ is the angle between T and 7, we have that

T £ 7° = qx (2, y, cos(0)),
and also that (x,y, cos(d)) € Ly if and only if |[T—7| < Cy/(1+2+y). By integrating
in spherical coordinates on R* and by performing the change of variable s = cos(6)
we obtain
e —a.[T-7||7+7
B < cat [ 7+ gltem I ) g,

_ Co
T=91> 5y

for x = |7| € Ry. We consider the operators

Hih)(E) = /ﬁ@b o [T+7 e TRy,

T+aty
2[z—y|>[z+Y|
and
Ty (h)(T) = /f e [ gre TR (g ag,
Z—9l> 5y

2|z—y|<|z+y|
for T € R*. We are going to see that T} and T5 are bounded on LP(") (R¥, dx), where
p(@) = p(|7[), T € R*.
Note firstly that

o0

—c|z+7|? —
>/ eﬂMMM@>
< [F4T|<t+1

(=1

2
%f/ (7)Y
B(—F,0+1)

< CMi,(h)(~7), TeR:

IEMWNSC<APjWQM@+

IA
Q
|M8
[

Here, Mur, represents the Hardy-Littlewood maximal function in RF.
On the other hand, according to [22, (16) and (17)], if 2|Z — J| < |T + 7|, then
7| < 3[z| and 3|7 < [T+ 7| < 4|z]. We obtain

IT>(h) ()| < C . [@Fem I n(g) dy
[Z—9|> 1745
~ Jzm<a M@)ldy < CMup(h)(@) if 7] <1,
B f|§,g\>co/(5|§|) |f|keic‘z“ziy||h@)|dy it 7] > 1.

Since p(T) = p(—=), and under the imposed conditions for p(-), My, is bounded
on LPO)(RF, dx) (see Lemma A.2 for n = 1), the arguments developed in [I5,
pp. 417 and 418)] allow us to conclude that T3 and T are bounded on LPC)(RF, dx).

We have, therefore, that the operator T:= T} + T is bounded on LP()(R¥, dz).

Since

a’

HEL(h)(@)| < CaFDT(R) @), © =7, =R,

we get

[ Eme = [ e
0 a,e 0 a,e

where h(7) = h(|7]), 7 € R¥. Hence

<clr (@)

p(7)

dz,

p(x)

#tar<c [ |rqh) (e

o)

< CH%’

LrO) (R, da LPO) (R*,dx) LPO) (RF, dx)
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k—1

Naming hy(u) = h(u)ur® , u € R4, we also have

() . 0
/Rk ! df:/k|h(|f|)|p(‘z|)df:0/ () |P@ 2*Ldz

_ /Ooo‘h(x) o)

which yields ||E||L5(l)(w7dw) < Cllhgll Loy (v, dw)- We conclude that

)

h(T)

(@)
" = C/ V()P dix,

LrO Ry dz) — <C ||hk||Lp() (R4 ,dx) *

1
2

Coe(f)(@) = HEUS) (@), @ € Ry,

We now consider, for every z € C with Re(z) > —

_ 241
where f.(y) = f(y)y *@ , y € Ry.

15

The family {C:c}ge(z)>—1 is an analytic family of admissible growth in every
strip {z € C: ¢ < Re(z) < d} with —1 < ¢ < d < oo ([27, §3]). For every k € N,

k > 1, we have that

Co | fllpoc )(Ry,dx)

LrO) (R dz )

and, for each t € R,
} C§71+it,s(f)‘

According to [27, Theorem 1], for every o > 0,

(] < Collf o gy

<|
LrO (R, ,dz) LrO (R, ,dz)

||Ca,6( )”Lp( )(Ry,dz) = < Ca ||f||LP( )(Ry,dz) -
It follows that, for every a > 0,

| e
0

p(x)
d

~ . p(z)
= Cae ( fO)eTPT() 7@ ) (2)]  da
0
Then
L2 | 2041
Hg?) ’ SC Ca ( . e_m . W)
H ,E(f) Lp(‘)(R+,Ha) ,E€ f( ) ( ) LP(‘)(R+,CI1)
<CHf )7 () 5
Lr() (R4 ,dx)

S CIfllror @, ) -

We conclude that the operator H, . is bounded on LPO) (R, i)

We now prove that Hq . is bounded on LP¢)(R?, y,) when the dimension n is

greater than one.
Let n € N, n > 1. We define

2zj+1 bz
(M) @) = [ KO (a)h() dy H o,

+ Jj=1
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for v = (z1,...,2,) € R} and z = (21,...,2,) € C" with Re(z;) > —1 for each
7 =1,...,n, where

Kg?s)(l',y) = /( ) XFy (ya S)(l - QD(,’E, Y, S))Q+(.’L',y, S)n+2
—1,1)»

X exp (70’6\/(14’(:673% S)Q* (ZL', Y, S)) H(l - S?)Zj71/2d57
j=1

for x,y € R, z and a. as before.
Let k = (kl,...,kn) eN', k; >1,5=1,...,n. We consider a; = k;/2 —1
j=1,...,n,and a = (a1,...,a,). We have that

n k —1
A0 = [ K wh) [[ dsz -,
+ j=1
for x = (x1,...,2,) € RY, and

KQ@w = [ 0~ ety e .

