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Abstract

A new energy-dissipation-based rate-independent constitutive law within the framework of elastoplasticity coupled with
amage is proposed. With this methodology, the inelastic strains and the stiffness degradation exhibited by quasi-brittle materials
nder monotonic or cyclic loading conditions are taken into account. The proposed constitutive model is able to capture
icro-cracks closure-reopening effects due to load reversal. A wide variety of hardening/softening laws on the stress–strain

elationship are described and considered for the novel normalized plastic-damage energy dissipation internal variable. This
ormalized internal variable allows the model to be independent on the sign of the load and dissipate different fracture energies
tensile, compressive and potentially shear) in a natural way. Several numerical examples are presented in order to ensure the
fficiency and validity of the proposed model for simulating the non-linear behaviour of quasi-brittle materials under monotonic
nd cyclic loading. Some numerical aspects of the implemented algorithm and the return mapping procedure are also described
n detail and discussed.

2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Fracture mechanics; Plasticity; Constitutive modelling; Cyclic loading; Damage; Crack closure-reopening

1. Introduction

One of the most relevant or crucial aspects when studying the failure analysis of structures is the modelling of
he crack onset and propagation. Some materials, when submitted to an increasing loading, exhibit distributed and
ocalized degradation of their physical properties. The phenomenological response of the material is characterized
y a linear ascending curve (elastic branch) followed by a change in strength (post peak regime). In tension, a
oftening post peak curve is usually expected whereas an exponential hardening is commonly seen in compressive
xperiments, especially of concrete materials. When the material is unloaded after reaching the post-peak load,
on-recoverable (plastic) strains and a stiffness degradation (damage) is generally observed in experiments (Fig. 1).

The damage or stiffness degradation of the material is generally assumed to be due to the growth and coalescence
of voids and micro-cracks within the material at the interface between cement paste and aggregates in the case
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Fig. 1. Different material mechanical behaviours.

of concrete. When unloading, this aforementioned deterioration of the material and the growth of micro-defects
prevents the complete re-closing of cracks, which leads to the development of plastic strains. This implies that a
general quasi-brittle material phenomenologically behaves as depicted in Fig. 1(c), exhibiting stiffness degradation
and developing non-recoverable plastic strains. If the load is totally reversed, i.e. the former tensile stresses are now
in a compressive state, a re-closing effect of the crack or stress-recovery can be expected [1].

As stated before, damage mechanics is mainly related to a stiffness loss due to a micro-cracks growth. There
are many works in literature that exploit these ideas and the concept of effective stresses [2–8] as well as
models that combine the damage effect with non-recoverable strain development [9–15]. Several authors have
proposed an anisotropic damage model [13,14,16,17] taking advantage of the principle of maximum dissipation
for defining mathematically the increment of the compliance tensor (reduction of the constitutive elastic tensor),
which serves as a basis of the present work. Additionally, in order to capture the crack opening re-closure effect, a
tensile/compressive split of the compliance tensor is proposed.

The objective of this work is to extend the coupled plastic-damage model proposed by Meschke et al. [13]
and Wu and Cervera [14] for cyclic loading to be able to capture stress-recovery effects [1] using a novel internal
variable: the normalized plastic-damage energy dissipation [18–21]. This approach allows the use of equal hardening
curves in tension and compression with no added operations, even though different fracture energies can be
used. The hardening laws employed are formulated according to the new internal variable. This ensures a stable,
energy-conservative and efficient plastic damage model. The new internal variable measures the energy dissipation
performed by the damage and plastic processes and it is normalized it by the total fracture energy available. In
order to take into account different tensile and compressive fracture energies, an averaging is performed depending
on the current stress-state.

The extension of the plastic-damage constitutive model affects the hardening laws in such a way that requires
the mathematical derivation of the plastic consistency factor and the tangent constitutive matrix, now dependent of
the new internal variable.

It is important to note that the plastic behaviour within the plastic-damage model consists in an isotropic plasticity
law. This means that Bauschinger effects cannot be modelled but could be included without major modifications.
Indeed, only the back stress calculation and its corresponding contribution to the plastic multiplier should be
included.

This paper is organized as follows. Section 2 states the coupled plastic-damage model, the internal variables
and the return mapping algorithm without including crack re-closure effects for simplicity. Section 3 describes the
generalization of the proposed plastic damage model to be able to model crack opening re-closure or stress recovery
effects. Section 4 derives the hardening/softening laws based on the energy dissipation. Section 5 shows a collection
of numerical examples which results are compared against experimental data and other existing methodologies.
2
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. Plastic-damage mechanics

Coupled plastic-damage models are widely used for simulating the stiffness degradation and the irrecoverable
lastic strain generation exhibited by solid materials. Among the many references in this field we note the work of
ee and Fenves [22,23], Lubliner et al. [12], Meschke et al. [13], Armero and Oller [24], Oller et al. [9,15], Oñate

et al. [25], Wu and Cervera [14], Wu et al. [26], Luccioni et al. [10] and Poliotti et al. [11].
In this section, a generalization of the coupled plastic-damage model proposed by Wu and Cervera [14] is

described based on plastic-damage model [9,12,24]. This generalization implies that the softening/hardening laws
used to describe the stress–strain relationship is based on a new internal variable: the normalized non-linear plastic-
damage energy dissipation κ pd . This overcomes the limitations of using a strain measure as an internal variable
for the softening process and provides a thermodynamically energy-consistent formulation in a natural way, taking
into account different tensile and compressive fracture energies without any additional change. Mesh objectivity is
ensured by means of a FE characteristic length normalization of the available fracture energy given to the system [6].

If we restrict the problem to a purely mechanical theory, the second law of the thermodynamics states that the
energy dissipation rate Ḋ of an admissible deformation process is given by the Clasius–Duhem inequality:

Ḋ := σ : ε̇ − ψ̇ ≥ 0 (1)

where σ and ε are the second order stress and strain tensors, respectively. ψ̇ is the Helmholtz free energy density
function of the current material.

