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a b s t r a c t

We present a theoretical study of the distributions of ejected electrons as a result of the ionization of a
hydrogen atom by a sudden momentum transfer. We show that the Coulomb–Volkov distorted wave the-
ory in the impulsive limit reproduces the exact solution of the time dependent Schrödinger equation. The
validity of the strong field approximation is also probed. We show that whereas classical and quantum
momentum distributions right after a kick are identical, pronounced differences arise during the subse-
quent electron-nucleus interaction for weak momentum transfers.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Coulomb–Volkov approximation (CVA) has been widely
used to describe the ionization of atoms by short laser pulses in
the last decade [1–3]. The CVA is a time dependent distorted wave
theory [4–6] that allows us to include the effect of the remaining
core into the final state at the same approximation level as the
external field. In this way, the collision dynamics due to the effects
of the core potential on the detached electron can be directly
probed. Several studies have been performed so far to determine
the accuracy of the CVA [7,8].

On the other hand, in the last two decades there was a great re-
vival of the classical trajectory Monte Carlo (CTMC) calculations
applied to atomic collisions involving three or more particles
[9,10]. These approximations gain importance in those cases when
higher order perturbations should be applied or many particles
take part in the processes [11,12]. The CTMC method has been
quite successful also in dealing with the ionization process in la-
ser-atom collisions, when, instead of the charged particles, electro-
magnetic fields are used for excitation of the target.

In the present work we study the efficiency of the strong field
approximation (SFA) [13], which is a variant of the CVA [14]. The
electron emission spectra of a hydrogen atom excited by ultra-
short pulses are calculated within the framework of CVA and a
classical trajectory Monte Carlo (CTMC) method. We analytically
All rights reserved.
prove that in the limit of zero pulse duration and finite momentum
transfer, CVA reproduces the exact quantum mechanical electron
yields [15]. Atomic units are used throughout the paper.
2. Theory

2.1. Quantum mechanical approach

We consider an atom interacting with an ultra-short pulse de-
scribed through a time dependent electric field along the ẑ direc-
tion. The total Hamiltonian of the system can be written as:
HðtÞ ¼ H0 þ VðtÞ, where H0 ¼ p2=2� Z=r is the atomic Hamiltonian,
Z is the atomic charge, p and r are the momentum and position of
the electron, respectively, and VðtÞ ¼ r � FðtÞ is the interaction term
with the external field, FðtÞ, in the gauge length. When the interac-
tion time is short compared to the orbital time of an electron in the
ground state, the field FðtÞ can be approximated as

FðtÞ ¼ �DpdðtÞẑ; ð1Þ

where Dp is the momentum transferred by the field. We confine our
study to a hydrogen atom (Z = 1) initially in its ground state.

As a consequence of the interaction with the laser pulse, one
electron, initially bound to the target nucleus in the state j/ii, is
emitted with momentum k and energy ef ¼ k2

=2ðk ¼ jkj). Thus,
the process possesses cylindrical symmetry around the polariza-
tion axis and thereby the azimuthal angle is cyclic. Electron
momentum distributions can be calculated from the transition ma-
trix as
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Fig. 1. Energy spectrum of H ionized by a sudden momentum transfer of kick
strength (a) Dp ¼ 0:25, (b) Dp ¼ 0:5, (c) Dp ¼ 2:5, and (d) Dp ¼ 0:5. Quantum: solid
line; classical: dashed line; and SFA: dotted line.
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dP
dk
¼ jTif j2; ð2Þ

where Tif is the T-matrix element corresponding to the transition
/i ! /f , where j/f i is the final unperturbed state. Within the CVA,
Tif can be computed within the framework of the sudden
Coulomb–Volkov (SCV) and the strong field approximation
(SFA) [14].

The transition amplitude in the prior form within the SCV
approximation is given by [7,5]

TSCV
if ¼ lim

t!�1
hvCV�

f ðtÞj/iðtÞi; ð3Þ

where the final Coulomb–Volkov distorted wave function vCV�
f ðtÞ

can be written as [7]

vCV�
f ðr; tÞ ¼ /�k ðr; tÞ expðiD�ðk; r; tÞÞ: ð4Þ

In Eq. (4), /�k is the unperturbed final state given by

/�k ðr; tÞ ¼ e�ik2
2 t expðik � rÞ
ð2pÞ3=2 DCðZT ;k; tÞ; ð5Þ

where DCðZT ;k; tÞ ¼ N�T ðkÞ1F1ð�iZT=k;1;�ik r � ik � rÞ. The Coulomb
normalization factor N�T ðkÞ ¼ expðpZT=2kÞCð1þ iZT=kÞ coincides
with the value of the Coulomb wave function at the origin, 1F1 de-
notes the confluent hypergeometric function, and ZT is the electric
charge of the parent ion. The Volkov phase D� in Eq. (4) is given
by [16]