X exp (—ae\/Q+($,y, 8)q— (.T,y, 5)) H(l _ S?)ajfl/zds’
j=1

for x,y € R}. We define p(771,...,Tn) = p(x1,...,2,), where x; = [T, Tj € Rﬁ_j,
7 =1,...,n. Integrating in multi-radial polar coordinates we have that

n k*l

EEmE| <o [ R L) i
791> e
for z = (x1,...,2,)= (|71, ..., [Tn]) € R} and T = (71, ...,75) € [}, RFi = RF,
We now proceed as in the above one-dimensional case. In order to do this, notice
that if we define p by p(Z) = p(|71|,...,|Tn|), for T = (T1,...,T,) € RE, then p
belongs to LH(Ri), with 1 < p~ < pt < oo, by virtue of Lemma A.2. Hence, the
Hardy-Littlewood maximal operator My, on R’i is bounded on LP(") (R’i)

We consider, for every z = (z1,...,2,) € C" such that Re(z;) > —%, for each
7 =1,...,n, the operator
Coe(f)(2) = HEU(f)(2), «€RY,
22j+1

where f.(y) = f(y)[1j-9; " for y = (y1,...,Yn) € R%. The proof can be
concluded as in the one-dimensional case by using an n-dimensional version of the
Stein complex interpolation with variable exponent. This result can be proved by
proceeding as in the proof of [27, Theorem 1] and by using an n-dimensional version
of the Three Lines Theorem (see Theorem A.1 and [4, Proposition 21]). O

4. PROOF OF THEOREM 1.1 FOR MAXIMAL OPERATORS

According to the subordination formula (1.2), since f = 3//(2“) du =1 for
each t > 0, we deduce that
PI(N)) <WE(f)(x), = eRE.

Hence, it suffices to see that W¢ is bounded on LPO)(R%, 11).
We firstly study its global part W, given, for x € RY, by

nglob (f) (‘T)
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,,5/29r v, S) R
e +yl
— sup / | (1 — (g, ) (s)dsf (y)dia(y)]
t>0 [JR? J(=1,1)" (I—e)

t

By performing the change of variables 1 —e™ = u, t > 0, and then replacing u

by t, we can write

W g1ob(f)(2)

t:l:ys)

= E— T, (s)ds f (y)d
=g [ T e M) )

o<t<1

Let (z,y,s) € Gy (recall the definition on page 8). We consider

A=) + |yl =230 wiyisiVI—t

u(t) = - , t€(0,1).
Setting a = |z|* + |y|* and b =27 | x;v;;, we have
V31—t
(4.1) u(t) = % —Y——b— P, te(0).
We also define
efu(t)
We are going to study the supremum of v(t), for ¢ € (0,1), by proceeding as in the
proof of [26, Proposition 2.1]. The derivative of v is
7u(t) ~
ri € , n—+«
V) =S (v + 2E2), te o),
where
1 V31—t —2av/1 —t+bt+2b6(1 —t
W(t) = —2 b( + Y > avIZEHBE A0 -y o),
t 2t\/1 —t t 2t2\/1 —t
Thus
0 e M) (2a\/T—t—bt+2b P +a
v (t) = — —
tnta 22 /1 — t t
) 2/T—#(t(n + @) — b(2 —t
et TR +8) @) b2 =) o
tnta 22 /1 — t

By choosing Cy > 1 large enough, we can prove a > n + a for any (z,y,s) € G;.
Indeed, let us remark that

n
b <23 feil il < o + [yl* = a

i=1
Besides,
a—b+a+b _ g (x,y,s)+a—|b _ 1
= > > - — .
a 5 > 5 2 54-(2,9,5)
Also,
1
a> —(|lz|+ .
Va \/5(| |+ 1yl)
Fix (z,y,s) € Gy. If |z| 4+ |y| < 1 then
1 1 C? c3 G
a>—q_(x,y,s)>——0>—0> °

=9 2(1+|z|+y)2 = 8 ~ 8
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since we shall take Cp > 1. And, if |z| + |y| > 1, then

1 1 Co |$| + |y| Col Cy Co
= > —_— —_— — B > —_— = — —_—.

Therefore, taking Cy > 8(n + @) we get that a > n+ & on G; as claimed.
Then, if b <0, v'(t) > 0 for each t € (0,1), so
sup v(t) <o(l) = eIl
o<t<1
On the other hand, if b > 0, from the property a > n + @, the equation
2V1 —tla—t(n+@&)) =b(2 —t)
has a unique solution t,. The arguments developed in [26, p. 850] allow us to
conclude that
sup v(t) ~ v(to),

0<t<1
_ 2—b2 q— (z,y,s)
where tg = 2a+\/aaLb2 ~ et
Then,
n+a
= 2 .2 PR YP o e
sup U@)gc(w) oep [ =l Varloy ey )|
0<t<1 q-(z,y,s) ) D)

provided that Cj satisfies the above condition. From now on, Cy will be fixed such
that the stated condition holds.
Since ¢4 (z,y, $)g—(z,y, s) > ¢ for every (x,y, s) € Gy (see [21, p. 264]) , we have
that
9+(z,y, 5)
q-(z,y,s)
Therefore, for every (x,y,s) € Gy

—~ 2_1z)2 2Y, — 'Y
)n+a6_\y\ 2\ | _\/q+(wy82)q (z,y,5)

< CQ+(1'5 Y, S)

sup v(t) < Cq4(z,y,s = CHa (7,9, s)