Following Armero and Oller [24], Oller et al. [9], Wu and Cervera [14], the Helmholtz free energy density
function for an elasto-plastic solid with stiffness degradation, assuming infinitesimal strains, can be expressed as:

ψ =
1
2

(ε − ε p) : D : (ε − ε p) + ψ p (2)

being ψ p
= ψ p(κ pd ) the potential function that models the inelastic response in terms of a generic internal variable

κ pd , D the secant constitutive tensor and ε p the plastic strain tensor. Inserting the temporal derivative of Eq. (2)
into Eq. (1) we obtain(

σ −
∂ψ

∂εe

)
: ε̇ + σ : ε̇ p

−
1
2
εe

: Ḋ : εe
−
∂ψ p

∂κ pd
κ̇ pd

≥ 0. (3)

In order to satisfy this inequality for ∀ ε̇, the following condition must be fulfilled:

σ −
∂ψ

∂εe
≥ 0 (4)

hich means that the stress tensor can be retrieved by

σ =
∂ψ

∂εe
= D : (ε − ε p). (5)

As both the plastic strain and the material stiffness can vary along time, the stress rate σ̇ is computed as [13,14]

σ̇ = D : (ε̇ − ε̇ p) + Ḋ : (ε − ε p). (6)

By using the identity described in Meschke et al. [13] and Wu and Cervera [14] involving the compliance tensor
ncrement Ḋ = −D : Ċ : D, one can rewrite Eq. (6) as

σ̇ = D : (ε̇ − ε̇ p
− Ċ : σ ). (7)

Based on the above mathematical expressions, the energy dissipation inequality can be rewritten as

Ḋ =
1
2
σ : Ċ : σ + σ : ε̇ p

−
∂ψ p

∂κ pd
κ̇ pd

≥ 0. (8)

In order to identify if the material is in elastic or plastic state, it is required to define a failure criterion F(σ , κ pd )
which has to be convex, differentiable and a smooth mathematical function:

pd pd
F(σ , κ ) = f (σ ) − K(κ ) (9)

3
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here f (σ ) is the uniaxial equivalent stress (either Rankine, Von Mises, Tresca, Drucker–Prager, etc.) and K is
the uniaxial stress threshold, which controls the strength of the material and follows a hardening/softening law
depending of an internal variable κ pd defined in the following paragraphs.

Following the classical definition of associative plasticity, the dissipative flow tensor Λ =
∂F
∂σ

defines the
dissipative plastic strain rate ε̇ p. Additionally, the plastic multiplier increment λ̇ satisfies the standard Kuhn–Tucker
loading/unloading consistency conditions:

λ̇ ≥ 0, F(σ , κ pd ) ≤ 0, F(σ , κ pd )λ̇ = 0. (10)

The plastic-damage distribution of the material response is controlled by a model parameter ξ ∈ (0, 1) (Wu
and Cervera [14]), which defines the behaviour material from fully plastic (ξ = 0) to only damage or stiffness
degradation (ξ = 1). The ξ parameter can be calibrated by considering the stiffness and plastic strains developed
in a cyclic experiment. This implies that the plastic strain increment is computed as (Meschke et al. [13], Wu and
Cervera [14])

ε̇ p
= (1 − ξ ) λ̇

∂F
∂σ

= (1 − ξ ) λ̇Λ. (11)

The stiffness degradation induced by the damage is taken into account by means of a compliance tensor rate Ċ
which can be obtained via (Meschke et al. [13])

Ċ = ξ λ̇
Λ ⊗ Λ

Λ : σ
. (12)

Note that the compliance matrix C corresponds to the inverse of the secant constitutive tensor C = D−1.
When the material is in loading conditions implies that λ̇ ≥ 0. In order to obtain the value of λ̇, one can take

dvantage of the consistency condition Ḟ = 0, applying the chain rule as

Ḟ =
∂F
∂σ

: σ̇ +
∂F
∂K
−1

K̇ = 0, (13)

The normalized plastic damage non-linear energy dissipation κ pd can be computed as

κ pd
=

∫ t=T

t=0
κ̇ pddt (14)

where κ̇ pd is calculated as

κ̇ pd
=

1
g f

(
σ : ε̇ p

+
1
2
σ : Ċ : σ

)
(15)

nd the volumetric fracture energy 1/g f =

(
r
gt

+
1−r
gc

)
ponderated over the tension and compression fracture

energies (gt and gc respectively) depending on the r parameter which ranges from 0 (pure compression) to 1 (pure
tension). The value of r is computed as:

r =

∑3
i=1⟨σi ⟩∑3
i=1 |σi |

, ⟨σi ⟩ =
1
2

(σi + |σi |) (16)

eing σi the principal stresses.
Eq. (15) shows that there are two energy dissipation mechanisms, one related to the plasticity process (σ : ε̇ p)

and another one due to the loss of stiffness of the material ( 1
2σ : Ċ : σ ).

Inserting the definition in Eq. (15) into Eq. (13) yields

Λ : σ̇ − K̇ = 0 H⇒ Λ : σ̇ −
∂K
∂κ pd

κ̇ pd
= 0. (17)

Inserting Eqs. (11) and (12) into the previous expression and rearranging the terms one can estimate the value
f the plastic multiplier increment λ̇ (see Appendix A for more details):

λ̇ =
Λ : D : ε̇

(18)

A + B + C + D

4
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A = (1 − ξ )Λ : D : Λ, (19a)

B = (1 − ξ )
∂K
∂κ pd

σ : Λ/g f , (19b)

C = ξΛ : D :
Λ ⊗ Λ

Λ : σ
: σ , (19c)

and

D =
ξ

2g f

∂K
∂κ pd

σ :
Λ ⊗ Λ

Λ : σ
: σ . (19d)

The rate constitutive law is given by:

σ̇ = Dt
: ε̇ (20)

where the material tangent constitutive tensor is:

Dt
= D −

[
(1 − ξ )D : Λ + ξD :

Λ⊗Λ
Λ:σ

: σ
]
⊗ [Λ : D]

A + B + C + D
. (21)

2.1. Return mapping algorithm

The proposed methodology is solved in an incremental-iterative way. With this approach, at each integration
point of the FE mesh, the objective is to compute the updated state variables ε

p
t+∆t , κ

pd
t+∆t , Kt+∆t and Dt+∆t (at

time t + ∆t) from the information of the previous step (time t) and the prescribed strain increment ∆ε.
Following Meschke et al. [13], the updated stress can be obtained as

σ t+∆t = Dn εe
t+∆t = σ tr ial

t+∆t − Dn∆ε p
+ ∆Dεe

t+∆t (22)

being σ tr ial
t+∆t = Dn(εt+∆t − ε

p
t ) and Dn the secant constitutive tensor of the previous iteration. If the yield surface

F(σ tr ial
t+∆t ,Kt ) ≤ 0 is satisfied, the trial stress is physically admissible and the constitutive law integration is fulfilled.

Conversely, if F(σ tr ial
t+∆t ,Kt ) > 0, an increment of damage and/or plastic strain has to be estimated via a backward

Euler integration scheme.
After some mathematics, the updated stresses at t + ∆t is obtained, in a form analogously to plasticity, as

σ t+∆t = σ tr ial
t+∆t − Dnλ̇Λ. (23)

The updated internal variables Ct+∆t , κ
pd
t+∆t , ε

p
t+∆t are obtained via Eqs. (12), (15) and (11), respectively. In

order to update the material threshold Kt+∆t , the selected hardening curve (Section 4) must be solved with the
latest value of κ pd

t+∆t .

