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In this work, a bar fully insulated on its lateral surface. composed by two different 

unknown materials is considered. For the analytical solution, it is assumed a perfectly 

assembly solid-solid interface, so no heat loss due to friction is present. This is an ideal 

scenario, so this loss and possible measurement errors are included by simulating noisy 

data for the estimation of the thermal conductivity of the unknown materials. A 

stationary heat transfer process along the bar is considered where a Dirichlet condition 

is imposed at the left that represents a source of constant temperature. At the other end 

of the bar, a Robin condition that models heat dissipation by convection, is assumed. 

The constant thermal conductivity coefficients of both solids are determined under two 

different situations: a) two noisy temperature measurements are available, one at the 

interface and the other at the right boundary; b) a temperature measurement at the 

interface and a heat flow measurement at the right edge of the bar are given. The bounds 

for the errors in the identification of the unknown coefficients are obtained based on the 

data measurements, the room temperature and temperature values at the boundary and 

interface. Numerical examples are given to illustrate the ideas used for the parameter 

identification and elasticity analysis is carried out to measure the dependence of the data 

on the estimated parameters. 
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1. INTRODUCTION

Heat transfer problems in multilayer, or solid-solid interface 

materials, have been extensively studied in recent years due to 

the multiple and different applications that have been found in 

science and engineering [1]. These problems have direct 

applications in different industries, including metallurgy [2], 

technology and electronics [3], automotive [4], aerospace and 

aviation [5]. 

The estimation of thermal conductivity was widely studied 

under various approaches. Numerical techniques for inverse 

problems were considered in some works, for instance in [6-

10]. Specifically, some authors simultaneously estimate 

spatially varying thermal conductivity and heat capacity, see 

[6]. In Ref. [7], a finite differences scheme is used while in [8] 

the estimation was carried out under particular conditions, 

using the conjugate gradient method. On the other hand, to 

estimate the dependency of the thermal conductivity on the 

temperature, Yang [9, 10] proposed a linear inverse model and 

also used iterative methods. Other interesting estimation 

strategies can be seen in the studies [11-14]. 

This work aims to the simultaneous estimation of the 

thermal conductivities of two homogeneous materials, 

perfectly assembled, that form a bar of known length, laterally 

isolated.  

The scheme used in this work represents an ideal scenario. 

This is an inverse problem. To solve it, we first solve the 

forward problem, which consist in calculating the temperature 

along the bar when the materials are known. In order to solve 

the inverse problem, we compare the measurement of the 

temperature with the solution to the forward problem (which 

depends on the material properties). Then, we obtain the 

values for the materials’ conductivity. 

In order to incorporate heat loss at interface and possible 

measurement errors, noisy data are simulated for the 

estimation of thermal conductivity of the unknown materials. 

For the identification problem, a constant temperature source 

at the left edge and dissipation by convection at the right edge, 

are considered. The estimations are performed based on two 

over-conditions under different situations: a) two noisy 

temperature are available: one at the interface and the other at 

the right end; b) a temperature measurement at the interface 

and a heat flow measurement at the right edge of the bar are 

given. The bounds for the errors in the identification of the 

unknown coefficients are obtained based on the data 

measurements, the room temperature and temperature values 
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at the boundary and interface. The proposed identification 

procedure is illustrated by few numerical examples. Moreover, 

elasticity analysis is carried out to measure the dependence of 

the data on the estimated parameters. 
 

 

2. DIRECT PROBLEM 

 

The stationary problem of heat transfer of a bar of length 

L[m] and diameter d[m], laterally isolated, with a solid-solid 

interface, is considered. The heat conduction is assumed to be 

one-dimensional. In addition, it is considered that the bar is 

composed of two consecutives, perfectly assembled, isotropic, 

homogeneous materials. The first section of the bar has a 

length l[m] so that the second section has length L-l. 

At the left end, a constant thermal source is assumed while 

the right end remains free allowing the process of convection. 

Figure 1 represents the stationary heat conduction problem. 

 

 
 

Figure 1. Scheme for the mathematical model 

 

This problem may be modeled by the following system of 

ordinary differential equations with boundary and continuity 

conditions: 

 

{
  
 

  
 

𝑢′′(𝑥) = 0,                  0 < 𝑥 < 𝑙,

𝑢′′(𝑥) = 0,                    𝑙 < 𝑥 < 𝐿,

𝑢(0) = 𝐹,                                     

𝑢(𝑙−) = 𝑢(𝑙+),                                

𝜅𝐴𝑢
′(𝑙−) = 𝜅𝐵𝑢

′(𝑙+),                                

𝜅𝐵𝑢
′(𝐿) = −ℎ(𝑢(𝐿) − 𝑇𝑎),                    

 (1) 

 

where, u [℃] is the temperature of the bar, F [℃] is the value 

of the point source at x=0, 𝜅A and 𝜅B [W/m℃] are the thermal 

conductivity constants of the homogeneous materials of the 

bar (note that A is the material on the left and B is the material 

on the right), h [W/m2℃] is the convection heat transfer 

coefficient, Ta [℃] represents the room temperature, and 

 