0<it<1
where H,, o is the function given in (3.1). Hence, W, is pointwise smaller than a
multiple of H,0, which is a bounded operator on Lp(')(R’_}r, o) by Proposition 3.1,

so W1 is also bounded on LPO(RY, pg).
We now study W, . defined by

*,loc
Wﬁloc(f)('r)
— e 2y,
exp (%‘HQP)
:Sup/ / “inta (@, y, s)Ila(s)ds f(y)dpa ()|,
e (7. ,5)TTa (5)ds () ()

t>0

for x € R?}. Setting u =1 — e~t and then replacing u by ¢, we can write

cloc(f)(z) = sup K (@, y) f(y)dma(y)

o<t<1|Jrn
for & = (z1,...,2,) € R}, where
exp (_ (1—15)|cv|2-i-|y|2—2t\/m Sy Tiyisi )
Ke(n,y) = /( e - o, g, )L (s)ds,

for z = (1,...,2n), y = (y1,...,yn) € R} and ¢ € (0,1).
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[e3

As it was explained in Section 2, we shall see that loc

is a bounded operator

on Lp(')(R’_}r, o) as a consequence of vector valued Calderén—Zygmund theory.
According to [38, (2.6)] we have that

t
- 17t75 > q- IR —C(1-v1-t)=q- IR 707)
q- (V1—tx,y,s) > q(z,y,5) — C ( ) =q-(2,y,5) T/
for z,y e R}, t € (0,1), s € (—1,1)" and (x,y,s) € L.
Then,
o= (2,,8)/t L, (s)
KX(z,y §C/ %HasdsgC/ — s
K (. 9)l SRR A (s) (—1,1n q—(z,y, )"+

for z,y € R} and t € (0,1).
According to [7, Lemma 3.1] (see also [33, Lemma 2.1]), we get

C
4.2 sup |[K (z,y)] < ,
( ) t>IO)| t ( y)' ma(B(z, |y71,|))

Let j =1,...,n. We have that,

9
<2£Cj(1t)+2yj5j 1-—1t 6;’;(56,:[/,8))
¥ T mia

T,y €RY, x#y.

8zjK?(w,y):/
(—1,1)n

1—t)]x? 225" wyisiVl =t
o (L =25

tn+l+a (SC,y, S) tn+a

) I, (s)ds,

for o = (z1,...,20), y = (Y1,...,yn) € R}, and t > 0.
According to the properties of ¢ and using again [7, Lemma 3.1], since

2
’J:j\/l —t— yjsj‘ = x?(l —t)+ yfs? —2xy;8;V1 —1t
n
< (1 =tz +|y* - Qinyisi\/l —t,
i=1

for o = (z1,...,20), y = (Y1,.-.,yn) €RY, t € (0,1) and s € (—1,1)", we get

(4.3)

q— (=,y,s)
=55

(& t

Oy K (, §C’/ —TII.(s)ds
e K@ <C [ )
SC/ I, (s) s
(—~1,0)m q—(z,y,s) T2 te

<C !
T e —yma(B(, lz —yl)’
for z,y € R, x # y, and ¢ > 0. Hence,

1
|z — ylma(B(w, |z —y])’

(4.4)  sup |0y, K7 (x,y)| +sup |0y, K (z,y)| < C
t>0 t>0

for xz,y € R}, x # .
Let N € N. We consider the space C ([1/N,N]) of continuous functions in
[1/N, N] with the usual maximum norm. We define, for every z,y € R}, x # y,

[K%(z,y)] (t) = K7 (2,y), ¢>0.

By proceeding as above we can see that, for every x € R, the mapping ®,(y) =
K*(x,y), y € R, is continuous from R’} into C' ([1/N, N]), and then, ®, is weakly
measurable. Since C ([1/N, N]) is separable, we conclude that, for every z € R’} , ®,
is strongly measurable (see [14, p. 131]). According to (4.2) and (4.4) we deduce that
K%isa C ([1/N, N])-valued Calderén-Zygmund kernel with respect to (R, |-, mq).
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Suppose A is a complex measure supported in [1/N, N] and f € C°(R?%}). By
using (4.2) we obtain

[ IRl @lima @@ <.« ¢ supp(s)
[1/N,N] JR?

because |A|([1/N, N]) < oo. Here |A| denotes the total variation of A. It follows
that

/ K (@,y) f (y)dma(y)dA(t)

[1/N,N] RY

(4.5)

= / / K¢(z, ) f(y)d\(t)dma(y), x ¢ supp(f).
» J[1/N,N]

We define the functional Sy on C([1/N, N]) by
Sxo)= [ gWdAe), g€ CQUN.N),
[1/N,N]

Equality (4.5) says that, by understanding the integral under S} in the C([1/N, N])-
Bochner sense,

|,

Since the dual of C'([1/N, N]) is the space M([1/N, N]) of complex measures sup-
ported on [1/N, N] we conclude that, for every = ¢ supp(f)

Mmqw>[4

According to [12, p. 73], the maximal operator W is bounded on L?(R", uq).
Also, W7, o1, is bounded on L*(R", f1a) (see the first part of this proof). Then,

[K“(w,y)](-)f(y)dma(y)l = /[1 Weloe ()(@)dA(t),  x ¢ supp(f).