3. Crack opening and re-closure: stiffness recovery effect

This section details the generalizations that must be made to the proposed model in order to model the effect
of crack re-closure. Phenomenologically speaking, the stress recovery effect occurs when, after the material cracks
due to a tensile load, it can close these cracks when the load is reversed, i.e. when the load becomes compressive.
This effect is not generally captured in standard damage models [1].

To achieve this, the compliance tensor and its increments described in Eq. (12) have to be divided into a tensile
Ċt and compressive Ċc parts:

Ċt = r ξ λ̇
Λ ⊗ Λ

Λ : σ
(24)

nd

Ċc = (1 − r ) ξ λ̇
Λ ⊗ Λ

, (25)

Λ : σ

5
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here the r parameter ranges from 0 (pure compression) to 1 (pure tension) as defined in Eq. (16). By using this
plit of the compliance increment, one can accumulate the stiffness loss in tension and compression separately
epending on the characteristics of the stress tensor. Next, the total compliance tensor C can be obtained according

to

C = r Ct + (1 − r ) Cc , (26)

nd finally retrieving the updated constitutive matrix by D = C−1 taking into account a ponderated measure of the
ensile and compressive damages.

If different hardening laws have to be used in tensile and compressive states, a split of the energy dissipation
nd uniaxial stress threshold should be used. In this regard, the calculation of the normalized plastic-damage energy
issipation increment in tension (κ̇ pd

t ) and in compression (κ̇ pd
c ) is performed as

κ̇
pd
t =

1
g f

(
σ : ε̇ p

+
1
2
σ : Ċt : σ

)
(27)

nd

κ̇ pd
c =

1
g f

(
σ : ε̇ p

+
1
2
σ : Ċc : σ

)
. (28)

Following this approach, the energy dissipation of the plastic process is always accounted both in tension and
n compression. Finally, in order to estimate the uniaxial threshold K that defines the elastic domain, we proceed
nalogously to Eq. (26):

K = r · Kt (κ
pd
t ) + (1 − r ) · Kc(κ pd

c ), (29)

eing Kt and Kc the tensile and compressive uniaxial thresholds computed as a function of its corresponding energy
issipation as shown in next section.

By using the split in terms of the energy dissipation and uniaxial stress threshold, different hardening laws and
racture energies can be used for tensile and compressive processes. In mixed mode loading problems, a consistent
onderation of the tensile and compressive components is considered.

.1. Minimal numerical example considering crack opening and re-closure

A small numerical example is presented to demonstrate the capabilities of the proposed model in the capturing
tress-recovery effects. The geometry consists in 1 mm height 3D cube. The element is fixed in one end and
n imposed displacement is applied on the other side. The boundary conditions allow the Poisson deformations.
he material properties considered are defined in Table 1. A Von-Mises yield surface was used together with an
xponential softening law.

Initially, the cube is stretched until a certain level of degradation is achieved. Then, the imposed displacement
s reversed. One can analyse in Fig. 2(a) how, when the imposed load changes from tension to compression, the
tiffness of the material is recovered. This behaviour is maintained up to the yield stress in compression, when
egradation continues. Fig. 2(b) depicts the energy dissipation during the load process, which includes the dissipation
ue to damage and plasticity.

It is important to mention that, since in this case the loading is uniaxial, the stresses are totally in tension or in
ompression, which means that the r parameter is either 0 (pure tension) or 1 (pure compression). This implies that
he stress-recovery due to the load reversal is fully performed, regaining initial stiffness. In a mixed mode loading
see Section 5.5), since a ponderated part of tensile and compressive degradation is performed simultaneously, a
ower stress recovery can be expected after a load reversal.

. Non-linear energy dissipation-based hardening laws

In this section, the hardening/softening relations (hardening curves from now on) between stresses and strains
re given. The hardening curves used in this paper are based on the work of Oller et al. [9,27] in which
everal mathematical expressions are provided for linear and exponential softening and parabolic hardening in the
ramework of plasticity. These curves (depicted in Fig. 3) were formulated for plasticity processes and they were
ased on the so-called normalized plastic energy dissipation κ p.
6
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Table 1
Tensile test material properties.

Variable Value Units

Young Modulus E 30 GPa
Poisson ratio ν 0.3
Tensile strength ft 5 MPa
Fracture energy tension G f 10 J/m2

Plastic-Damage distribution ξ 0.5

Fig. 2. Stress–Strain and energy dissipation evolution of the crack opening and re-closure example.

Fig. 3. Different hardening/softening stress- strain behaviours. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)

In this work, the aforementioned curves have been used and adapted in order to reproduce the same behaviour in
he new plastic-damage model. In order to do so, one has to employ the already exposed plastic-damage normalized
nergy dissipation κ pd in Eq. (14) instead to the former κ p. This implies the mathematical definition of the hardening
aws according to the new κ pd .

The three hardening curves used in this work are described. As it will be studied in the following Section, it is
ossible to obtain an analytical expression of the stress threshold according to the combined plastic-damage energy
issipation κ pd for the linear softening case. However, for the exponential and parabolic hardening, it is not possible
o obtain an explicit relationship between the threshold and the κ pd . In these cases, an implicit calculation of the
hreshold is performed via a standard Newton–Raphson procedure and the value of its partial derivative ∂K

∂κ pd is also
numerically estimated.
7
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.1. Linear softening

Simplifying the problem, one can suppose that the uniaxial behaviour of the material in tension, after the elastic
oading branch, initiates a linear softening process like it is shown in Fig. 3(a), i.e.

K = σy

(
εu − ε

εu − εy

)
(30)

eing σy the initial uniaxial stress threshold and εy its corresponding strain, εu the total strain value which
orresponds to the total failure of the material and K the current uniaxial stress threshold.

