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Abstract
Let G be the manifold of all (unparametrized) oriented lines of R3. We study the controlla-
bility of the control system in G given by the condition that a curve in G describes at each
instant, at the infinitesimal level, an helicoid with prescribed angular speed α. Actually, we
pose the analogous more general problem by means of a control system on the manifold Gκ

of all the oriented complete geodesics of the three dimensional space form of curvature κ:
R

3 for κ = 0, S3 for κ = 1 and hyperbolic 3-space for κ = −1. We obtain that the system is
controllable if and only if α2 �= κ . In the spherical case with α = ±1, an admissible curve
remains in the set of fibers of a fixed Hopf fibration of S3.

We also address and solve a sort of Kendall’s (aka Oxford) problem in this setting: Find-
ing the minimum number of switches of piecewise continuous curves joining two arbitrary
oriented lines, with pieces in some distinguished families of admissible curves.

Keywords Control system · Space of oriented geodesics · Helicoid · Oxford problem ·
Hopf fibration · Jacobi field

Mathematics Subject Classification (2020) 34H05 · 53A17 · 53A35 · 53C30 · 70Q05

1 Introduction

For α ∈ R, the helicoid in standard position in R
3 with angular speed α (or equivalently,

with pitch 2π/α if α �= 0) is the parametrized surface

φo : R2 → R
3, φo (s, t) = s cos (αt) e1 + s sin (αt) e2 + te3.

An helicoid in R
3 with angular speed α is a parametrized surface congruent to φo by a rigid

transformation of R3, that is, a map preserving the distance and the orientation.
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Now we state vaguely the problem we are interested in: We fix α ∈R. Given two oriented
straight lines �1 and �2 in R

3, can we move �1 to �2 in such a way that the swept surface
resembles at each instant, at the infinitesimal level, an helicoid with angular speed α?

This is a control problem which does not arise from a linear or affine linear distribution.
Thus, the convenient setting to pose it precisely is the following, that we learned of from [1]
(see also Sects. 2.1 in [2] and 2.6 in [8]).

Definition 1 A control system on a smooth manifold N is a fiber subbundle of the tangent
bundle T N ,

A
ι−→ T N

↘ ↓ π

N .

A smooth curve γ : (a, b) → N is said to be admissible if γ ′ (t) ∈ ι (A ) holds for each
t ∈ (a, b). A control system in N is said to be controllable if for each pair of points in N

there exists a piecewise admissible curve joining them.

Let G be the space of all oriented straight lines of R3. This is a four dimensional smooth
manifold on which the group of rigid transformations of R3 acts transitively. The problem
above translates into defining a certain subbundle A of the tangent bundle T G . For the sake
of generality, we study it for the three dimensional space forms, that is, we also consider
curves in the manifolds of oriented lines in hyperbolic space H 3 and of oriented great circles
in the sphere S3. We call Gκ the manifold of all oriented geodesics of the three dimensional
space form of curvature κ , in particular, G = G0. It is diffeomorphic to T S2 for κ = 0,−1
and to S2 × S2 for κ = 1.

The fiber bundles involved are not trivial. Since the problem is global, this is another
reason why we choose the above definition of control system.

Our main result, Theorem 7, asserts the following: For Euclidean space, the system is
controllable if and only if α �= 0. In the hyperbolic case, the system is controllable for all α,
while in the spherical case it is controllable if and only if α �= ±1; if α = ±1, an admissible
curve consists of great circles in a Hopf fibration. The precise statement and the proof can
be found in Section 2.

Section 3 addresses a related problem: Given a family F of distinguished curves in a
manifold N , to find the minimum number of pieces in F of continuous curves in N joining
two arbitrary points in N . We call this number the Kendall number of F . In fact, this is
a problem of the sort David Kendall used to pose to his students in Oxford in the mid-20th
century for the system of a sphere rolling on the plane without slipping and spinning (that
is, N is the five dimensional manifold of all positions of a sphere resting on a plane) and the
family consists of curves in N determined by rolling along straight lines. It was solved by
John Hammersley in [10], as a part of a book dedicated to Kendall for his sixty-fifth birthday
(see also Sect. 4 of Chap. 4 in [12], where the problem is referred to as the Oxford problem
and [4] for a more geometric approach).