𝑢(𝑙−) = lim
𝑥→𝑙−

𝑢(𝑥), 𝑢(𝑙+) = lim
𝑥→𝑙+

𝑢(𝑥), 

𝑢′(𝑙−) = lim
𝑥→𝑙−

𝑢′(𝑥), 𝑢′(𝑙+) = lim
𝑥→𝑙+

𝑢′(𝑥). 
(2) 

 

The solution to the problem (1)-(2) is given by: 

 

𝑢(𝑥)

=

{
 
 

 
 𝐹 +

𝜅𝐵ℎ(𝑇𝑎 − 𝐹)

𝜁
𝑥,                               0 ≤ 𝑥 ≤ 𝑙

𝐹 +
ℎ(𝑇𝑎 − 𝐹)(𝑙(𝜅𝐵 − 𝜅𝐴) + 𝜅𝐴𝑥)

𝜁
, 𝑙 < 𝑥 ≤ 𝐿

 
(3) 

 

where, 

 

𝜁 = 𝜅𝐴𝜅𝐵 + 𝜅𝐴ℎ𝐿 + (𝜅𝐵 − 𝜅𝐴)ℎ𝑙. (4) 

 

Details on the solution (3)-(4), its properties and examples, 

can be found in [15-17].  

Without loss of generality, from now on it is assumed that 

F>Ta. 

3. DETERMINATION OF THERMAL 

CONDUCTIVITIES 

 

In this section, the inverse problem consisting in the 

estimation of the thermal conductivities of the material, is 

explained for two different situations. Analytical expressions 

for the thermal conductivities are obtained where the 

estimations depend on the available data for each case.  

This is an inverse problem. To solve it, we first solve the 

forward problem, which consist in calculating the temperature 

along the bar when the materials are known. In order to solve 

the inverse problem, we compare the measurement of the 

temperature with the solution to the forward problem (which 

depends on the material properties). Then, we obtain the 

values for the materials’ conductivity. 

 

3.1 Case 1: Estimation based on two temperature 

measurements 

 

The first estimation procedure assumes that two noisy 

temperature measurements are given: one at the interface, 

denoted by T1, and the other one at the right edge of the bar, 

denoted as T2. 

The analytical solution given in (3)-(4), to the forward 

problem (1)-(2), is evaluated at x=l and at x=L, this allows to 

obtain: 

 

{
 
 

 
 𝑢(𝑙) = 𝐹 +

𝜅𝐵ℎ(𝑇𝑎 − 𝐹)

𝜅𝐴𝜅𝐵 + 𝜅𝐴ℎ𝐿 + (𝜅𝐵 − 𝜅𝐴)ℎ𝑙
𝑙,

𝑢(𝐿) = 𝐹 +
ℎ(𝑇𝑎 − 𝐹)(𝑙(𝜅𝐵 − 𝜅𝐴) + 𝜅𝐴𝐿)

𝜅𝐴𝜅𝐵 + 𝜅𝐴ℎ𝐿 + (𝜅𝐵 − 𝜅𝐴)ℎ𝑙
.

 (5) 

 

After some algebraic computation it results: 

 

{
 
 

 
 𝐹 − 𝑢(𝑙) =

𝜅𝐵ℎ(𝐹 − 𝑇𝑎)

𝜅𝐴𝜅𝐵 + 𝜅𝐴ℎ𝐿 + (𝜅𝐵 − 𝜅𝐴)ℎ𝑙
𝑙,

𝑢(𝑙) − 𝑢(𝐿) =
𝜅𝐴ℎ(𝐹 − 𝑇𝑎)(𝐿 − 𝑙)

𝜅𝐴𝜅𝐵 + 𝜅𝐴ℎ𝐿 + (𝜅𝐵 − 𝜅𝐴)ℎ𝑙
.

 (6) 

 

From the ratio between the expressions given in (6), the 

following relation between the thermal conductivities is 

obtained: 

 

𝜅𝐵 =
𝐹 − 𝑢(𝑙)

𝑢(𝑙) − 𝑢(𝐿)

(𝐿 − 𝑙)

𝑙
𝜅𝐴 (7) 

 

Replacing Eq. (7) in the any of the equations given in (6), 

the thermal conductivities are obtained as nonlinear functions 

on the temperature at x=l and x=L as follows: 

 

𝜅𝐴 = ℎ𝑙
𝑢(𝐿) − 𝑇𝑎
𝐹 − 𝑢(𝑙)

 (8) 

 

𝜅𝐵 = ℎ(𝐿 − 𝑙)
𝑢(𝐿) − 𝑇𝑎
𝑢(𝑙) − 𝑢(𝐿)

 (9) 

 

Note a unique expression for each coefficient 𝜅𝐴 and 𝜅𝐵 are 

obtained from the nonlinear equations given in (6). 