As can be seen in Fig. 3, the unloading branch behaviour will depend on the plastic-damage proportion assigned
o the material, being fully plastic when ξ = 0 and damage when ξ = 1. Indeed, in the unloading branch, the
volution of the stress will adopt the form:

σ = A · ε + B, (31)

eing A and B scalar values. If one forces the curve defined in Eq. (31) to connect the current loading state (ε, σ )
ith its intersection with the abscesses axis (εun, σ = 0) (see red branch in Fig. 3) one can obtain that:

σ (εunloading) =

(
1 +

εunloading − ε

ξε + (1 − ξ )εy
εu−ε

εu−εy

)
σy
εu − ε

εu − εy
(32)

here εunloading corresponds to the independent strain variable in the unloading branch (red path in Fig. 3(a)).
Next, one can calculate the normalized energy dissipation consumed by the plastic-damage process (grey area

n Fig. 3(a)) up to the current (ε, σ ) state as:

κ pd
=

1
g f

[
1
2
σyεy +

∫ ε

εy

Kdε −

∫ ε

εun

σ (εunloading)dε

]
(33)

where the volumetric fracture energy is computed as 1/g f =

(
r
gt

+
1−r
gc

)
ponderated over the tension and

compression fracture energies depending on the r parameter which ranges from 0 (pure compression) to 1 (pure
ension).

Inserting Eqs. (30) and (32) into Eq. (33) and solving the integrals one can obtain:

κ pd
=

1
g f

[
1
2
σyεy +

1
2

(ε − εy)(K + σy) −
1
2
K(ε − εun)

]
, (34)

Combining Eqs. (30), (32) and (34), and after some mathematical manipulation one can state a closed analytical
orm that relates the updated stress threshold K with the normalized plastic-damage energy dissipation κ pd as

K = σy

√
(2 − ξ )2 − 4κ pd (1 − ξ ) − ξ

2 (1 − ξ )
(35)

nd its partial derivative to be used in Eq. (18) can be retrieved as

∂K
∂κ pd

=
−σy√

(2 − ξ )2 − 4κ pd (1 − ξ )
(36)

.2. Exponential softening

In pure tension, it is also possible to use softening functions that better approximate the behaviour of concrete.
here are a large number of such functions that have been formulated from experimental studies. A simple
xponential function (Fig. 3(b)) has been considered here [9,27] that approximates quite well compared other
8
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ore complex expressions that have been proposed for the simulation of the behaviour of concrete in tension with
oftening. That is:

K = σy exp

(
σy(ε − εy)
1
2σyεy − g f

)
. (37)

Analogously to the linear softening case, one can obtain the expression of the unloading branch:

σ (εunloading) = σy

⎛⎜⎜⎝1 +
εunloading − ε

εξ + (1 − ξ )εy exp
(

σy (ε−εy )
1
2 σyεy−g f

)
⎞⎟⎟⎠ exp

(
σy(ε − εy)
1
2σyεy − g f

)
(38)

By using the same equation for calculating the normalized plastic-damage dissipation defined in Eq. (33) and
inserting Eqs. (37) and (38), one can obtain an implicit relationship between the stress threshold K and the
normalized plastic-damage energy dissipation κ pd for the exponential softening case as

σy (1 − κ pd ) = (39)

K
{

1 +
σy εy

2g f

[
(1 − ξ )

(
K
σy

−
1
2

ln
(
K
σy

)
− 1

)
+

1
2

ln
(
K
σy

)]
−
ξ

2
ln
(
K
σy

)}
(40)

As can be seen in Eq. (40), there is not a straight forward way of obtaining an explicit equation of the stress
threshold for a certain energy dissipation κ pd . This issue is circumvented by implementing a simple local Newton–
Raphson strategy that, for a given value of κ pd , iteratively approximates its corresponding updated stress threshold
K. Indeed, the implicit function F(K, κ pd ) to be minimized is

F(K, κ pd ) = σy (1 − κ pd )

−K
{

1 +
σy εy

2g f

[
(1 − ξ )

(
K
σy

−
1
2

ln
(
K
σy

)
− 1

)
1
2

ln
(
K
σy

)]
−
ξ

2
. ln

(
K
σy

)}
(41)

of which its partial derivative with respect to K can be easily found in order to update iteratively the values of K
for a given κ pd .

Finally, since no explicit expression of K is known, the computation of its partial derivative to be used in
Eq. (18) can be estimated accurately by using finite differences. Indeed, if a forward Euler scheme is used, a
good approximation of the derivative is obtained by:

∂K
∂κ pd

≈
K(κ pd

+ δκ pd ) − K(κ pd )
δκ pd

, (42)

n which K(κ pd
+ δκ pd ) and K(κ pd ) are computed implicitly by minimizing Eq. (41). A consistent value for the

erturbation δκ pd has been found to be 10−7.

.3. Parabolic hardening

For a more general case in compression of frictional materials, a different curve is proposed. This is a function
f the normalized plastic-damage energy dissipation κ pd composed by an initial hardening reaching a maximum
tress Kpeak followed by a softening branch (Fig. 3(c)).

An analytical expression of the curve in the K− ε space that agrees with experimental data, both in tension and
n compression, is given by the following expression:

K = σy
[
χ (1 − a) exp(−b(ε − εy)) − a exp(−2b(ε − εy))

]
(43)

here

a =
χ − 1

; b =
σy( 1 ) 3χ + 1

(44)

χ + 1 2 g f − 2εyσy χ + 1

9
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If the hardening curve is tangent to the initial elastic branch, the χ parameter has to be:

χ =

σyεy + g f +

√
5
4σyεy + 2g f

1
2σyεy − g f

(45)

nd its corresponding maximum stress is computed as:

σmax =
χ2σy

χ2 − 1
. (46)

However, if the maximum stress is set as a material property, the χ parameter will be computed as

χ = −

√
σmax

σmax − σy
. (47)

After some mathematical manipulation, and ensuring that the loading process dissipates a maximum amount of
olumetric energy g f , one can state that the implicit function F(K, κ pd ) that relates the uniaxial stress threshold
nd the energy dissipation to be minimized is (n = 1 in hardening and n = 2 in softening)

F(K, κ pd ) =

σyεy

[
1 −

(
K
σy

)2 (
1 +

(
K
σy

)
ξ − ξ

)]
2g f

+

1
2σyεy − g f

g f (3χ + 1)(χ − 1)

[(
1 + (−1)nα

) (
2χ + 1 − (−1)nα

)
−

K
σy

(χ2
− 1)ξ ln

(
χ + (−1)nα

χ − 1

)]
− κ pd

= 0 (48)

being

α = +

√
χ2

(
1 −

K
σy

)
+

K
σy
. (49)

Analogously to the previous softening case, solving numerically the proposed implicit equation for each level
f energy dissipation will provide its corresponding updated stress threshold. Additionally, the partial derivative of
he stress threshold with respect to the normalized energy dissipation can be also estimated by Eq. (42).