In our context we can propose two analogues: for the family Pα of curves in G0 de-
scribing helicoids with angular speed α, and the family H α of α-admissible homogeneous
curves in G0. By these, we mean those α-admissible curves which are orbits of monopara-
metric Lie subgroups of the group of rigid transformations of R3 (which acts canonically on
G0). We find the Kendall numbers for both families.
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Fig. 1 The surface φα
�,p,A

in the
Euclidean case

2 The α-Helicoidal Control System

For κ ∈ {0,1,−1}, let Mκ be the space form of dimension three with constant Gaussian
curvature κ , that is, M0 = R

3, M1 = S3 and M−1 = H 3. Let Gκ be the space of all complete
oriented geodesics in Mκ up to parametrizations, i.e.,

Gκ = {[σ ] | σ :R→ Mκ is a unit speed geodesic in Mκ },

where σ1 ∼ σ2 if σ1 (t) = σ2 (t + to) for all t and some to ∈R.
The isometry group of Mκ acts transitively on Gκ and this induces on it a differentiable

structure of dimension four, that renders it diffeomorphic to T S2 for κ = 0,−1 [3], and
S2 × S2 for κ = 1 (see Proposition 11). More precisely, for κ = 0, the map

ψ : T S2 = {
(v,u) ∈ S2 ×R

3 | u ⊥ v
} → G0, ψ (v,u) = [s 
→ u + sv] , (1)

is a diffeomorphism (v⊥ ∼= TvS
2). It holds that ψ−1 [s 
→ u + sv] = (v,u − 〈u,v〉v) (here u

is not necessarily orthogonal to v).
Before presenting the control system that concerns us, we need the following definitions.

We denote by γv the geodesic in Mκ with initial velocity v.

Definition 2 Let κ ∈ {0,1,−1} and α ∈ R. Given � ∈ Gκ , p ∈ � and a unit vector A ∈ TpMκ

orthogonal to �, the α-helicoidal parametrized surface with initial ray � and axis γA,

φα
�,p,A :R2 → Mκ ,

is defined as follows: Suppose that � = [σ ] with σ (0) = p and let B = A × σ ′ (0). Then

φα
�,p,A (s, t) = γcos(αt)Vt+sin(αt)Bt (s) , (2)

where t 
→ Vt and t 
→ Bt are the parallel vector fields along γA with initial values σ ′ (0)

and B , respectively. See Fig. 1.

In other words, the axis begins at p ∈ � with initial velocity A perpendicular to �, and the
rays rotate with constant angular speed α as they move along the axis with unit speed.



    6 Page 4 of 19 M. Anarella, M. Salvai

Definition 3 Let κ ∈ {0,1,−1} and α ∈ R. Given �, p and A as above, we define the α-
helicoidal curve with initial ray � and axis γA as

�α
�,p,A :R→ Gκ , �α

�,p,A (t) = [
s 
→ φα

�,p,A (s, t)
]

, (3)

and the subset A α
κ ⊂ T Gκ by

A α
κ = {initial velocities of α-helicoidal curves in Gκ} .

We call the elements of this set α-admissible tangent vectors.
Now we are in the position of defining the α-helicoidal control system on Gκ , that we

present in the following proposition.

Proposition 4 Let κ ∈ {0,1,−1} and α ∈ R. The canonical projection A α
κ → Gκ is a fiber

bundle. Moreover, the inclusion ιακ : A α
κ → T Gκ is a fiber subbundle and this gives the con-

trol system

A α
κ

ιακ−→ T Gκ

↘ ↓ π

Gκ .

We will call the admissible curves of this system α-admissible curves.

Remark 5 Each curve �α
�,p,A is the orbit of � in Gκ under a monoparametric group of isome-

tries of Mκ , say t 
→ g (t). However, the vector field V on Gκ induced by the action of this
group, that is, V (l) = d

dt

∣∣
0
g (t) (l), is not a section of the fiber bundle A α

κ → Gκ .

The following proposition reinforces the idea that the problem has a global nature and
suggests the convenience of working in an invariant setting.

Proposition 6 Let κ ∈ {0,1,−1}. If α2 �= κ , the fiber bundle A α
κ over Gκ is not topologically

trivial, that is, the manifold A α
κ is not homeomorphic to Gκ × F α

κ , where F α
κ is the typical

fiber of A α
κ → Gκ .

Examples a) The curves �α
�,p,A, i.e. the α-helicoidal curves, are clearly α-admissible.

b) The homogeneous α-admissible curves in the Euclidean case are characterized in
Proposition 19. Among them, the curve of straight lines that sweeps a one-sheet hyperboloid
is admissible for the control system

(
ια0 ,A α

0

)
, for suitable parameters (see the paragraph af-

ter that proposition). This also holds for analogous surfaces in H 3 and S3.

c) The curve in G0 associated with a circular helicoid with angular velocity α �= 0 is not
α-admissible. We recall that this parametrized surface can be built in an analogous manner
as φα

�,p,A, but taking a unit speed circle c with initial velocity A, centered at a point on �,
instead of γA, and using the normal connection of c to rotate � along it, with angular velocity
α. See Proposition 18.