/N,N]

[K“(:C,y)](')f(y)dma(y)] (t), te[l/N,NJ.

n
+

Wihee is bounded on LQ(RL lie). Hence, there exists C' > 0 such that, for every
N e N,
(4.6) W E3e ) v < Ol flza@s o,

Lz(Riaﬂa)

for f € L*(R", pua). By using (4.2), (4.4) and (4.6) as it was explained in Section 2
we get

sup |Wt(floc(f)(‘r)|

SC f p()(R™
o T{Ir,

Lp(')(RiaHa)
for f € LP(‘)(RQ, le) and C > 0 independent of N € N.
By using now the monotone convergence theorem (see [18, p. 75]), we conclude
that W, is bounded on Lp(‘)(Ri, tao). Thus, the proof of Theorem 1.1 for W¢
is finished.

5. PROOF OF THEOREM 1.1 FOR RIESZ TRANSFORMS

The proof of Theorem 1.1 for Riesz transforms R? of order 8 € N*\ {(0,...,0)},
follows the same steps done in the proof of the results in Section 4 by using some
results developed in [21] and [11]. We now sketch the proof.

Let 8 € N\ {(0,...,0)} be given. For every f € L*(R", j1a), we have that

RE(f)(x) =cpf(x) +pv. | RE(z,y)f(y)dmaly), ae zeR%

RY
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where cg € R and

1
Ri(2,y) = —7= / Ko(z,y,s)la(s)ds, z,y €RY, x#y,
r () Jern
with
1 1 n \/_ a— (Vrz,y,s)
B ogry\ * TT; —YiSi | € 1-r
K Hg, d
(®3.5) / ' (1) U Bl( Vi-r )(1 rynrart
! IOg(l — t) gZ . vV 1-— tSCZ' — YiS;
= (1- t) — H Hg, #
0 i=1 ¢
q_ (V1—tz,y,s)
o e~ ¢ dt
gntatl Vit
being Hpg, the one-dimensional Hermite polynomial of degree 8;, ¢ = 1,...,n, and

for the second equality we have made the change of variables t = 1 — 7. In order to
establish that R? is bounded on Lp(‘)(Ri, Ho) We can assume that cg = 0.

We define Rg loe and thﬁ glob 1L the usual way. Firstly, we shall prove the ).

boundedness of the global part.

1
Taking into account that |v/1 — tx; —y;s:| < ¢2 (V1 — tx,y, s) from (4.3), we get,
for every € > 0,

[ (P

Also, since the function ¢ — (1 — t)B_ (—W)
have

R o @] <Clr@) + € [ 17w Ko, y,5) Ta(s) ds dma (y).
R™ (=1,1)n

k
t _ (Vi—tz,y,)
oy (BT <o

—2
2

@)

is bounded on [0, 1], we

for x € R?}, being
q_ (V1—tx,y,s)

% Le(1=9) i dt_
a(zayvs)/o fnta+l \/1——1‘,'( 790(:673455))

for y € R%} and s € (—1,1)™.
We can see that the above kernel is, in turn, bounded by the kernel Hy, o(z,y, s)

given in (3.1) provided that e < —=. When szylsz > 0 we follow closely the
=1
estimates obtained by S. Pérez in [ ], taking into account that in this case, for
O<e< naar
67(178)’&0

2 \/—
_ lP=leP ey (@y.s)a(wy.5) and to = 2 mzabemga* 2|2 + |y|?

with ug
and b= 2 Z —1 ZiYiSi.

Indeed, by calling u(t) = =01—tev.s) ”1?“"5), notice that u is the one given in (4.1) at
the previous section. We have already proved that, for b > 0,

efu(t) e~ o

~

sup - —.
o<t<1 tMTE tg+o‘
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Thus, for v = Jlr —¢& > 0 we have

1 O\ OGP
—Uu n+a —Uu n+ao t
e = [0 (Gm) T (5
(2,y,5) /Oe fnta tn+a tvI—t

1—-—1_

_ n+a 1
el / v __ 4
tyte 0 21—t

By performing the change of variable s = u(t) — up and following the calculations
made in [35, p. 499], the latter expression is bounded by

ef(liﬁla)uoefyuo

1 * 1)y,
gnta-t tom/o ‘ ( +$> >
Moreover, recalling that (a — b)(a +b) = g_(x,y, s)q+(z,y,$) > ¢ when b > 0 (see
[21, p. 264]) we get the estimate claimed above.
For the case b < 0, we have that ¢ —|z|* < u(t) = @ like in [35, p. 500].
After making the change of variables a (% - 1) = s and performing the integration

taking into account that on the global part a > ¢, we get K (x,y,8) < Ce= (-9l

Therefore, Ko(z,y,s) < CHy(2,y,s) for 0 < e < ——=. From Proposition 3.1
we deduce that the operator Rfé’glob is bounded on LP()( ", lta) by choosing
0<e< nMA(p 7

According to [33, p. 699] R? is bounded on L*(R", u,). Since, as we have just
proved Riglob is bounded on L*(R"}, ua), Rg,loc is also bounded on L*(R", f1q).
By proceeding as in [41, Lemma 3.3] and [7, Lemma 3.1] (see also [21, Proposi-
tion 6 and Lemma 7]) we can see that the integral kernel of Ra loc 18 a Calderén—
Zygmund kernel with respect to m,. The procedure developed in Section 2 leads
to see that R is bounded on Lp(‘)(R’}r, o) and with this we finish the proof of
this result.