The measured temperatures at x=l and x=L, T1 and T2, 

respectively, yield the following estimates 𝜅�̂�, 𝜅�̂� ,  for the 

materials conductivities. 
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𝜅�̂� = ℎ𝑙 
𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

 (10) 

 

𝜅�̂� = ℎ(𝐿 − 𝑙)
𝑇2 − 𝑇𝑎
𝑇1 − 𝑇2

 (11) 

 

The necessary and sufficient conditions for the existence of 

the solution to the proposed inverse problem are given by: 

 

𝑇𝑎 < 𝑇2 < 𝑇1 < 𝐹 (12) 

 

3.2 Case 2: Estimation based on a temperature 

measurement and a heat flow measurement 

 

The second estimation technique is based on a noisy 

temperature measurement data at the interface, T1 and a heat 

flux measurement, q1 at the right edge of the bar. 

From the solution given in (3)-(4) it follows that the heat 

flux q at x=L is: 

 

𝑞 = −𝜅𝐵  𝑢
′(𝐿) =

−𝜅𝐵𝜅𝐴ℎ(𝑇𝑎 − 𝐹)

𝜅𝐴𝜅𝐵 + 𝜅𝐴ℎ𝐿 + (𝜅𝐵 − 𝜅𝐴)ℎ𝑙
 (13) 

 

The ratio between (13) and the first equation in (6) lead to: 

 
𝑞

𝐹 − 𝑢(𝑙)
=
𝜅𝐴
𝑙

 (14) 

 

After some algebraic computations, using Eq. (14) in Eq. 

(13), the thermal conductivities are obtained as functions on 

the temperature at x=l and the heat flux at x=L as follows: 

 

𝜅𝐴 =
𝑞𝑙

𝐹 − 𝑢(𝑙)
 (15) 

 

𝜅𝐵 =
ℎ(𝐿 − 𝑙)

ℎ
𝑞
(𝑢(𝑙) − 𝑇𝑎) − 1

 
(16) 

 

Estimated values 𝜅�̂�, 𝜅�̂�  for 𝜅𝐴, 𝜅𝐵  are obtained by 

replacing u(l) and q by the measured data T1 and q1, 

respectively, leading to: 

 

𝜅�̂� =
𝑞1𝑙

𝐹 − 𝑇1
 (17) 

 

𝜅�̂� =
ℎ(𝐿 − 𝑙)

ℎ
𝑞1
(𝑇1 − 𝑇𝑎) − 1

 
(18) 

 

The necessary and sufficient conditions for the existence of 

the solution to the inverse problem are given by: 

 

𝑇𝑎 < 𝑇1 < 𝐹 (19) 

 

and 

 

𝑞1 < ℎ(𝑇1 − 𝑇𝑎) (20) 

 

 

4. ANALYSIS OF ESTIMATION ERROR 

 

In this section we derive a bound for the error in estimating 

the thermal conductivities, depending on available data. 

 

4.1 Error analysis for the Case 1 

 

In this case, it is assumed that the errors of the measured 

temperatures T1, and T2, satisfy the following inequalities: 

 

{

|𝑢(𝑙) − 𝑇1| < 𝜀 (𝐹 − 𝑇𝑎),

|𝑢(𝐿) − 𝑇2| < 𝜀 (𝐹 − 𝑇𝑎)
 (21) 

 

where, the dimensionless constant ε ∈ (0,1) depends on the 

error produced by the measurement tools, among others. 

From the expressions for the thermal conductivities given in 

(8)-(11), it follows: 

 

|𝜅𝐴 − 𝜅�̂�| = ℎ𝑙 |
𝑢(𝐿) − 𝑇𝑎
𝐹 − 𝑢(𝑙)

−
𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

| (22) 

 

|𝜅𝐵 − 𝜅�̂�| = ℎ(𝐿 − 𝑙) |
𝑢(𝐿) − 𝑇𝑎
𝑢(𝑙) − 𝑢(𝐿)

−
𝑇2 − 𝑇𝑎
𝑇1 − 𝑇2

| (23) 

 

Let us consider (22). Observe that 

 

|
𝑢(𝐿) − 𝑇𝑎
𝐹 − 𝑢(𝑙)

−
𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

|

= |
𝑢(𝐿)𝐹 − 𝑢(𝐿)𝑇1 + 𝑇𝑎𝑇1 − 𝑇2𝐹 + 𝑇2𝑢(𝑙) − 𝑢(𝑙)𝑇𝑎

(𝐹 − 𝑢(𝑙))(𝐹 − 𝑇1)
|. 