Now we can state our main result. We recall that a submanifold of a vector space is said to
be substantial if is not included in any affine subspace. The standard Hopf fibration of S3 is
the fibration by oriented great circles whose fibers are intersections of S3 with complex lines,
identifying R

4 ≡ C
2. Applying to it isometries of the sphere we have the Hopf fibrations of

S3.
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Theorem 7 Let α ∈R. For κ ∈ {0,1,−1}, the following assertions are equivalent:

a) The control system
(
A α

κ , ιακ
)

is controllable.

b) It holds that α2 �= κ .

c) For every � ∈ Gκ , the fiber of A α
κ over � is a substantial submanifold of T�Gκ .

Moreover, in the Euclidean case, the image of a 0-admissible curve consists of parallel
straight lines and in the spherical case, if α = ±1, the image of an admissible curve consists
of great circles in a Hopf fibration.

2.1 Space of Oriented Geodesics

We begin by setting some notations for the three dimensional space forms. In general, we
deal with the three cases simultaneously, but the spherical case will need partly a differenti-
ated approach (see Sect. 2.3).

From now on, {e0, e1, e2, e3} denotes the canonical basis of R4. For κ ∈ {0,1,−1}, let
Mκ be the three dimensional space form with Gaussian curvature κ , that is, M0 = R

3 and
for κ = ±1, Mκ is the connected component of e0 of

{
x ∈ R

4 : 〈x, x〉κ = κ
}
, where

〈x, y〉κ = κx0y0 + x1y1 + x2y2 + x3y3, (4)

that induces a Riemannian metric on Mκ . That is, M1 is the sphere S3 and M−1 is hyperbolic
space H 3. To handle the three cases simultaneously, sometimes it will be convenient to
identify R

3 ≡ e0 +R
3 = {

p ∈R
4 : p0 = 1

}
.

We denote Gκ = Isoo (Mκ), the identity component of the isometry group on Mκ . Let
O (4) and O (1,3) be the automorphism groups of the inner products 〈, 〉1 and 〈, 〉−1, re-
spectively. With the identification R

3 ≡ e0 +R
3, it holds that

G0 =
{(

1 0
a A

)
: a ∈ R

3, A ∈ SO (3)

}
, (5)

G1 = SO (4) = {A ∈ O (4) : detA = 1} ,

G−1 = Oo (1,3) = {A ∈ O (1,3) : detA = 1, (Ae0)0 > 0} .

Given an orthonormal subset {u,v} of TpMκ , the cross product u × v is defined as the
unique unit vector w such that {u,v,w} is a positively oriented orthogonal basis of TpMκ ,
that is, {p,u, v,w} is a positively oriented orthogonal basis of

(
R

4, 〈, 〉κ
)
. For instance,

e1 × e2 = e3. It can be extended bilinearly to TpMκ × TpMκ .
Next we recall some properties of the space Gκ of oriented geodesics in Mκ . Their geom-

etry for κ = 0,−1 has been studied for instance in [5, 9, 16, 17]; for κ = 1 see Sect. 2.3. The
isometry group Gκ acts transitively on Gκ through g · [σ ] = [g ◦ σ ]. By abuse of notation,
we say that a point p is in � ∈ Gκ if for some parametrization σ of � there exists so such that
p = σ (so).

We introduce the notation

sin1(r) = sin r, sin0(r) = r, sin−1(r) = sinh r, cosκ (r) = sin′
κ (r)

(κ ∈ {0,1,−1}) and define the geodesic σo in Mκ and the corresponding element �o of Gκ

by

σo (s) = cosκ s e0 + sinκ s e1 and �o = [σo] . (6)
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It will be convenient for us to present Gκ explicitly as a homogeneous space. For B ,
C ∈ R

2×2, we denote by diag (B,C) the 4 × 4 matrix with blocks B and C in the main
diagonal. We have:

Proposition 8 [7] The isotropy subgroup of Gκ at �o is Kκ = {k (s, t) : s, t ∈R}, where

k (s, t) = diag (Rκ (s) ,R1 (t)) , with Rκ (t) =
(

cosκ t −κ sinκ t

sinκ t cosκ t

)
. (7)

We consider on Gκ the differentiable structure induced by the bijection

F : Gκ/Kκ → Gκ , F (gKκ) = g · �o.