,loc

6. PROOF OF THEOREM 1.1 FOR LITTLEWOOD—PALEY FUNCTIONS

In this section we prove Theorem 1.1 for Littlewood—Paley functions gﬁ k. with

k € N and 8 € N” such that k+ﬁ>0.
Let k € N, k > 1. We recall that g& = g%* i.e.

oo d 1/2
@ = ([Tt @ T) . aer,
0
where
Pta(f)(:c): / —;Wﬁ‘(f)(:c)du, r € R}, t>0.
We define
Pt(floc(f)(‘r) = / _;_ u, loc(f)(‘r)dua YRS Riat > 0.
and
Pt(fglob(f)(x) = / : u glob(f)(x)dua MRS Riat > 0.

and consider

2 dt\? n
[ ot @l ) e

k
ga,loc

o= (I
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and

g\ 172
ka0 = ([T Ito P N@F F) L cerr.

We firstly prove that g’g[yglob defines a bounded operator on Lp(')(Ri, e )-
By using Minkowski inequality we get

[e%S) 1/2
gi,glob(f)(x) < /]R" |f(y)| (/ ‘tkafptofglob(xay)f @) d:ua(y)a

t
0

n
for x € R%}, where

Ptglob(x y 2\/—/ '_ uglob(‘ray)du xayERiat>0-
We have that

ok P (o) = ok | = [T f P ol y)d}

= tkatkil \/—/ \/— (:C,y)d’l):|

S I 03/2 CATERMEY) P
_ 1 e~ 42

- tkaf ! \/— \/— glob(z y)d ‘|

_ L kk—l - dz
_ﬁ/o tat }awglob(‘my)\/}

for x,y € R} and ¢ > 0.

By using Minkowski inequality and [5, Lemma 3] we get

16408 P ) o
> t2 2 dt dz
<L kok—1 [ —£2 dz
/ |a glob T y) (/0 ‘t 0, { } ) \/z
= e_ctj 2k—1 *dz
< -
C/ |a glob € y)l </0 Sk t dt) \/E

gc/ 0 W o (@ p)ldz . y € RY.
0

We recall that

1 7q7(efz/2r,y,5)+‘ 2

[e% _ e — y\

Wigion(#,Y) = ——= i et (1
1,1)™

(1—e-%)an —¢(@,y, s))Ma(s)ds,

for z,y € R and z > 0. Then,

q_(e=*/2z,y.5)

_ P e - I
W ogn(e) = e [ 0 | i | (0= el (o),

for z,y € R} and z > 0.

.. 23
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We obtain

Htkaf t?tglob(z; y)HL2(R+,%)

o 1—e—2
< Celylz/ / 0, S P . x,y, ) (s)ds,
e e |0 - st

We have that

_a—(e ) _a—(e Z,Y,8)
e 1—e™ % e l—e—# -
az = - z,y,s | € #/2 5
(1 _ e—z)a+n (1 _ e—z)oz-i—n Y

for z,y € R} and s € (—1,1)", where, for every z,y € R} and s € (—1,1)", P,y s is
a polynomial whose degree is at most 4. Then, for every z,y € R} and s € (—1,1),
the sign of P, , s changes at most four times. We obtain
_a (e ey a7 a0 a_ (VT=Fz,y,5)
0 z (1 _ e—z)a+n — ZG]RI? (1 _ e—z)a+n O<tI:<)1 tnta

for z,y € R and s € (—1,1)".

This estimate allows us to reduce the analysis of the global operator giglob to
the operator considered when we studied the operator W, ,, in Section 4. Thus,
we conclude that the operator g§7glob is bounded on LP(')(RQ, Lo)-

We now study the operator gloi,mc- We will use vector valued Calderén—Zygmund
theory. In order to have the measurability of the Banach valued functions that
appear we are going to consider, for every N € N, N > 1, the Banach space
By = L?((1/N,N),4) and in the last step we pass to the limit as N goes to
infinity instead of working with the Banach space L?(R, %) Let NeN, N > 1.
We define the operator

Gotoc(f)(@,t) = PO PR (f)(@), v € Ryt > 0.

a,loc

The integral kernel of G¥ | with respect to dm, is the following

a,loc

Mk

a,loc

(z,y,t) = tFoF P (:C,y)e_lylz, xz,y € RY, 1> 0.

t,loc

Since the Poisson semigroup is a Stein symmetric diffusion semigroup, the function
g is bounded on L*(R", f1a). In the first part of this proof we establish that g’;’glob
is bounded on LQ(R?F, le). Thus, there exists C' > 0 that does not depend on N
such that

1G& 10e (D22, @10y < ClF L2y ua)-
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3

By using Minkowski inequality, [5, Lemma 4] and [7, Lemma 3.1] (see also |
Proposition 6 and Lemma 7)) as above, we get

HMz,loc(‘Ta Y, t)HLQ(]Ri,%)

o0 6_ l—e— %
<o letuaal) [ |0 | G || dads
(,111)71 0 (1 _ e—z)oz-‘rn
I Gl N0}
e l—e— %
< C’/ o(x,y, s)ly(s) sup —=—dzds
(—1,1)n| ( M )z€R+ (1 —e—=)atn
II
(71,1)” q,(ﬂC,y,S)a n
C

S ) z, y € Rn’ € 7& y
mo(B(z, |y — zl)) i
Let j =1,...,n. By proceeding in a similar way we can see that

Haszs,loc(xa y’t)HLz(]Ri,%)