 

After adding and subtracting T1T2 in the numerator, 

rearranging terms and performing some algebraic 

computations it results: 

 

|
𝑢(𝐿) − 𝑇𝑎
𝐹 − 𝑢(𝑙)

−
𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

|

=
|(𝑢(𝐿) − 𝑇2) + (𝑢(𝑙) − 𝑇1)

𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

|

|𝐹 − 𝑢(𝑙)|
 

(24) 

 

By using the triangular inequality and assuming that (12) 

and (21) hold, it follows that: 

 

|
𝑢(𝐿) − 𝑇𝑎
𝐹 − 𝑢(𝑙)

−
𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

|

≤
|𝑢(𝐿) − 𝑇2| + |𝑢(𝑙) − 𝑇1|

𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

𝐹 − 𝑢(𝑙)

<
1 +

𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

𝐹 − 𝑢(𝑙)
𝜀 (𝐹 − 𝑇𝑎) 

(25) 

 

Observe that F > u(l) > Ta. Hence, 

 

0 < 𝐹 − 𝑢(𝑙) < 𝐹 − 𝑇𝑎 (26) 
 

and there exists a dimensionless constant 𝑀1 ∈ (0, 1)  such 

that: 

 

𝑀1 <
𝐹 − 𝑢(𝑙)

𝐹 − 𝑇𝑎
 (27) 

 

hence, inequality (25) can be written as: 
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|
𝑢(𝐿) − 𝑇𝑎
𝐹 − 𝑢(𝑙)

−
𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

 | <
1

𝑀1

(1 +
𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

) 𝜀 (28) 

 

Replacing (28) in (22) it turns out that: 

 
|𝜅𝐴 − 𝜅�̂�| < ℎ𝑙 𝐴1𝜀 (29) 

 

where, the dimensionless constant A1 depends on the data 

measurements, T1,T2 and it is given by: 

 

𝐴1 =
1

𝑀1

(1 +
𝑇2 − 𝑇𝑎
𝐹 − 𝑇1

) (30) 

 

Similarly, assuming that (12) and (21) hold, it is possible to 

write: 

 
|𝜅𝐵 − 𝜅�̂�| = ℎ(𝐿 − 𝑙)

|
(𝑇2 − 𝑇𝑎)(𝑇1 − 𝑢(𝑙)) + (𝑇1 − 𝑇𝑎)(𝑢(𝐿) − 𝑇2)

(𝑢(𝑙) − 𝑢(𝐿))(𝑇1 − 𝑇2)
|

< ℎ(𝐿 − 𝑙) (
(𝑇2 − 𝑇𝑎) + (𝑇1 − 𝑇𝑎)

𝑢(𝑙) − 𝑢(𝐿)
) (
𝐹 − 𝑇𝑎
𝑇1 − 𝑇2

) 𝜀 

(31) 

 

Since F > u(l) > u(L) > Ta, the inequalities: 

 

0 < 𝑢(𝑙) − 𝑢(𝐿) < 𝐹 − 𝑇𝑎 (32) 

 

Hold and there exists a dimensionless constant 𝑀2 ∈ (0, 1) 
such that: 

 

𝑀2 <
𝑢(𝑙) − 𝑢(𝐿)

𝐹 − 𝑇𝑎
 (33) 

 

Therefore, 

 

|𝜅𝐵 − 𝜅�̂�| <
ℎ(𝐿 − 𝑙)

𝑀2

(1 + 2
𝑇2 − 𝑇𝑎
𝑇1 − 𝑇2

) 𝜀 (34) 

 

or, equivalently, 

 
|𝜅𝐵 − 𝜅�̂�| <   ℎ(𝐿 − 𝑙)𝐵1𝜀 (35) 

 

where, the dimensionless constant B1 depends on the data 

measurements, T1, T2 and it is given by: 

 

𝐵1 =
1

𝑀2

(1 + 2 
𝑇2 − 𝑇𝑎
𝑇1 − 𝑇2

) (36) 

 

hence, the inequalities (29)-(30) and (35)-(36) imply that the 

estimation errors for 𝜅𝐴, 𝜅𝐵  vanish as the measurement error 

(or 𝜀) approaches 0. The dimensionless constant A1 and B1 

determine the “velocity” of the converges of the estimation 

errors to 0. In other words, the estimation errors vanish as the 

errors in data approaches 0, independently of the 

dimensionless constant, but if these constants are big, the data 

error should be small to have a good estimate for the 

conductivities. 

 

4.2 Error analysis for the Case 2 

 

In this case, it is assumed that the errors of the measured 

temperature T1, and the measured heat flux q1, satisfy the 

following inequalities: 

{

|𝑢(𝑙) − 𝑇1| < 𝜀 (𝐹 − 𝑇𝑎),

|𝑞 − 𝑞1| < 𝜀 ℎ (𝐹 − 𝑇𝑎),
 (37) 

 

where, as before, the dimensionless constant ε ∈ (0,1) depends 

on the error produced by the measurement tools, among others.  