D�ðk; r; tÞ ¼ A�ðtÞ � r� k �
Z t

�1
dt0A�ðt0Þ � 1

2

Z t

�1
dt0ðA�ðt0ÞÞ2; ð6Þ

where A�ðtÞ ¼ �
R t
�1 dt0Fðt0Þ is the vector potential. In the present

case /iðtÞ and /�k ðtÞ are the solutions of the time dependent Schrö-
dinger equation with the non-perturbed atomic Hamiltonian H0.
When we consider a sudden momentum transfer (kick) in Eq. (1)
the vector potential reduces to A�ðtÞ ¼ �Dphð�tÞ, where h denotes
the Heaviside step function. Therefore, the Volkov phase of Eq. (6)
reads

D�ðk; r; tÞ ¼ �Dp � rhð�tÞ � k � Dpthð�tÞ � 1
2
jDpj2thð�tÞ: ð7Þ

Now, when we include the Volkov phase for a sudden momen-
tum transfer of Eq. ( 7) into the final distorted wave function of Eq.
(4) and this latter into the SCV transition matrix [Eq. (3)], the tran-
sition probability [Eq. (2)] becomes

dP
dk

� �SCV

¼ jTSCV
if j

2 ¼ /�k ðrÞ
� ��eiDp�r /iðtÞj i
�� ��2; ð8Þ

which turns out to be equal to the exact solution of the time depen-
dent Schrödinger equation [15]. Hence, the SCV describes the exact
quantum transition probabilities when the external field is so short
that can be considered as a sudden momentum transfer. This result
is not valid for pulses of finite (not ultra-short) duration as it was
shown in [5].

The solutions of the Hamiltonian of a free electron in the time
dependent electric field, i o

ot jv�f ðtÞi ¼
p2

2 þ VðtÞ
� �

jv�f ðtÞi are the Vol-
kov states [16]

vðVÞ�k ðr; tÞ ¼ expðik � rÞ
ð2pÞ3=2 exp½iD�ðk; r; tÞ � iet� ð9Þ

which can be obtained from Eqs. (4) and (5) replacing DCðZT ;k; tÞ by
1. Inserting Eqs. (9) into (3) leads to the strong field approximation
(SFA). Hence, the total transition probability within the SFA is the
simple Fourier transform of the initial wave function but shifted
by the magnitude Dp in the momentum space

dP
dk

SFA

¼ ~/iðk� DpÞ
�� ��2; ð10Þ
where ~/i denotes the Fourier transform of the initial state /i. Apply-
ing the Parseval–Plancherel theorem stating that a function and its
Fourier transform have the same norm, the total ionization proba-
bility within the SFA is equal to one. This result does not depend
on the value of Dp showing the accuracy of the SFA for strong kicks
(Dp� 1Þ but also the absurd result of the SFA for the total ioniza-
tion probability when Dp is small (or even zero!). Nevertheless,
the SFA does predict a real physical magnitude. As the SFA neglects
the effect of the Coulomb potential on the electron after the kick, it
predicts the exact velocity distribution of the electron yield right
after the kick (at t ¼ 0þ, when no further Coulomb attraction is pos-
sible yet). This result lets us study the effect of the Coulomb poten-
tial on the electronic cloud since it is exactly calculated in the full
CVA but completely neglected by the SFA.

2.2. Classical simulation

CTMC is a nonperturbative method, where classical equations of
motion are solved numerically. The initial electronic state of the
target atom is obtained from the microcanonical distribution. In
the SFA the classical momentum distribution is shifted in Dp along
the ẑ direction and the distribution is not affected by the Coulomb
potential. This is a good approximation for the case of Dp� 1.
Within the SFA, the time evolution of a classical and quantum sud-
den momentum transfer is exactly the same, i.e. classical dynamics
has exactly the same ionization yield as quantum mechanics.
Therefore, due to the fact that the quantum and classical (in the
microcanonical ensemble) initial momentum distributions are
the same, the distributions also must be the same after the kick.
Although the dynamics of a sudden momentum transfer is de-
scribed equally by the time dependent Schrödinger equation and
the Hamilton’s equations, the time evolution of the motion of the
kicked electron under the effect of the atomic Coulombic electric
field can show significant differences.
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Fig. 3. Doubly-differential electron momentum distributions (logarithmic scale) in
cylindrical coordinates ðkz ; kqÞ. (a) Quantum, (b) classical, and (c) SFA. The
momentum transfer is Dp ¼ 2:5.
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3. Results and discussion