For κ ∈ {0,1,−1} we denote by gκ the Lie algebra of Gκ . Also from [7] we have

gκ =
{(

0 −κxT

x B

)
: x ∈ R

3, BT = −B

}
.

The Lie algebra of Kκ is

kκ =
{

diag

((
0 −κs

s 0

)
,

(
0 −t

t 0

))
: s, t ∈R

}
.

For column vectors x, y ∈ R
2 we call

Z(x, y) =
(

02 (−κx,−y)T

(x, y) 02

)
. (8)

The subspace pκ = {
Z(x, y) ∈ gκ : x, y ∈R

2
}

of gκ is an Ad (Kκ)-invariant complement
of kκ and there exists a natural identification

d (F ◦ �)I |pκ
: pκ → T�oGκ , (9)

where � : Gκ → Gκ/Kκ is the canonical projection.

2.2 The Fiber Bundle A α
κ → Gκ

Now we consider a particular case of α-helicoidal curve as in (3), in good position. Let σo

and �o be as in (6) and let

po = e0 = σo (0) , Ao = e3 and Bo = Ao × σ ′
o (0) = e2. (10)

We call �α
o the curve in Gκ defined by

�α
o = �α

�o,po,Ao
(11)

and denote by Xα its initial velocity, that is,

Xα = d
dt

∣∣
0

�α
o (t) ∈ T�oGκ . (12)
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Proof of Proposition 4 We know that Gκ acts transitively on the positively oriented orthonor-
mal frame bundle of Mκ . Then, given �, p, A as in Definition 3, there exists g ∈ Gκ such that
g (e0) = p, dge0 (e3) = A and sends �o to � keeping the orientation. Since clearly Gκ carries
α-helicoidal curves in α-helicoidal curves, it turns out that the group Gκ acts transitively on
A α

κ . Thus, A α
κ = {

dg�o (Xα) : g ∈ Gκ

}
; in other words, it is the orbit of Xα in T Gκ under

the action of Gκ and therefore the inclusion is a fiber subbundle of T Gκ . �

We call

ξα =
(

0 − (
aα

κ

)T

aα
1 0

)
= Z

(
0 α

1 0

)
∈ pκ , (13)

where Z was defined in (8) and aα
κ =

(
0 α

κ 0

)
.

Lemma 9 Let Xα be as in (12). Then d (F ◦ �)I (ξα) = Xα .

Proof For any t ∈ R, let St ∈ Gκ given by

St =

⎛

⎜⎜
⎝

cosκ t 0 0 −κ sinκ t

0 cosαt − sinαt 0
0 sinαt cosαt 0

sinκ t 0 0 cosκ t

⎞

⎟⎟
⎠ . (14)

Then St = exp (tξα), since Ss+t = Ss ◦ St for all s, t and S ′
0 = ξα .

Now we check that Stσo (s) = φα
�o,po,Ao

(s, t) holds for all s, t ∈ R. We fix t and verify
that both expressions are equal as functions of s. Since they are geodesics with the same
initial value cosκ t e0 + sinκ t e3, it suffices to see that they have the same initial velocity. We
compute

d
ds

∣∣
0
Stσo (s) = St

d
ds

∣∣
0
σo (s) = Ste1 = cos (αt) e1 + sin (αt) e2,

which coincides with

d
ds

∣∣
0
φα

�o,po,Ao
(s, t) = d

ds

∣∣
0
γcos(αt)Vt+sin(αt)Bt (s) = cos (αt)Vt + sin (αt)Bt ,

as desired. Finally,

d (F ◦ �)I (ξα) = d (F ◦ �)I

(
S ′

0

) = d
dt

∣∣
0
F ◦ � ◦ St = d

dt

∣∣
0
St [σo] ,

which equals d
dt

∣∣
0

�α
o (t) = Xα by the computation above. �

Proposition 10 a) Under the identification (9), the fiber of A α
κ over �0 is

Ad (Kκ) (ξα) = {Ad (k (s, t)) (ξα) : s, t ∈R} ,

with k (s, t) as in (7).
b) If v ∈ A α

κ , then −v ∈ A α
κ .

c) For κ ∈ {0,−1} and α �= 0, Gκ acts simply transitively on A α
κ .