It is important to note that, conversely to the exponential softening case, the implicit solving of Eq. (48) is not
traight forward. In order to circumvent these numerical inconveniences, several strategies should be employed.
ig. 4 depicts the evolution of the implicit equation (Eq. (42)) as a function of the stress threshold to be solved
umerically for a certain level of normalized plastic-damage energy dissipation κ pd . As can be seen in the previous

figure, the hardening branch has a local minimum around K ≈ 5.5e8 Pa. This implies that one has to check whether
the initial guess of the Newton–Raphson coincides with the mentioned K. Indeed, this happens for example when
κ pd

= 0 and use the initial stress threshold as an initial guess.
Another problematic scenario arises when the hardening curve is reaching the peak stress. At this point, the

partial derivative of the implicit function F(K, κ pd ) becomes infinite around the root surroundings. This numerical
issue can be avoided by setting the maximum allowable value of the threshold close to the peak with a certain
tolerance. Whenever this happens, the hardening curve moves automatically to the softening branch, which exhibits
total stability.

5. Numerical examples

A selection of numerical examples is given in this section in order to show the efficiency and accuracy of the
proposed coupled plastic-damage model for cyclic loading. The geometries consist of three-dimensional models and
the results obtained are compared against experimental results and other numerical approaches. The implementation

of the proposed methodology has been done inside the open-source Kratos-Multiphysics FE code [28,29]

10
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Fig. 4. Evolution of the implicit equation to be minimized F (K, κ pd ) for a given κ pd showing the hardening and softening branches.

The first set of examples consists in cyclic uniaxial tensile and compressive tests, employing the softening and
ardening laws presented in the previous section, respectively. The second example reproduces a three point bending
est of a notched beam under a cyclic vertical loading. Finally, a uniaxial compression test of a cylindrical sample
s conducted.

The numerical results are compared with experimental and the data obtained with other numerical techniques.

.1. Tensile and compressive cyclic tests

In order to assess the accuracy of the proposed rate-independent plastic-damage model, a uniaxial cyclic tensile
nd compressive test is performed. The results obtained are compared against the experimental data provided by
arsan and Jirsa [30].
The geometry of these examples consists in a single hexahedron with dimensions 82.6 × 82.6 × 82.6 mm.

his geometry is submitted to a cyclic tension or compression state. The material properties used in the tensile and
ompressive test are given in Tables 2 and 3, respectively. A Drucker–Prager yield surface has been chosen, suitable
or concrete type materials submitted to tension and/or compression. In the tensile test an exponential softening type
Section 4.2) has been selected, whereas in the compressive test a parabolic hardening (Section 4.3) is employed.
or the sake of completeness, the linear softening law has been also used in order to compare the different material
ehaviours.

Fig. 5 shows the results obtained with the proposed model are in good agreement with the experimental data
vailable both for the tensile and compressive tests. As Lee and Fenves [22] mention, the experimental data provided
y Karsan and Jirsa [30] in the tensile case shows a very steep post-peak slope (Fig. 5(a)) induced by the use of a
ide strain gauge over the localized zone for measuring the results. This explains the slight difference between the
umerical and experimental results. This example shows that the proposed hardening/softening laws based on the
lastic-damage energy dissipation κ pd can reproduce efficiently the tension and compression behaviour of concrete,
ith a minimal calibration of the input parameters χ and K0 in the compressive test.
The evolution of the new internal variable κ pd for different strain states is depicted in Fig. 6. As shown in the

revious figures, the reversion of the load induces a stabilization of the energy dissipation. In the case of the cyclic
ensile test, the dissipated energy is almost the total available (κ pd

≈ 1). On the contrary, in the cyclic compressive
est, only the 40% of the total energy has been consumed in the whole process.
11



A. Cornejo, S. Jiménez, L.G. Barbu et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115543

e

T
1

a
c
e

m
a
w

Table 2
Tensile test material properties.

Variable Value Units

Young Modulus E 31 GPa
Poisson ratio ν 0.18
Tensile strength ft 3.48 MPa
Fracture energy tension G f 40 J/m2

Plastic-Damage distribution ξ 0.5

Table 3
Compressive test material properties.

Variable Value Units

Young Modulus E 31.7 GPa
Poisson ratio ν 0.18
Compressive yield strength fc 15 MPa
Fracture energy compression Gc 5690 J/m2

Peak stress position χ 0.08
Peak stress Kpeak 27.6 MPa
Plastic-Damage distribution ξ 0.5

Table 4
Three point bending test material properties.

Variable Value Units

Young Modulus E 43.6 GPa
Poisson ratio ν 0.2
Tensile yield strength ft 4.0 MPa
Compressive yield strength fc 63.4 MPa
Fracture energy tension G f 119.5 J/m2

Fracture energy compression Gc 5975 J/m2

Plastic-Damage distribution ξ 0.5

5.2. Three point bending cyclic test

A notched concrete beam submitted to cyclic loading is studied in this section. This example has been performed
xperimentally by Perdikaris and Romeo [31] and numerically reproduced in Meschke et al. [13].

Figs. 7 and 8 depict the geometry of the notched concrete beam and the FE mesh used in this work, respectively.
he 3D FE mesh consists in 9665 nodes and 7376 linear B-bar hexahedra elements. The thickness of the beam is
27 mm [31].

The sample is tested under displacement control, by increasing/decreasing the imposed vertical displacement
ccording to the experiment. The material properties [13] used in the calculation are given in Table 4. The yield
riterion used is the Drucker–Prager yield surface. Since mode I of fracture is expected as the notch tip, an
xponential softening law is assumed as a dominant behaviour in this simulation.

Fig. 10 depicts the force-CMOD (Crack Mouth Opening Displacement) evolution of the structure for the proposed
ethod, experimental results [31] and the data given in Meschke et al. [13]. As one can see in Fig. 10, the peak load

nd the post-peak behaviour of the sample is well captured according the experiment and in very good agreement
ith the results proposed by Meschke et al. [13].
Fig. 9 shows the plastic dissipation κ pd field for different CMOD snapshots. The fracture correctly localizes in

a single FE and evolves upwards vertically as expected, according to the experiments.

5.3. Concrete sample under compressive cyclic loading

This example consists in a numerical simulation of an experiment conducted by Osorio et al. [32] in which a
compressive cyclic test is performed to a concrete specimen. Both in the experiments and in the performed numerical

simulation, the longitudinal strain is studied.

12
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Fig. 5. Uniaxial cyclic tests, stress–strain behaviour.

The sample corresponds to a 35 MPa concrete type employing Portland with limestone cement (CEM II/A-
L) [32]. The original setup in Osorio et al. [32] can be seen in Fig. 11. The sample is cylindrical with 0.2 m height
and 0.1 m of diameter. The FE mesh used is formed by 6806 nodes and 5760 B-bar hexahedra (Fig. 12). The
simulated domain is one quarter of the whole sample, taking advantage of the symmetry of the problem. In the
experiment, the top and bottom surfaces have been treated to avoid friction so in the numerical model only the
vertical movement is restricted. The material properties are given in Table 5. The yield surface used is the Modified
Mohr–Coulomb [15] yield criterion with a parabolic hardening law.