It is known that in the case of low kick strengths (dipole or per-
turbative regime), quantum and classical dynamics for the atomic
ionization yield predict very different outcomes. For example, for
ionization of a hydrogen atom due to a sudden momentum transfer
Dp ¼ 0:25; CTMC predicts only 0.4%, whereas quantum mechanics
2%, five times higher. This behavior is known in the literature as
classical suppression [15]. This effect can be observed in the energy
spectrum of Fig. 1(a). When we double the kick strength (Dp ¼ 0:5),
the total classical ionization probability is 7.7%, while the quantum
one is 9.6%, i.e. a factor 1.25 of difference. Although the energy
spectrum is satisfactorily reproduced by classical mechanics, this
is not the case for the momentum distribution. In Fig. 2 the quantal
(a) and classical (b) doubly-differential momentum distribution
d2P=dkqdkz of the electron yield after the same sudden momentum
transfer (Dp ¼ 0:5) are displayed. We note, that the statistical er-
rors for the classical distribution (below 0.05 a.u.) are about 8%
due to the finite number of the analyzed primary trajectories.
While the quantal distribution shows two lobes, the classical one
does not reproduce this quantal behavior and shows only one lobe
slightly tilted towards the forward direction (in the direction of the
kick). For the case of quantum distributions the lobes are related to
the proper dipole transition elements and the right lobe (direction
of the momentum transfer, Dp) is bigger than the left lobe (oppo-
site direction) and, in consequence, the average final momentum of
the electron is positive.

Fig. 2(c) shows that SFA predicts an average momentum (center
of the spot) kz ¼ Dp ¼ 0:5 and is quite different from quantal and
classical momentum distributions of Fig. 2(a) and (b), and there-
fore, ionization by a kick of Dp ¼ 0:5 is far from the strong field re-
gime. Since Fig. 2(c) displays the velocity distribution right after
the kick (SFA), a direct comparison between Fig. 2(a) and (b) shows
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Fig. 2. Doubly-differential electron momentum distributions (logarithmic scale) in
cylindrical coordinates ðkz ; kqÞ. (a) Quantum, (b) classical, and (c) SFA. The
momentum transfer is Dp ¼ 0:5.
the strong effect of the atomic Coulomb potential on escaping elec-
trons after the kick.

In Fig. 1(c) the energy spectrum of the electron yield ionized by
a kick of strength Dp ¼ 2:5 is displayed. In this case classical and
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momentum transfer is Dp ¼ 5.
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quantum total ionization probability are very similar 96.1% and
96.8%, respectively. Quantum–classical correspondence is ob-
served not only in total ionization yield but also in the doubly-dif-
ferential momentum distributions as displayed in Fig. 3(a) and (b).
Quantum mechanics brings about only one lobe in the forward
direction which can be reproduced accurately by classical mechan-
ics. The left lobe observed for weak kicks is not present here since
we are far away from the dipole regime. When compared to the
SFA result of Fig. 3(c) we can essentially observe two effects: (i)
the centers of the full quantum and classical distributions of
Fig. 3(a) and (b) (most probable z component of the momentum)
are slightly shifted towards the origin with respect to the SFA,
which is exactly at kz ¼ Dp, and (ii) the full quantum and classical
momentum distributions are weakly distorted near the origin
(k ¼ 0) due to the effect of the Coulomb field. This near-threshold
distortion is more evident in Fig. 1(c), where the energy distribu-
tion of the SFA drops about two orders of magnitude at E ¼ 0:01
with respect to the CVA and CTMC results. This near-threshold dis-
tortion is obviously not present in the SFA momentum distribution
of Fig. 3(c). We can affirm that classical distributions mimic the
quantum ones even in the features that are not proper of the
SFA, i.e. near-threshold structures.

For strong external fields (Dp ¼ 5) the total ionization probabil-
ity is almost 100% in both quantum and classical cases, exactly like
in the SFA (Fig. 1(d)). In Fig. 4 we show that for a kick strength of
Dp ¼ 5 not only the quantum (Fig. 4(a)) and classical (Fig. 4(b))
momentum distributions are alike but the strong field regime
(Fig. 4(c)) is also reached. The three doubly-differential momentum
distributions look practically indistinguishable.

4. Summary

We have shown that the Coulomb–Volkov approximation (CVA)
for ionization by a sudden momentum transfer describes exactly
the quantum results. The velocity distribution of emitted electrons
right after ionization by a sudden momentum transfer can be cal-
culated through the strong field approximation (SFA) within both
CVA and CTMC method. In this case, classical and quantum dynam-
ics are identical. The difference between the classical and quantum
final momentum distributions resides in the subsequent action of
the Coulomb field.
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