Proof a) We know from the proof of Proposition 4 that Gκ acts transitively on A α
κ via

the differential. Hence, the fiber of A α
κ over �o equals

{
dk�o (Xα) : k ∈ Kκ

}
. The assertion
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follows now from the lemma above and the commutativity of the diagram

pκ

Ad (k)−→ pκ

d (F ◦ �)I |pκ
↓ ↓ d (F ◦ �)I |pκ

T�oGκ

dkp−→ T�oGκ .

(15)

b) By homogeneity, we may suppose that v is in the fiber over �o. Hence v has the form

Ad (k (s, t)) (ξα) =
(

02 −Rκ (s)
(
aα

κ

)T
R1 (−t)

R1 (t) aα
1 Rκ (−s) 02

)
. (16)

Since R1 (t + π) = R1 (π)R1 (t) = −R1 (t), we have that −v = Ad (k (s, t + π)) (ξα) and
so it belongs to the fiber over �o.

c) Let Hκ (α) be the isotropy subgroup at Xα of the action of Gκ on A α
κ (in particular,

Hκ (α) ⊂ Kκ ). We have that Hκ (α) = {
k ∈ Kκ | dk�oXα = Xα

}
, which by the diagram (15)

equals
{
k ∈ Kκ | Ad (k) (ξα) = kξαk

−1 = ξα

}
.

Now, by (16), k (s, t) ∈ Kκ commutes with ξα if and only if R1 (t) aα
1 = aα

1 Rκ (s), that is,
(− sin t α cos t

cos t α sin t

)
=

(
α sinκ s α cosκ s

cosκ s −κ sinκ s

)
.

Therefore, k (s, t) ∈ Hκ (α) if and only if

− sin t = α sinκ s, cos t = cosκ s and α sin t = −κ sinκ s.

If κ = 0, this implies that cos t = 1 and − sin t = αs, and so Rκ (s) = R1 (t) = I . If κ = −1,
we have that cos t = cosh s = 1 and so we arrive at the same conclusion. In both cases,
Hκ (α) = {I }, as desired. �

2.3 The α-Helicoidal Control System in the Spherical Case

Let H be the skew field of quaternions. We consider the sphere S3 as the set of unit quater-
nions, that is, S3 = {q ∈H | |q| = 1}, which is a Lie group. It is well known that, identifying
R

4 with H, the maps f : S3 −→ SO (3) and F : S3 × S3 
→ SO (4) given by

f (p) (x) = pxp and F (p,q) (y) = pyq, (17)

for x ∈ Im (H) ∼=R
3 and y ∈H ∼=R

4, are both surjective two-to-one morphisms.
Now, G1 is the manifold of all oriented great circles of S3. We have that S3 × S3 acts

transitively on G1, since the action of SO (4) on it is transitive.
It is well known, for instance from [6] and [15], that G1 is diffeomorphic to S2 × S2.

We include this assertion in the next proposition and write down the proof since it is dif-
ferent from the ones given in those articles and shorter; also, it contributes to establish the
nomenclature used later. Note that S1 = {

eit | t ∈R
} ⊂ S3.

Proposition 11 The transitive action of S3 × S3 on G1 has S1 × S1 as its isotropy subgroup
at co = [

s 
→ eis
]

and induces the (well defined) diffeomorphism

� : G1 → S2 × S2, �((p, q) · co) = (f (p)(i), f (q)(i)) . (18)
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Proof Let (p, q) ∈ S1 × S1. Then p = eit and q = eir for some t, r ∈R. Thus, s 
→ peisq =
ei(s+t−r) belongs to the equivalence class

[
s 
→ eis

]
and so S1 ×S1 is included in the isotropy

subgroup. Now, we check the other inclusion. Let p,q ∈ S3 such that peisq = ei(s+so) for
some so and all s. Then, peis = eiseisoq for all s and in particular, p = eisoq . Differentiating,
we have pieis = ieiseisoq and so, pi = ieisoq = ip. Since p commutes with i, then p ∈ S1

and so q = e−isop ∈ S1 as well. Therefore, the isotropy subgroup at co is S1 × S1.
Now,

(
S3 × S3

)
/
(
S1 × S1

)
is canonically diffeomorphic to

(
S3/S1

) × (
S3/S1

)
. Then

the expression for � follows from the fact that the morphism f in (17) induces a transitive
action of S3 on S2 ⊂ ImH, given by (p,u) 
→ pup̄, with isotropy subgroup at i equal to
S1. �

Now, we describe in terms of the identification � above the curve �α
o in G1 in good

position defined in (11). Given β, τ ∈R, we define the isometries

Rβ (q) = eβk/2qe−βk/2 and Tτ (q) = eτk/2qeτk/2

of S3 (see (17)). The former is a rotation of R4 fixing 1 and k, and rotating the i-j plane
through the angle β . The latter is a transvection in τ along t 
→ etk (i.e. Tτ

(
etk

) = e(t+τ)k

and its differential realizes the parallel transport along t 
→ etk , see for instance Theorem 2
(3) in Note 7 of [13]). Notice that Rβ and Tτ commute.