From the expressions for the thermal conductivities given in 

Eqns. (15)-(18), we can write: 

 

|𝜅𝐴 − 𝜅�̂�| = 𝑙 |
𝑞1

𝐹 − 𝑇1
−

𝑞

𝐹 − 𝑢(𝑙)
| (38) 

 

and 

 

|𝜅𝐵 − 𝜅�̂�| = |
ℎ(𝐿 − 𝑙)

ℎ(𝑇1 − 𝑇𝑎)
𝑞1

− 1
−

ℎ(𝐿 − 𝑙)

ℎ(𝑢(𝑙) − 𝑇𝑎)
𝑞

− 1
| (39) 

 

Let us consider Eq. (38), that is the error 𝜅𝐴. Note that: 

 

|
𝑞1

𝐹 − 𝑇1
−

𝑞

𝐹 − 𝑢(𝑙)
| = |

𝐹(𝑞1 − 𝑞) − 𝑞1𝑢(𝑙) + 𝑇1𝑞

(𝐹 − 𝑇1)(𝐹 − 𝑢(𝑙))
| 

 

or, equivalently, adding and subtracting T1q1 in the numerator, 

rearranging terms and using condition (19) and triangular 

inequality it results: 

 

|
𝑞1

𝐹 − 𝑇1
−

𝑞

𝐹 − 𝑢(𝑙)
| = |

(𝐹 − 𝑇1)(𝑞1 − 𝑞) + 𝑞1(𝑇1 − 𝑢(𝑙))

(𝐹 − 𝑇1)(𝐹 − 𝑢(𝑙))
|

≤
(𝐹 − 𝑇1)|𝑞1 − 𝑞| + 𝑞1|𝑇1 − 𝑢(𝑙)|

(𝐹 − 𝑇1)(𝐹 − 𝑢(𝑙))
. 

 

Hence, by conditions (37), it follows that 

 

|
𝑞1

𝐹 − 𝑇1
−

𝑞

𝐹 − 𝑢(𝑙)
|

<
(𝐹 − 𝑇1)𝜀ℎ (𝐹 − 𝑇𝑎) + 𝜀 𝑞1(𝐹 − 𝑇𝑎)

(𝐹 − 𝑇1)(𝐹 − 𝑢(𝑙))

=
(𝐹 − 𝑇1)ℎ + 𝑞1

𝐹 − 𝑢(𝑙)
 𝜀 (

𝐹 − 𝑇𝑎
𝐹 − 𝑇1

) 

(40) 

 

Then, replacing inequality (40) in (38), it results: 

 

|𝜅𝐴 − 𝜅�̂�| < 𝑙 (
(𝐹 − 𝑇1)ℎ + 𝑞1 

𝐹 − 𝑢(𝑙)
) 𝜀 (

𝐹 − 𝑇𝑎
𝐹 − 𝑇1

) (41) 

 

From (19) and (27) it follows that: 

 

|𝜅𝐴 − 𝜅�̂�| < 𝑙 (
(𝐹 − 𝑇1)ℎ + 𝑞1

𝑀1

) (
1

𝐹 − 𝑇1
) 𝜀 (42) 

 

or, equivalently, 

 
|𝜅𝐴 − 𝜅�̂�| < ℎ𝑙𝐴2𝜀 (43) 

 

where, the dimensionless constant A2 depends on the data 

measurements, T1, q1 and it is given by: 

 

𝐴2 =
1

𝑀1

(1 + 
𝑞1

(𝐹 − 𝑇1)ℎ
) (44) 
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Let us consider the expression (39). Algebraic computations 

allow to rewrite it as: 

 
|𝜅𝐵 − 𝜅�̂�|

= ℎ2(𝐿 − 𝑙) |
𝑞1(𝑢(𝑙) − 𝑇𝑎) − 𝑞(𝑇1 − 𝑇𝑎)

[ℎ(𝑇1 − 𝑇𝑎) − 𝑞1][ℎ(𝑢(𝑙) − 𝑇𝑎) − 𝑞]
| 

(45) 

 

Notice that, by the boundary condition at x=L given in Eq. 

(1), the heat flux satisfies q=h(u(L)-Ta) and the estimation 

error for 𝜅𝐵 given in (45) can also be written as: 

 
|𝜅𝐵 − 𝜅�̂�|

= ℎ2(𝐿 − 𝑙) |
𝑞1(𝑢(𝑙) − 𝑇𝑎) − 𝑞(𝑇1 − 𝑇𝑎)

[ℎ(𝑇1 − 𝑇𝑎) − 𝑞1][ℎ(𝑢(𝑙) − 𝑢(𝐿))]
| 

(46) 

 

Let us focus on the last factor in Eq. (46). The numerator 

and denominator of this factor are treated separately. Firstly, a 

bound depending on the measurement errors given in (37) are 

obtained for the numerator, while a constant bound is derived 

for the denominator. 