The results of the numerical simulation can be seen in Fig. 13. Clearly, the model is capable of reproducing

the behaviour of the concrete sample both in the monotonic and cyclic loading. As expected, the rate-dependent

13
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Fig. 6. Uniaxial cyclic tests. Evolution of the new internal variable: the normalized plastic-damage dissipation κ pd .

Fig. 7. Three point cyclic bending test geometry. Units in [mm].
14
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m

Fig. 8. Three point cyclic bending test FE mesh. 9665 nodes and 7376 linear hexahedra Bbar FE.

Fig. 9. Three point cyclic bending test. Normalized plastic-damage energy dissipation field for two corresponding CMOD values, 200-fold
agnification of the displacement field.

Fig. 10. Three point cyclic bending test. Force–displacement evolution.
15
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Table 5
Compressive test of concrete sample. Material properties.

Variable Value Units

Young Modulus E 33 535 MPa
Poisson ratio ν 0.23
Compressive yield strength fc 20 MPa
Fracture energy compression Gc 9000 J/m2

Peak stress position χ 0.2
Peak stress Kpeak 37.4 MPa
Friction angle φ 32 Deg
Plastic-Damage distribution ξ 0.15

Fig. 11. Cyclic compression test. Experimental instrumentation.

variations exhibited in the experiment are not taken into account but the global stiffness and evolution are accurately
obtained.

5.4. Mixed-mode Alvarez three point bending beam

In this case, a three point beam with an eccentric notch is studied. This example was conducted in Garcia-Alvarez
et al. [33] and reproduced in Barbat et al. [34] and Cornejo et al. [35] as a mixed-mode fracture problem for assessing
the mesh size-effect. The geometry used is depicted in Fig. 14.

In the studied case, D = 320 mm and the λ factor is 0.25. The thickness of the sample is 50 mm according
to the literature. The notch eccentricity is selected to be µD = 0.625D. The material properties proposed by

arcia-Alvarez et al. [33] are given in Table 6. A B-bar small displacement element was employed and a Rankine
ield surface and plastic potential were used in order to check the elastic domain and plastic flow calculation. The
E mesh used is depicted in Fig. 15. The notch has been discretized by 4 FE in order to properly capture the

nduced stress gradients.
As can be seen in Fig. 16, the fracture paths obtained by means of the proposed plastic-damage model is in

ccordance with the existing numerical solutions available in literature (Cornejo et al. and Barbat et al.). Moreover,
he force-Crack Mouth Displacement (CMOD) evolution is also in agreement with the existing data as can be studied
n Fig. 17. The correctness of the obtained results in this numerical example ensures the model’s appropriateness
or mixed mode fracture simulations.
16
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Fig. 12. Cyclic compression test. Geometry, dimensions and FE mesh of the sample (6806 nodes and 5760 B-bar hexahedra). Units in m.

Fig. 13. Longitudinal stress–strain curve of the uniaxial compression test.
17
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Table 6
Garcia-Alvarez mixed mode case. Material properties.

Variable Value Units

Young Modulus E 33.8 GPa
Poisson ratio ν 0.23
Tensile yield strength fc 3.5 MPa
Tensile Fracture energy fc 80 J/m2

Plastic-Damage distribution ξ 0.5

Fig. 14. Mixed Mode Garcia-Alvarez test geometry.

Fig. 15. Mixed Mode Garcia-Alvarez test FE mesh used composed by 118,196 nodes and 58,598 B-bar FE.

Fig. 16. Fracture paths obtained by Cornejo et al. [35], Barbat et al. [34] and with the proposed constitutive model.

5.5. Cyclic shear test

In this section, the numerical simulation of a cubic metal specimen subjected to shear cyclic loading is considered.
This example consists in a 3D simulation of the geometry depicted in Fig. 18. An initial 0.1 mm length slit is
introduced at the centre of the sample to initiate the fracture. For efficiency, only a thickness of 10−5 m is considered.
A similar example can be found in Barbat et al. [1] where an orthotropic damage model was used and in [36–38]
18
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Fig. 17. Force-CMOD evolution for the Garcia-Alvarez mixed mode case. Comparison of the results obtained in Cornejo et al. [35], Barbat
et al. [34] and with the proposed constitutive model.

Table 7
Cyclic shear test. Material properties.

Variable Value Units

Young Modulus E 30.0 GPa
Poisson ratio ν 0.3
Tensile yield strength fc 5.0 MPa
Tensile Fracture energy fc 1.0 J/m2

Plastic-Damage distribution ξ 0.5
Friction angle φ 30.0 deg

where phase-field models are employed. The material properties used are defined in Table 7. In this example, a
Drucker–Prager yield surface is considered together with an exponential softening flow rule.

The setup of the problem is depicted in Fig. 18. The base of the cube is totally fixed. The cyclic shear load is
mposed by applying a horizontal displacement at the top of the sample. Finally, the vertical displacement of the
ateral walls is also prevented.

This numerical example consists in a 3D simulation with plane strain conditions with a structured mesh of Bbar
exahedra elements of size h = 10−5 m. In this case, a horizontal rightward displacement is imposed first (up to

t = 0.15 s). Then, the imposed displacement is reversed, causing the material to degrade in the opposite direction
(t = 0.44 s). Fig. 19 shows the displacement field obtained at the end of each loading process. One can clearly see
the localization of the damage and plastic deformation and the effect of the irrecoverable strains when reversing
the load. Figs. 20 and 21 depict the damage and plastic strain fields, respectively.

Finally, the force–displacement evolution of the shear test can be studied in Fig. 22. As expected, a simultaneous
evolution of damage and plasticity is exhibited. As previously stated, since in this case the energy dissipation
is developed in a mixed mode, the tensile and compressive stiffness degradation is ponderated according to r .
This is the reason why the stress-recovery in this example is not that evident in comparison with the fully
tensile/compressive example in Fig. 2.

6. Concluding remarks

The numerical results obtained in the examples analysed show that the constitutive model proposed in this paper
is capable of simulating in an efficient and accurate way the behaviour of frictional and metallic materials under
monotonic and cyclic loading conditions. The fact of using the dissipated energy as an internal variable of the
19
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Fig. 18. Cyclic shear test geometry.