Proposition 12 a) The α-helicoidal surface in S3 with axis t 
→ etk and initial circle s 
→ esi

is given by φo (s, t) = TtRαt

(
esi

)
.

b) For the corresponding curve �α
o in G1, the associated curve in S2 × S2 is

(
� ◦ �α

o

)
(t) = (

Rt(1+α) (i) ,Rt(1−α) (i)
)

. (19)

In particular,
(
� ◦ �α

o

)′
(0) = ((1 + α) j, (1 − α) j) ∈ T(i,i)

(
S2 × S2

)
. (20)

c) The fiber of A α
1 over (x, y) ∈ S2 × S2, via the identification �, is given by

{((1 + α) z, (1 − α)w) : z,w ∈ ImH, |z| = |w| = 1, z ⊥ x and w ⊥ y} . (21)

Proof The first assertion follows from the properties of Rβ and Tτ we mentioned when we
introduced them above. It implies that

�α
o (t) = [

s 
→ TtRαt

(
esi

)] = [
s 
→ etk/2eαtk/2esie−αtk/2etk/2

] = (pt , qt ) · co,

where pt = e(1+α)tk/2, qt = e(1−α)tk/2. Then,
(
� ◦ �α

o

)
(t) = (pt ipt , qt iqt ) and (19) follows.

A straightforward computation yields (20).
Now we verify (c). By homogeneity we may suppose x = y = i. As we saw in the proof

of Proposition 4, the group G1 = SO (4) acts transitively on A α
1 . Since S3 × S3 covers

SO (4), we may write A α
1 = {

p�′
o (0) q : p,q ∈ S3

}
.

By Proposition 11, the isotropy subgroup of the action of S3 × S3 on S2 × S2 � G1 is
S1 × S1. Thus, the fiber of A α

1 over co � (i, i) is
{
p�′

o (0) q : p,q ∈ S1
}

and using (20) we
get that it equals

{
((1 + α)pjp, (1 − α)qjq) : p,q ∈ S1

}
.

Now, putting p = eit , we have pjp = eit je−it = cos (2t) j + sin (2t) k, which are exactly
the unit elements on ImH orthogonal to i. Thus, (21) follows. �
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Next we recall the concept of Hopf fibration. The left multiplication by i in H induces
on it a vector space structure over C. We have that

{
Cq ∩ S3 | q ∈ S3

}
, the set formed by

all the intersections of complex lines with the sphere, is the set of fibers of a fibration of
S3 by oriented great circles, which is known as the standard Hopf fibration. Any fibration
congruent to it by an isometry of S3 (which does not necessarily preserve the orientation) is
called a Hopf fibration.

The following proposition is known, for instance, from [6]. For the reader’s convenience
we give a proof in the framework on this subsection.

Proposition 13 A subset A of G1 consists of all the fibers of a Hopf fibration if and only if
�(A) = S2 × {z} or �(A) = {z} × S2 for some z ∈ S2.

Proof As above, let co = [
s 
→ eis

]
. The standard Hopf fibration has fibers coq , with q ∈ S3.

By (17), the elements of O (4) have either the form q 
→ p1qp2 (those preserving orienta-
tion) or the form q 
→ p1q p2 (those inverting orientation), with p1, p2 ∈ S3. Then, the set
of fibers of a Hopf fibration has the form Hl or Hr , where

Hl = {
p1coqp2 | q ∈ S3

}
and Hr = {

p1 coq p2 | q ∈ S3
}

.

Now,

Hl = {
p1coq | q ∈ S3

} = {
(p1, q) · co | q ∈ S3

}

and hence �(Hl) = {
(p1ip1, qiq) | q ∈ S3

} = {z}×S2, with z = p1ip1, since q 
→ f (q) (i)

is onto S2. On the other hand, we have that co = [
s 
→ e−is

] = jco (−j) and so

p1 coq p2 = p1q co p2 = p1qjco (−j)p2 = p1qjcop2j = (p1qj,p2j) · co.