> e 1-c
: C/(—Lm IsO(I’y’s)na(s)/o 0:00; | " —gmmyara || 92ds
o _amte P
e I
: C/<—m>n 0n et o) [0 | G || s
e P
< C/(_Ll)n lo(x,y, 8)1La(s) ZseuRp+ Oz; D dzds
| _a &*zf:m@>_
+C e |8z]~90(x,y,s)Ha(s)zseu]Rp+ ﬁ dods
I, (s
- C/(l,l)n q- (:v,y,sgalrnﬂm ds
C
S ymaBay—a) “YE R, 2 #y.
Hence,
(6.1) 1M 1o, 9) | By < ¢ .
| ma (B, 2 = y)))
and

(HanMs,loc(z5 y) HBN =+ ||aij§,loc(x7y)HBN)
1

n
J=

< C
=z = ylma(B(z, |z —yl)

z,y €ERY, z #y,
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where C' > 0 does not depend on N. Suppose that h € By and g is a smooth
function with compact support in R’. By using (6.1) we deduce that

N N
[ w06 @e0F = [ ) [ P ) Fdma ()

1/N t /N

N dt
:/ h(t)l K(z,9)g(y)dma(y) | (t)—

1/N R? t’
for & ¢ supp(f), where, for every z,y € R}, x # v,
[K (2, 9)](t) = t°0f Pfioc(x,y), ae. t € (1/N,N),

and the integral in the last line is understood in the By-Bochner sense. Note that,
for every x € R}, the function ®, defined by ®,(y) = K(x,y)g9(y), y € RY, is
strongly measurable from R’} into By. Indeed, let x € R"}. Since ®, is continuous,
®, is weakly measurable. By taking into account that By is a separable Banach
space, Petti’s Theorem ([44, p. 131]) allows us to conclude that ®, is strongly
measurable.

Thus, for every x ¢ supp(f),

GE oclf xt[/ K (e,9)f () dma(y)] (),

in L? ((1/N,N), 4).
The arguments explained in Section 2 allow us to conclude that there exists
C > 0 such that, for every N € N, N > 1,

G 2 t <C p(- n )
H” ator Mzt | o) S O M N0 R
for f € LPO(RL, o),

By using the monotone convergence theorem (see [18, p. 75]) we get

HQZJOC(f)HLP(‘)(RL#Q) < C ”f”LP(-)(]Ri,MQ) )

for f € LP(‘)(RQ, lia ), and the proof of our result is finished.
Let us consider now the Littlewood—Paley functions including also spatial deriva-
tives. For § € N™\ {(0,...,0)} and k € N, we consider

S N 2 d 1/2
st = [Tetanir @] §) eere.

We define the local and global part of g2 as follows

1/2
b = ([ eretriine| T) e e

t

and

B,k K P B 2 dt 1/2

hal@) = ([T ot neeg e T) L serr.
where

o t X et n

PLN@ = 552 [ SmEWil ) a@s, » e Ryt >0

and

2

o t e T, "
Pt’élﬂob(f)(z) = m/o NETE Wu’flob(f)(z)dz, zeRY, t>0.
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Here,

W () = [ DIV 0 iialo): = € R0

and W%

u, loc
By using Minkowski inequality and [5, Lemma 4] we obtain

ot (D) <0 / F@IA - o(z.9)

n

00 N te~ 4u
k+pB ak o
X /0 POy [/0 B2 — DWW (x, )du]

<O 1fWIA = e(z,y))

RY

e’} dt 1/2 o du
[T Pt ) 0w ] Sy dao)

0
<o [ 1wl -stew) [ u3/271|DfWu(x,y)|dUdua(y),

and W," glob are defined in the usual way.

2 1/2
dt

" dpta(y)

for € R’. From now on we follow the same steps we have done for the higher
order Riesz-Laguerre transforms restricted to the global part in order to get the
LP()-boundedness of this operator too, taking into account the representation given
n (1.4).
In order to study the local operator ga loc we use the vector valued Calderén—

Zygmund theory. We consider the operator G?F defined by

«, loc

GIE (f)(@,t) = T POF PEA (f)(w), x € RY,t > 0.

a,loc t,loc

The integral kernel M Bk of the above operator with respect to m,, can be written

a,loc
as follows
Mffic(w,y,t):/( . o(z,y)ME* (2, y,t,5)a(s)ds, , y € R, ,t >0,
where

_e—utlyl?
MPE(x,y,t,s) = 2\/_/ u3/21_€_u)n+aD du,

for z,y € R}, ¢t > 0 and s € (—1,1)". By using Minkowski inequality and [5,
Lemma 4], according to [21, (2.3)], we deduce that, for every z,y € R" and s €

(_1’ 1)n,
k
HMg’ ('rvya tv S)||L2(R+7%)

~ 2
e e | y i
<C L (R+77) Dﬁ 6_71*87u+‘y‘2
— 0 ’U,3/2(1 _ e—u)n-{-& z

0o UB\/Qfl 5 _qf(efu/zr,y,S)
<C _ | DP le 1-e—utlvl?
— /0 u3/2(1 _ 67u>n+a x
q_ (rz,y,s)

o[ () () e

karﬂak |:t€ 4“:| B [ ,qf(e*”/zm,ys)
e 1

du

du
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where we recall that, for every j € N, H; denotes the one-dimensional Hermite
polynomial of degree j.
As in the Riesz transform R’

o loe Case (Section 5), we obtain that

< C
Lo(red) © Wa(Bla T~y

(RERTD]

a,loc

, Yy ERY x #y.
)
In a similar way we can see that

i=1

00 Mo (2,9,

a,loc

ayiMﬂ,k (xa Y, )’

a,loc

LQ(R+7%)+‘ LZ(R%%))
C
< 5
|z — ylma(B(z, [z —y]))
for z,y € R},  # .
By proceeding as in the first part of the proof when 8 = 0, we can prove that
the local operator ggfoc is bounded on Lp(‘)(Ri, lte) When we show that ggjlkoc is
bounded on L%(R7, yiq).