Fig. 19. Cyclic shear test. Displacement field at different time steps. Units in m.

model instead of the accumulated plastic deformation, for example, ensures a correct mathematical and energetic
consistency that is difficult to achieve with previous methods. Likewise, in case of possessing information regarding
fracture energies in tension, compression and shear, it would be straightforward to include them in the model and
accumulate their dissipation in an incremental way. Additionally, the energy methodology proposed for the hardening
laws can automatically and naturally accommodate tensile and compressive processes without any change, except
for the correct definition of the corresponding fracture energies. To achieve the above, it has been necessary to
derive the corresponding mathematical expressions that give the model its mathematical consistency as well as its
linearization and implementation. The derivation of the hardening equations as well as their implicit resolution and
their partial derivative have been necessary to obtain the numerical results presented in the article.

The plastic-damage model has been generalized to be able to reproduce effectively crack opening and re-closure
effects. This has been done by splitting the compliance matrices into a tensile and compressive parts. If different
evolution laws have to be used in tension and in compression, a proper calculation of the energy dissipated in each
20
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Fig. 20. Cyclic shear test. Damage contours at different time steps.

Fig. 21. Cyclic shear test. Plastic strain contours at different time steps.

process has to be calculated. In this way, the stiffness degradation depends on the sign of the load in an energy
consistent manner.

However, some improvements and generalizations can be added to the model in order to widen the range of
engineering problems that could be potentially applied.

One enhancement of the model can be the inclusion of a combined isotropic and kinematic hardening. This
would allow to better simulate the Bauschinger effect in case of total reversion of the load, i.e. changing the load
from tension to compression or vice-versa. This implementation is easy to perform and no major modifications of
the presented algorithm need to be done. The mentioned kinematic hardening affects the calculation of the plastic
strain and the evolution of the material threshold.

One final addition to the model that can be useful consists in implementing an evolution of the dilatancy angle
based on the degradation or plastification occurred. In this way, no extra calibration will be needed in problems
sensitive to confinement or shear softening.
21
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Fig. 22. Force–displacement evolution obtained in the cyclic shear test.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This work has been done within the framework of the Fatigue4Light (H2020-LC-GV-06-2020) project: “Fatigue
modelling and fast testing methodologies to optimize part design and to boost lightweight materials deployment in
chassis parts”. This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101006844. The work has been also supported by the Spanish Government
program FPU17/04196. The authors gratefully acknowledge all the received support. Finally, acknowledge the
support received by the Severo Ochoa Centre of Excellence (2019–2023) under the grant CEX2018-000797-S funded
by MCIN/AEI/10.13039/501100011033.

Appendix A. Derivation of the plastic consistency expression

In order to obtain the expression of a consistent plastic multiplier for the proposed internal variable κ pd , one
states initially the consistency condition:

Ḟ =
∂F
∂σ

: σ̇ +
∂F
∂K
−1

K̇ = 0. (A.1)

which implies that (Notation ∂F
∂σ

:= Λ)

Λ : σ̇ − K̇ = 0. (A.2)

Since K = K(κ pd ), one can rewrite

Λ : σ̇ −
∂K

κ̇ pd
= 0, (A.3)
∂κ pd
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w

a

nd using Eq. (15)

Λ : σ̇ −
∂K
∂κ pd

(
σ : ε̇ p

+
1
2
σ : Ċ : σ

)
1

g f
= 0. (A.4)

Inserting Eq. (6):

Λ :
(
D : (ε̇ − ε̇ p

− Ċ : σ )
)
−

∂K
∂κ pd

(
σ : ε̇ p

+
1
2
σ : Ċ : σ

)
1

g f
= 0 (A.5)

Substituting Eqs. (12) and (11) and rearranging leads to

Λ : D : ε̇ p
−λ̇(Λ : D : Λ(1 − ξ ) + ξΛ : D :

Λ ⊗ Λ

Λ : σ
: σ

+ (1 − ξ )
∂K
∂κ pd

σ : Λ
1

g f
+

ξ

2g f

∂K
∂κ pd

σ :
Λ ⊗ Λ

Λ : σ
: σ ) = 0,

(A.6)

hich can be rewritten as

λ̇ =
Λ : D : ε̇

A + B + C + D
(A.7)

being

A = (1 − ξ )Λ : D : Λ (A.8a)

B = (1 − ξ )
∂K
∂κ pd

σ : Λ/g f (A.8b)

C = ξΛ : D :
Λ ⊗ Λ

Λ : σ
: σ (A.8c)

D =
ξ

2g f

∂K
∂κ pd

σ :
Λ ⊗ Λ

Λ : σ
: σ (A.8d)

Appendix B. Derivation of the analytical tangent tensor

The tangent constitutive tensor is the one that relates the strain temporal increment with its corresponding stress
increment, i.e.

σ̇ = Dt
: ε̇. (B.1)

Developing the strain term:

σ̇ = D : (ε̇ − ε̇ p
− Ċ : σ ) = D : ε̇ − D : ε̇ p

− D : Ċ : σ (B.2)

nd substituting with Eqs. (11) and (12) yields

σ̇ = D : ε̇ − D : (1 − ξ )λ̇Λ − D : ξ λ̇
Λ ⊗ Λ

Λ : σ
(B.3)

and substituting the plastic multiplier λ̇ with Eq. (18) and rearranging:

σ̇ = D : ε̇ −

[
D : (1 − ξ )Λ − D : ξ

Λ ⊗ Λ

Λ : σ

]
Λ : D : ε̇

A + B + C + D
(B.4)

which after some manipulation, one can state that the tangent tensor is expressed as

Dt
= D −

[
(1 − ξ )D : Λ + ξD :

Λ⊗Λ
Λ:σ

: σ
]
⊗ [Λ : D]

. (B.5)

A + B + C + D
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A. Cornejo, S. Jiménez, L.G. Barbu et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115543

i

s
l

p
a

n
w

A
s

A

t
s

Fig. C.23. Geometry used for testing the convergence rate of the model.

Appendix C. Convergence rate study of the implemented model

In order to achieve quadratic convergence rate in the Newton–Raphson strategy, a good estimation of the
linearized tangent constitutive tensor has to be employed. Eq. (21) defines mathematically the analytical linearization
of the plastic-damage model, this is one of the approaches that can be used.

For general purposes, especially when the analytical derivation is not possible (composite materials, non-
associative plasticity, etc.), one can obtain a good estimation of the tangent constitutive matrix by means of
a numerical approach, also called as perturbation method [39,40]. This solution is based on approximating the
derivatives in Eq. (20) via different finite differences schemes.