Adding and subtracting q1T1 to the numerator, rearranging 

terms, taking common factor and using the triangle inequality 

results, 

 
|𝑞1(𝑢(𝑙) − 𝑇𝑎) − 𝑞(𝑇1 − 𝑇𝑎)|

= |𝑞1(𝑢(𝑙) − 𝑇1) − (𝑞 − 𝑞1)(𝑇1 − 𝑇𝑎)|
≤ 𝑞1|𝑢(𝑙) − 𝑇1| + |𝑞 − 𝑞1|(𝑇1 − 𝑇𝑎) 

 

and conditions (37) yield 

 
|𝑞1(𝑢(𝑙) − 𝑇𝑎) − 𝑞(𝑇1 − 𝑇𝑎)|

< (𝑞1 + ℎ(𝑇1 − 𝑇𝑎))(𝐹 − 𝑇𝑎)𝜀 
(47) 

 

A bound for the denominator in (46) is obtained by (33) 

since: 

 
|[ℎ(𝑇1 − 𝑇𝑎) − 𝑞1][ℎ(𝑢(𝑙) − 𝑢(𝐿))]|

> |ℎ(𝑇1 − 𝑇𝑎) − 𝑞1|ℎ 𝑀2(𝐹 − 𝑇𝑎) 
(48) 

 

Therefore, (46)-(48) along with condition (20) yield: 

 

|𝜅𝐵 − 𝜅�̂�| < ℎ(𝐿 − 𝑙)
1

𝑀2

ℎ(𝑇1 − 𝑇𝑎) + 𝑞1
ℎ(𝑇1 − 𝑇𝑎) − 𝑞1

𝜀 (49) 

 

or, equivalently, 

 
|𝜅𝐵 − 𝜅�̂�| < ℎ(𝐿 − 𝑙)𝐵2𝜀 (50) 

 

where, the dimensionless constant B2 depends on the data 

measurements, T1, q1 and it is given by: 

 

𝐵2 =
1

𝑀2

(1 + 2 
𝑞1

ℎ(𝑇1 − 𝑇𝑎) − 𝑞1
) (51) 

 

Hence, the inequalities (43)-(44) and (50)-(51) imply that 

the estimation errors for 𝜅𝐴, 𝜅𝐵 vanish as the measurement 

error (or ε) approaches 0. The dimensionless constant A2 and 

B2 determine the “velocity” of the converges of the estimation 

errors to 0. In other words, the estimation errors vanish as the 

errors in data approaches 0, independently of the 

dimensionless constant, but if these constants are big the data 

error should be small to have a good estimate for the 

conductivities. 

5. LOCAL DEPENDENCE OF THE THERMAL 

CONDUCTIVITY WITH RESPECT TO THE 

TEMPERATURE 

 

Eqns. (10)-(11) and (17)-(18) indicate that the estimated 

values of thermal conductivities depend on the parameters of 

the problem and on data. There are some tools that help to 

study the influence of the data on the estimated parameters. 

Among them, the sensitivity [18, 19] and elasticity analysis 

[15, 17, 19] are frequently used in the literature. The latter is 

widely used in economics and provides the percentage of error 

in the estimation for an error of 1% in the measured data.  

Letting p the parameter to be estimated and 𝑑 the data, the 

elasticity function is defined by: 

 

𝐸(𝑑) =
𝑑

𝑝

𝜕𝑝

𝜕𝑑
 (52) 

 

The inverse problem presented here, consists in the 

identification of two parameters, and each of them depends on 

two data, hence four elasticity functions are considered for 

each case of estimation presented, analyzed and formalized in 

Section 3. 

 

5.1 Elasticity analysis for the Case 1 

 

For this case, the identification is based on two temperature 

measurements, one at the interface, T1 and the other at the right 

edge, T2. The elasticity functions of each parameter to be 

estimated with respect to each temperature measurement are 

obtained from the Eqns. (10)-(11) using the formula given in 

Eq. (52). This process leads to the following four elasticity 

functions. 

 

𝐸1(𝑇1) =
𝑇1
𝜅�̂�

𝜕𝜅�̂�
𝜕𝑇1

⟹ 𝐸1(𝑇1) =
𝑇1

𝐹 − 𝑇1
 (53) 

 

𝐸2(𝑇2) =
𝑇2
𝜅�̂�

𝜕𝜅�̂�
𝜕𝑇2

⟹ 𝐸2(𝑇2) =
𝑇2

𝑇2 − 𝑇𝑎
 (54) 

 

𝐸3(𝑇1) =
𝑇1
𝜅�̂�

𝜕𝜅�̂�
𝜕𝑇1

⟹ 𝐸3(𝑇1) =
𝑇1

𝑇2 − 𝑇1
 (55) 

 

𝐸4(𝑇2) =
𝑇2
𝜅�̂�

𝜕𝜅�̂�
𝜕𝑇2

⟹ 𝐸4(𝑇2) =
𝑇2(𝑇1 − 𝑇𝑎)

(𝑇1 − 𝑇2)(𝑇2 − 𝑇𝑎)
 (56) 

 

Notice that E1 and E2 depend only on one of the temperature 

measurements, while E3 and E4 depend on both measurements. 

To analyzed E3 a fixed value for T2 is considered. Analogously, 

a fixed value of T1 is considered in order to analyzed the 

elastivity function E4. 