Proceeding as for Hl , we have then that �(Hr) = S2 × {z} with z = −p2ip2. �

2.4 Proofs of the Results of This Section

Proposition 14 For κ = 0,1 and α2 = κ , the system
(
A α

κ , ιακ
)

is not controllable. Moreover,
either if κ = 0 and α = 0, or if κ = 1 and α = ±1, a piecewise α-admissible curve in Gκ

consists of parallel straight lines or of great circles in a Hopf fibration, respectively.

Proof First we consider the Euclidean case with α = 0. Let t 
→ �t be a 0-admissible curve
in G0. For each t there exist pt ∈ �t and At such that d

dt
�t = �′

t (0), with �t = ��t ,pt ,At , that
is,

�t (τ ) = [
s 
→ φ�t ,pt ,At (s, τ ) = pt + τAt + svt

]
,

where vt ∈ S2 is the direction of �t , in particular, vt ⊥ At . Via the diffeomorphism ψ :
T S2 → G0 in (1) and recalling the expression for its inverse given afterwards, we have

ψ−1 (�t ) = (vt ,pt − 〈pt , vt 〉vt ) and ψ−1�t (τ ) = (vt ,pt + τAt − 〈pt , vt 〉vt ) .

Now d
dt

�t = d
dτ

∣∣
0
�t (τ ) implies that d

dt

∣∣
0
ψ−1 (�t ) = d

dτ

∣∣
0

(
ψ−1�t

)
(τ ). Comparing the

first coordinates we obtain v′
t = 0. Therefore the curve �t consists of parallel lines and in

particular the system is not controllable.
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In order to deal with the spherical case we use the identification G1
∼= S2 ×S2 introduced

in (18). Suppose that α = 1 and let γ = (γ1, γ2) be a piecewise admissible curve in S2 ×
S2. Then, the velocity γ ′ (t) of each piece of γ is in the fiber of A 1

1 over γ (t), which
by (21) is included in Tγ1(t)S

2 × {
0γ2(t)

}
. Thus, γ ′

2 = 0 and then γ2 is constant, say γ2 ≡
yo. So, the curve γ lies in S2 × {yo}, that consists of the fibers of a Hopf fibration, as
we saw in Proposition 13. Hence, two oriented circles cannot be joined by a piecewise 1-
admissible curve if they do not share the projection onto the second factor. So, the system is
not controllable. If α = −1 a similar argument applies, involving {xo} × S2. �

Proposition 15 Let κ ∈ {0,1,−1}. For any � ∈ Gκ , the fiber of A α
κ over � is a substantial

submanifold of T�Gκ if and only if α2 �= κ .

Proof Recall that a submanifold N of a vector space W is said to be substantial if it is not
included in any proper affine subspace of W . If N is central symmetric, that is −N = N , we
can substitute subspace for affine subspace, since the segment joining two opposite vectors
in N contains the origin. If W is additionally endowed with an inner product 〈, 〉, then N is
substantial if and only if 〈q,u〉 = 0 for every q ∈ N only when u = 0.

Now we prove the statement of the proposition. By homogeneity, we may suppose that
� = �o. By Proposition 10 (a) and (b), it suffices to show that Ad(Kκ) (ξα) is not contained
in a proper subspace of pκ . On this vector space we consider the inner product

〈Z (X,Y ) ,Z (U,V )〉 = 〈X,U〉 + 〈Y,V 〉

(see (8)). Let ζ = Z

(
x z

w y

)
∈ pκ and define fζ :R2 →R by

fζ (s, t) = 〈Ad (k (s, t)) (ξα) , ζ 〉 ,

where k (s, t) ∈ Kκ is as in (7).
Suppose that fζ ≡ 0. Then ∂fζ

∂s
≡ ∂fζ

∂t
≡ 0 holds and a straightforward computation using

(16) gives

∂fζ

∂s
(s,0) = cos s (αy − x) + sin s (−αz − w) = 0,

∂fζ

∂t
(s,0) = cos s (κy − αx) + sin s (−αw − κz) = 0.

By the linear independence of cos and sin we obtain the linear system

αy − x = 0, κy − αx = 0, −αz − w = 0, −αw − κz = 0.

Now, if α2 �= κ , the system has only the trivial solution and so ζ = 0. Thus, in this case, the
submanifold is substantial.

Finally, the submanifold is not substantial if α2 = κ , since for ζ = Z

(
α 1

−α 1

)
, a

lengthy computation yields fζ ≡ 0. �

Now we present the proof of the main result.