We are going to see that g

B,k

a,loc

is bounded on LQ(RL lte) by proving that g2-*
is bounded on L*(R, f1q). Then, since we have proved that ggzglob is bounded on
L*(R", pta), we conclude that ¢>* is bounded on L3R, pta).

a,loc
According to [33, p. 699], and by performing a change of variables we obtain
that
DAL (x) = Z ng(r) <H zfimi> ggjg;;?“(z),
(m,0)€A(B) i=1
for x = (x1,...,2,) € R} and r € N”, with

A(ﬂ){(m,e)eNxN”:ogmjgﬂj,ogejgw,j1,...,n}.

Furthermore, for every (m,f) € A(8) and k € N", C(Brfe) € R and
< CB)\g/Q.

n
Bi—m; +B—
(H zg " ) Ll g me
i=1 L2 (R4, pa)

Suppose that f =3 _, w.L, where A is a finite subset of N” and w, € C for
r € A. Since for every (m, /) € A(S), the system

n
Bi—m; +8-
{ (H zp " ) £?ﬁ+$+z}
i=1 kEAm ¢

is orthogonal with respect to po, where Ay, y = {k € N* : k; — B;+m;+¢; >0, j =
1,...,n}, Bessel inequality leads, by using (6.2), to

195" (172 :/ t2(k+ﬁ>—1/
L (]R+”u,a) o Ri

e - ~
< C’/ 2(k+5)—1 Z |cr|2e_2\/)‘_rt)\l,f+5dt
0 reA

< CZ ler|? = CHfH%%Ri,ua)'

reA

(6.2) e,

2
S A, D225
reA

dpig, (z)dt

Suppose now that f € LQ(R?F, le). For every m € N, we define
fm= > (LS

YEN™,F<m
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We have that f,, — f, as m — oo, in L*(R", pa).
It follows that

C _q7(€7t/21’y’5)+| |2 n
|D5W0¢(1‘,y)| < ﬁ/ 856 T—e— 1 Y (1 . S?)aifl/st
' (1 —e=)" % J_p 1y };[1
o—t/2
< Cm‘/(|$|,|y|), $,y€R+,t>0,

where 7 > n + @ and V is a polynomial with positive coefficients. By using [5,
Lemma 4] we get

ot 2]

u3/2

|08 DEPR (2,y)| < C / DEWS (2, )| du
0

IN

o e’%e’“/2
¢ [ < duV (el o)
0 uz (1—e¥)r

1 2
e 8u
¢ <1+/ 7k+2+rdU> V(ll, ly])
0 u 2

<CA+tF) V(e lyl), @y eREE> 0.

IN

Therefore,

|07 DEPE (fn — ()] < C (L4 ¢7717%7) /Rn [fm(y) = F@)IV (2], [y])dpa(y)

<C(L+77) ( / V(. |y|>dua<y>>1/2

X [fm ) = Wl 2@y a)

for x,y € R}, ¢t >0 and m € N.
We deduce that

dim_ 4 POEDE PR () () = 1+P0F DIPE(f) (@),

for x € R} and ¢t > 0.
By using Fatou’s Lemma twice we get

4w = ([ etekpzre (e %)/

o0 5 2 g\ /2
= ([ eTopzee el 7)
0

< limi 8.,k n
<liminf g, " (fm)(2), = €RL,

and then

1/2
195" ()2 n oy < (/ HminfIgg’k(fm)(x)IQdua(z)>
R™ m—00

+

o &

< liminf [|g2* (Fn) | 221 1)
< C lim || fnll 2 o)

< ClIfllc2®y a)-

Thus, we have proved that g2** is bounded on L2(R%, 1)
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7. PROOF OF THEOREM 1.1 FOR LAPLACE TRANSFORM TYPE MULTIPLIERS

We recall that we have

TS (f)(x) = lim <f<:c>A<e>+ /

e—0t lz—y|>e

Kg(wif(y)dua(y)) , a.e. x € Ri,
where A € L (R;) and
Kg(z,y) :/m¢(t) ( a)Wa(:E y)dt, x,yeRY, z#y,
0 ot

being ¢ € L®(R%) and m(t) =t [ e *¢(2)dz, t € Ry.
We define T77 |, K¢ 1o Tm7 glob and K&, in the usual way. We firstly observe
that

|K$,glob(xv y>|

_ 7t/21‘ y,s)

ei 1—e—t
<C’/( 11)n/ Oy e |p()|dt|1 — p(z,y, s)|a(s)ds

P
< C/( : sup e har 11— p(z,y,s)[Ha(s)ds
—1,1)n

By proceeding as in the proof of Section 4 we conclude that T7
Lp(')(Ri’ fia)-

We now define K3, . (z,y) = e_|y|2Kg710C(:E,y) for x,y € R%}. By using [38,
Lemma 1] and [7, Lemma 3.1] we can see that K§,,.(v,y) is a scalar Calderén—
Zygmund kernel with respect to m,. According to [42, Corollary 3, p. 121], the La-
guerre multiplier 7)% is bounded on L*(R", o). Furthermore, as we have just men-
tioned T)% 1., is bounded on L*(R%, f1a). Then, T;% .. is bounded on L*(RY, f1a)
and on LQ(R’}F, my).