 

5.2 Elasticity analysis for the Case 2 

 

In this case, the identification is based on a temperature 

measurement at the interface, T1 and a thermal flow 

measurement at the right edge, q1. The elasticity functions are 

now obtained from Eqns. (17)-(18): 

 

𝐸1(𝑇1) =
𝑇1
𝜅�̂�

𝜕𝜅�̂�
𝜕𝑇1

⟹ 𝐸1(𝑇1) =
𝑇1

𝐹 − 𝑇1
 (57) 

 

572



 

𝐸2(𝑞1) =
𝑞1
𝜅�̂�

𝜕𝜅�̂�
𝜕𝑞1

⟹ 𝐸2(𝑞1) = 1 (58) 

 

𝐸3(𝑇1) =
𝑇1
𝜅�̂�

𝜕𝜅�̂�
𝜕𝑇1

⟹ 𝐸3(𝑇1) = −
𝑇1

𝑇1 − 𝑇𝑎 −
𝑞1
ℎ

 (59) 

 

𝐸4(𝑞1) =
𝑞1
𝜅�̂�

𝜕𝜅�̂�
𝜕𝑞1

⟹ 𝐸4(𝑞1) =
𝑇1 − 𝑇𝑎

𝑇1 − 𝑇𝑎 −
𝑞1
ℎ

 (60) 

 

It can be observed from (57)-(58) that the estimation of 𝜅𝐴 

does not depend on the value of q1. In particular, the 

percentage of error in the estimation of 𝜅𝐴 is constant, equal to 

1, regardless of the value of q1. On the other hand, the 

percentage error in the estimation of 𝜅𝐵  depends on both 

measurements, as in the Case 1. Then, to analyzed E3, a fixed 

value for q1 is considered, while a fixed value of T1 is 

considered in order to analyzed the elasticity function E4. 

 

 

6. NUMERICAL EXAMPLES 

 

In this section, the thermal conductivity is estimated 

numerically for each case descripted in Section 3, where data 

are calculated from the solution to the forward problem and 

random noise is added to simulate experimental measurements. 

The inverse problem is solved considering the configuration 

described in Table 1 where the bar is assumed to be composed 

by Pb on the left (0 < x < l) and Fe on the right (l < x < L). The 

values for 𝜅𝐴. 𝜅𝐵 are obtained from [16]. 

 

Table 1. Problem setup data 

 
L l F Ta h [20] 𝜿𝑨 𝜿𝑩 

10m 4m 100℃ 25℃ 10W/m2℃ 35W/m℃ 73W/m℃ 

 

The thermal conductivity coefficients are estimated using 

Eqns. (10)-(11) or Eqns. (17)-(18) depending on the available 

data. For each case, a table is included to show the simulated 

data and the relative errors. Then, the absolute values of 

elasticity functions, given in Eqns. (53)-(56) or Eqns. (57)-(60), 

respectively, are plotted and the results are analyzed. 

 

6.1 Numerical estimation for the case 1 

 

The temperatures at the interface (x=l) and at the right edge 

(x=L) are given in Eq. (5). For this example, the values are 

u(l)=71.08℃ and u(L)=50.30℃. 

 

Table 2. Relative estimation errors of 𝜅𝐴 and 𝜅𝐵 

 

T1(°C) T2(°C) 
|𝜅𝐴 − 𝜅�̂�|

𝜅𝐴
 
|𝜅𝐵 − 𝜅�̂�|

𝜅𝐵
 

70.5 49.8 0.0392 0.0152 

70.6 49.9 0.0320 0.0113 

70.7 50 0.0248 0.0073 

70.8 50.1 0.0176 0.0033 

70.9 50.2 0.0103 0.0005 

71 50.3 0.0029 0.0044 

71.1 50.4 0.0044 0.0085 

71.2 50.5 0.0119 0.0125 

71.3 50.6 0.0194 0.0164 

 

Table 2 shows the relative errors for the estimated 

parameters considering different values of simulated data T1 

and T2, in a neighborhood of the exact values u(l) and u(L), 

respectively. The results show that, the maximum errors for 

the values considered here, are about 4% in the estimation of 

𝜅𝐴 and 2% in the estimation of 𝜅𝐵. 

The absolute values of elasticity functions given by the 

expressions (53)-(56) are plotted in Figures 2-5. 

The elasticity analysis shows that an error of 1% in the 

measurement of the temperature T1 implies an error of 2.5% in 

the estimation of 𝜅𝐴  and of 3.5% in the estimation of 𝜅𝐵 . 

Furthermore, it is observed that an error of 1% in the 

measurement of the temperature T2 translates into an error in 

the estimation of 𝜅𝐴 of 2% and of 𝜅𝐵 of 4.5%. 

 

 
 

Figure 2. Plot of |E1(T1)|: Absolute value of the elasticity of 

𝜅�̂� with respect to T1 

 

 
 

Figure 3. Plot of |E2(T2)|: Absolutve value of the elasticity of 

𝜅�̂� with respect to T2 

 

 
 

Figure 4. Plot of |E3(T1)|: Absolute value of the elasticity of 

𝜅�̂� with respect to T1 (T2=50.30°C) 
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Figure 5. Plot of |E4(T2)|: Absolute value of the elasticity of 

𝜅�̂� with respect to T2 (T1=71.08°C) 
 

6.2 Numerical estimation for the case 2 
 

The temperatures at the interface and the heat flux at the free 

edge are given in Eq. (5) and Eq. (13). Considering the values 

in Table 1, u(l)= 71.08℃ and q=292.97 W/m2. 