A first order approximation consists in performing a forward Euler scheme as:

Dt
j ≃

σ (ε + δε j ) − σ (ε)
δε j

(C.1)

where Dt
j is the j th column of the tangent constitutive tensor and δε j is a zero vector except for the j th component

whose value is a strain perturbation δε j , σ and ε are measures of stresses and strains, respectively.
A more exact approach but also more computationally expensive consists in using a central differences scheme,

.e.

Dt
j ≃

σ (ε + δε j ) − σ (ε − δε j )
2δε j

. (C.2)

The central differences approach improves the convergence rate with respect to the standard forward Euler
cheme. However, applying a perturbation backwards (ε − δε j ) implies an unloading condition for the constitutive
aw, which is not the expected behaviour of the finite difference scheme.

In order to circumvent this issue and provide a fully consistent finite differences scheme, a novel approach is
roposed that consists in performing a forward Euler method taking also into account the second order terms, which
fter some mathematical manipulation is expressed as:

Dt
j ≃

σ (ε + δε j ) − σ (ε)
δε j

−
σ (ε + 2δε j ) − 2σ (ε + δε j ) + σ (ε)

2δε j
. (C.3)

With the objective of assessing the convergence rate of the previous tangent approximations, a benchmark
umerical example is proposed. The geometry of the sample is depicted in Fig. C.23. The left end if fully fixed
hereas on the right end a monotonic increasing horizontal displacement is imposed.
Fig. C.24 shows the ratio of the residual error in logarithmic scale for the different tangent tensor estimations.

s expected, the numerical approximations of the tangent tensor converge quadratically, being the second order
olutions slightly better than the forward Euler approximation.

ppendix D. Yield surfaces used

Since most of the yield surfaces exposed are formulated in terms of the stress invariants, a brief description of
hem and the so-called Lode’s angle is given below. Also, all the yield surfaces described in this work follow the
ame structure:
F = f (σ ) − K (D.1)
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Fig. C.24. Convergence rate for different tangent tensor approximations.

where F defines the elastic domain (when lower than zero), f (σ ) is the uniaxial stress measure and K is the material
hreshold.

.1. Stress invariants and other computations

.1.1. Stress invariants

I1 = σ11 + σ22 + σ33 = tr(σ ) (D.2)

I2 = σ11σ22 + σ22σ33 + σ11σ33 − σ 2
12 − σ 2

23 − σ 2
31 (D.3)

I3 = det(σ ) (D.4)

.1.2. Stress deviator invariants
The stress deviatoric tensor si j is defined as:

s = σ −
I1

3
I (D.5)

where I1 is the first stress invariant (Eq. (D.2)) and I the identity tensor. Based on the deviatoric stress tensor, the
following invariants can be defined:

J1 = 0 (D.6)

J2 =
1
3

I2
1 − I2 (D.7)

J3 =
2
27

I3
1 −

1
3

I1I2 + I3 (D.8)

D.1.3. Lode’s angle θ
Geometrically, the Lode Angle is the smallest angle between the line of pure shear and the projection of the

stress tensor on the deviatoric plane. The mathematical expression is:

θ =
1
3

asin

(
−3

√
3J3

√

)
(D.9)
2J2 J2
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.2. Circumscribed Drucker–Prager yield surface

This criterion formulated by Drucker and Prager in 1952 is considered as a smoothed approximation to the
ohr–Coulomb criterion. However, the mathematical formulation arises from a generalization of the Von Mises

riterion to include the influence of pressure, through the first invariant of the stress tensor I1 and the internal
friction angle φ.

Uniaxial stress

f (σ ) =

(
−

√
3(3 − sinφ)

3 sinφ − 3

)(
2I1 sinφ

√
3(3 − sinφ)

+

√
J2

)
(D.10)

Material threshold

K = ft

(
3 + sinφ

3 sinφ − 3

)
(D.11)

Being ft the yield stress.

.3. Huber-Von-Mises yield surface

This criterion was formulated by Von Mises in 1913, and like the two former, depends only on one single
arameter, the maximum octahedral shear strength τmax

oct . Moreover, it only considers the second invariant of the
tress deviatoric tensor J2, neglecting hence the influence of the first invariant of the stress tensor I1 and the third

invariant of the stress deviatoric tensor J3.

Uniaxial stress

f (σ ) =

√
3J2 (D.12)

Material threshold

K = ft (D.13)

D.4. Modified Mohr–Coulomb yield surface

The use of the original Mohr–Coulomb yield criterion for materials of the concrete type, has the disadvantage
of not fulfilling the relationship between the uniaxial tensile and compressive strength for friction angles φ usually
employed for concrete (φ ≈ 30 − 35 deg).

Among the solutions usually adopted to overcome the problem is to increase this internal friction angle φ until
the required initial uniaxial resistance ratio is reached. However, this is not a valid solution when working with
associative plasticity, since the Mohr–Coulomb criterion defined as a surface of plastic potential with a dilatancy
angle ψ = φ, would produce in the solid an excessive effect of the dilatancy phenomenon.

In order to be able to operate with associative plasticity, and to avoid the drawback of using the Mohr–Coulomb
function defined with a very high internal friction angle, a simple modification of the original criterion mentioned
above is proposed in Oller et al. [9] is proposed as:

Uniaxial stress

f (σ ) =
2 tan (π/4 + φ/2)

cosφ

(
I1K3

3
+

√
J2

(
K1 cos θ −

K2 sin θ sinφ
√

3

))
(D.14)

being:

K1 = 0.5(1 + αr ) − 0.5(1 − αr ) sinφ (D.15a)

K2 = 0.5(1 + αr ) − 0.5(1 − αr )/ sinφ (D.15b)
K3 = 0.5(1 + αr ) sinφ − 0.5(1 − αr ) (D.15c)

26
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M

R

αr =
fc/ ft

tan (π/4 + φ/2)2
(D.15d)

Material threshold

K = fc (yield stress in compression) (D.16)

D.5. Rankine yield surface

This criterion was formulated by Rankine in 1876 and is based on one single parameter, the maximum uni-axial
tension strength ft . Additionally, it is influenced by the first invariant of the stress tensor I1 and by the second and
third invariants of the deviatoric stress tensor J2, J3, respectively. This criterion helps to set in the limits in a simple
way where the fracturing process starts in a point of a solid. This hypothesis leads to the assumption that fractures
occur when the maximum main stress reaches the value of the uni-axial tension strength ft .

Uniaxial stress

f (σ ) = max(σI , σI I , σI I I ) (D.17)

As a function of the invariants of the stress tensor and its deviatoric stress tensors:

f (I1, J2, θ, ft ) = 2
√

3J2cos(θ + π/6) + I1 − 3 ft = 0 (D.18)

aterial threshold

K = ft (D.19)
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