As it was proved in Section 2, we can conclude that T7 . is bounded on

1, is bounded on

LPO)(R?, pi,) and finish the proof of our result.

APPENDIX A. AUXILIARY RESULTS

For the sake of completeness we include in this appendix an n-dimensional version
of the Three Lines Theorem in the form it was used in Section 3. Although it can
be seen as a particular case of [4, Proposition 21], we believe that this simpler form
might be enough in many circumstances.

Theorem A.1l. Letn € N, n > 1. Assume that, for every j =1,...,n, aj, bj € R
and a; < bj. We define 7, = {z € C" : a; < Re(z;) < b;,j = 1,...,n} and

n = {2z € C" : Re(z;) € {a;,b;},7 = 1,...,n}. Suppose that U is an open
set containing T, and f : U — C is holomorphic, bounded in 7,, and such that

|f(2)| < K for z € Fy. Then, |f(2)| < K for z € 7,.

Proof. We will proceed by induction on the dimension n. The case n = 1 corre-
sponds to the classical Three Lines Theorem and we refer to [34, Theorem 3.15].

Suppose the result is true for some n € N, n > 1. We consider a; < b; for j =
L..oontl, 71 ={z=(21,.. ., 2n41) € C"T1 1 a; < Re(z;) <bj,j=1,...,n+1},
Fot1 ={z = (21,...,2n41) € C"" : Re(zj) € {a;,b;},j =1,...,n+ 1}, an open
set U containing 7,41, and a function f : U — C, holomorphic in U, bounded on
Tn+1, and such that |f(z)| < K for z € Fp41.
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Let t € R. We define, z,41(t) = apt1 +it, and ¢; : Uy — C such that

gt(z1y .y 2n) = f(21, -+ Zn, 2n11(t)), Where
U={z="(21,...,2n) €C": (21,...,2n,2n41(t)) € U}.
It is clear that U, is an open set in C™ that contains 7,,. The function g; is holomor-
phic in U; and bounded on 7,,, and if 2 = (21, ..., 2,) € Fn, since Re(zp4+1) = ant1,
lgt(z1, .oy zn)| = |f (21, -+, 2n, 2n+1)| < K. Then, using the inductive hypothesis,
|gt(zla EREE) Zn)| = |f(zla <oy Zn; Zn+1(t))| <K

for z = (z1,...,2n) € 7. Thus, we prove that
(A1) [f(z1,. .-, 2n41)| < K if Re(z)) € [a;,b5], 7 =1,...,n; Re(zn41) = an1.

In a similar way, we can see that
(A2) |f(z1,-..,2n41)| < K if Re(zj) € [aj,b5], 1 =1,...,n; Re(zny1) = bpt1.

Let now ¢ = (c1,...,¢a) € [[j_,laj, bj] and t = (t1,...,t,) € R". We consider
70 = {z € C : Re(2) € [ant1,bn+1]}, Fo = {2z € C: Re(2) € {an+1,bn+1}}, and
h{ : Uy — C such that

hi(z) = f(er +it1, ..., cn +itn, 2), 2z € Uy,
where Uy = {2 € C: (c1 +it1,...,¢cp +ity,2z) € U}. The set Up is open in C and it
contains 7. The function A{ is holomorphic in Uy and bounded on 75. Furthermore,
by (A.1) and (A.2), if z € Fo,
B = £ (e + it . cn +itn 2)] < K.
Therefore, by the one-dimensional case, we deduce that
|hi(z)]| < K, z €.
Thus we conclude that

() <K, z€mn. O

Lemma A.2. Letp: R’} — [1,00) be a measurable function such that p € LH(RY)
and take k = (k1,...,k,) € N* with k; > 1 for each j = 1,...,n. Consider

T = (T1,...,Tn) € RF with@; € RY | j =1,... ,n. We definep : RF [1,00) by
p(@) = p(|71l, ..., |[Tn]). Then, p € LH(R®). Moreover, if 1 < p~ < pt < oo, also
1<p <p' <oo.

Proof. First, we shall see that p belongs to LHg (RE), so we take T = (T1,...,Tn),
7= (V1,...,Un) € R¥ withT;, 77 € R¥, j = 1,...,n, and such that 0 < [T—7| < %
We have that
|71l = 7l - - [Tl = )] < [T =7
Indeed, if we write T; = (m{,...,xfcj), g, = (y{,...,yij), with 57 = 1,...,n,
this inequality is a consequence of the Cauchy-Schwarz inequality on RFi| i.e.
|<an_J>| < |@||%|’ J=1...,n
Since p € LHo(R?) it follows that

5@) — 5@)| = [p(7), -, [7]) — (Tl - - [7])
C
= Tlog((ml — oh- - m - D)
S S
= Tlog(m—71)

Thus, p € LHy(RF).
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On the other hand, since p € LHy (R}) and |(|Z1], ..., [Zn])| = |Z],

c . C
log(e +|([Z1l,...., [Zn])])  log(e + [Z])’

50 p € LHoo (R*) with B, = pec.

Therefore, we have proved that p € LH(]RE).
Finally, from the definition of P, it is clear that p~ = p~ and p™ = pt, so

1<p~ <pt <ooisequivalent to 1 <p~ <Pt < oo. O
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