Table 3 shows the relative errors obtained for the estimated 

parameters using different values of temperature T1 and q1 

around the exact values of u(l) and q, respectively. The results 

show that, the maximum errors for the values considered here, 

are about 2% in the estimation of 𝜅𝐴 and 4% in the estimation 

of 𝜅𝐵. 
 

Table 3. Relative estimation errors of 𝜅𝐴 and 𝜅𝐵 
 

T1(°C) q1(W/m2) 
|𝜅𝐴 − 𝜅�̂�|

𝜅𝐴
 

|𝜅𝐵 − 𝜅�̂�|

𝜅𝐵
 

70.5 252.92 0.0201 0.0287 

70.6 252.93 0.0167 0.0237 

70.7 252.94 0.0134 0.0188 

70.8 252.95 0.0099 0.0139 

70.9 252.96 0.0065 0.0090 

71 252.97 0.0030 0.0043 

71.1 252.98 0.0004 0.0004 

71.2 252.99 0.0039 0.0051 

71.3 253.00 0.0074 0.0098 
 

The absolute values of the elasticity functions given by the 

expression (57)-(60) are plotted below (Figures 6-9). 
 

 
 

Figure 6. Plot of |E1(T1)|: Absolute value of the elasticity of 

𝜅�̂� with respect to T1 

 

 
 

Figure 7. Plot of |E2(q1)|: Absolute value of the elasticity of 

𝜅�̂� with respect to q1 

 

 
 

Figure 8. Plot of |E3(T1)|: Elasticity in absolute value of 𝜅�̂� 

with respect to T1 (q1=292.97 W/m2) 

 

 
 

Figure 9. Plot of |E4(q1)|: Elasticity in absolute value of 𝜅�̂� 

with respect to q1 (T1=71.08℃) 

 

The elasticity analysis, for this case, indicates that an error 

of 1% in the measurement of the temperature T1 implies an 

error of 2.5% in the estimation of 𝜅𝐴  and of 4.2% in the 

estimation of 𝜅𝐵. Furthermore, it is observed that an error of 

1% in the measurement of the heat flux q1 produces an error 

of 1% in the estimation of 𝜅𝐴  and about 2.8% for the 

estimation of 𝜅𝐵. 
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7. CONCLUSIONS 

 

It is considered a stationary heat transfer process in a bar 

made of two perfectly assembled sections of homogeneous 

and isotropic materials. A Dirichlet condition is assumed at the 

left boundary and a Robin type condition is assumed at the 

right one. The thermal conductivities of the materials are 

estimated based on two measurements. Firstly, two noisy 

temperature measurements, one at the interface and the other 

one at the right edge, are considered. Secondly, a noisy 

temperature measurement at the interface and a heat flow 

measurement at the right edge, are assumed. 

The necessary and sufficient conditions are provided for the 

estimation of the parameters for each case. The bounds for the 

identification errors of the unknown coefficients are derived 

based on the data measurements, the room temperature and 

temperature values at the boundary and interface (the 

estimates are made from the data and the parameters of the 

direct problem). The error analysis makes clear that the 

identification is continuous with respect to data, in order words, 

they will vanish as the measurement errors approach zero; that 

is, the determination problem is a well-posed inverse problem. 

An elasticity analysis is performed to study the local 

influence of the data on the estimated thermal conductivities 

and we show that the estimation errors are reasonable based 

on the simulated errors in the data. 

The numerical examples presented here show a good 

performance in both cases and indicate that they could be 

useful to identify the materials in a bar involved in a similar 

heat transfer process. 
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NOMENCLATURE 

 

A1 dimensionless auxiliary variable 

A2 dimensionless auxiliary variable 

B1 dimensionless auxiliary variable 

B2 dimensionless auxiliary variable 

d bar diameter, m 

E Elasticity 

F heat source, °C  

h convective coefficient, W.m-2.°C -1 

L interface position, m 

L bar length, m 

q heat flow at the right edge, W. m-2 

q1 measured heat flow at the right edge, W.m-2 

M1 dimensionless auxiliary variable  

M2 dimensionless auxiliary variable  

T1 measured temperature at the interface, °C 

T2 measured temperature at the right edge, °C 

Ta room temperature, °C 

u temperature function on the bar, °C 

x spatial variable, m 

 

Greek symbols 

 

ε dimensionless measurement error 

𝜅 thermal conductivity, W.m-1.°C -1 

�̂� estimated thermal conductivity, W.m-1.°C -1 

𝜍 auxiliary variable, W2.m-2.°C -2 

 

Subscripts 

 

A related to material A 

B related to material B 

e related to the exact value 
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