Proof of Theorem 7 By Proposition 14, we have that (a) implies (b) and that the last assertion
of the theorem is true. The equivalence between (b) and (c) was proved in the previous
proposition.
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Now we verify that (c) implies (a). We apply Sussmann’s Orbit Theorem [18] (we also
consulted [14]). We begin by showing the existence of a smooth vector field family D de-
fined everywhere whose D-orbits are the whole manifold. Since A α

κ → Gκ is a fiber bundle
with typical fiber F α

κ we can take trivializations Ui × F α
κ → π−1 (Ui) (i ∈ I ) in such a

way that the union of all Ui covers Gκ . Let

D = {
smooth sections vi : Ui → π−1 (Ui) , i ∈ I

}
, (22)

which is a smooth vector field family defined everywhere. We have to show that its D-orbits
are the whole manifold.

Let �D be the distribution on Gκ defined as follows: �D (�) is the subspace of T�Gκ

spanned by all v (�) such that v ∈ D and v is defined on �. Hence, the fiber of A α
κ over � is

contained in �D (�). Since α2 �= κ , we have by Proposition 15 that �D (�) = T�Gκ for all �.
Then the smallest D-invariant distribution containing �D coincides with T Gκ . By the Orbit
Theorem, the D-orbit of any � ∈ Gκ is the whole Gκ .

Finally, notice that if v ∈ D is as in (22), then −v is also in D by Proposition 10 (b).
This implies that the system is controllable. Indeed, let �0, �

′ ∈ Gκ and vi ∈ D (i = 1, . . . , k)
such that vk

tk
· · ·v1

t1
(�0) = �′, where t 
→ vi

t denotes the flow of vi . Call �i = vi
ti
(�i−1) and

suppose that tj < 0 and γj : [
tj ,0

] → Gκ is the integral curve of vj with γj (0) = �j−1. If
γ j : [0,−tj

] → Gκ is the integral curve of −vj with γ j (0) = �j−1, then γ j
(−tj

) = �j . �

Proof of Proposition 6 We begin by describing the typical fibers. We consider first the cases
κ = 0,−1. Since α2 �= κ , we know from the proof of Proposition 10 that the fiber over �o

can be identified with Kκ . Hence, F α
κ is homeomorphic to the cylinder by (7). When κ = 1

and α2 �= 1, we have by (21) that F α
1 is homeomorphic to S1 × S1.

To see that A α
κ and Gκ × F α

κ are not homeomorphic we show that their fundamental
groups do not coincide.

First we deal with the cases κ = 0,−1. By Proposition 10, we can identify A α
κ = Gκ . By

(5), we have

π1
(
A α

0

) = π1 (G0) = π1
(
SO (3) ×R

3
)
, π1

(
A α

−1

) = π1 (G−1) = π1 (Oo (1,3)) ,

both equal to π1 (SO (3)) = Z2. On the other hand, Gκ is homeomorphic to T S2, which is a
deformation retract of S2 and in particular, simply connected. Thus,

π1

(
Gκ × F α

κ

) = π1

(
T S2 ×R× S1

) = π1

(
S1

) = Z �= Z2.

For the case κ = 1 and α �= ±1, we know from Proposition 11 that G1 is diffeomorphic to
S2 ×S2 and also that F α

1 = S1 ×S1, by Proposition 12 (c). Then π1

(
G1 × F α

1

) = Z×Z. By

Proposition 4, A α
1 is the orbit of Xα = (

�α
o

)′
(0) by the action of SO (4), which is covered by

S3 ×S3 (see (17)). By (20), A α
1 is homeomorphic to

(
S3 × S3

)
/H , where H is the isotropy

subgroup at ((1 + α) j, (1 − α) j) ∈ T(i,i)

(
S2 × S2

)
. Now, H consists of all the elements

(p, q) ∈ S3 × S3 that fix both the foot point (i, i) and (j, j), since α2 �= 1. We have that
pip = qiq = i and pjp = qjq = j if and only if p = ±1 and q = ±1. Then

A α
1 = S3 × S3/ {(ε, δ) : ε, δ = ±1} ,

which is homeomorphic to
(
S3/ {±1}) × (

S3/ {±1}) = RP 3 × RP 3, whose fundamental
group is Z2 ×Z2 �= Z×Z. �
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2.5 Examples

In this subsection we give examples of α-admissible curves. Since we have already dealt
with various features of the spherical case, we concentrate on the Euclidean and hyperbolic
cases. We relate α-admissible curves to Jacobi fields and use that to describe all the homo-
geneous α-admissible curves for κ = 0 (we recall from the introduction that a curve β in
G0 is homogeneous if there exists a Lie subgroup g : R → G0 such that β (t) = g (t) β (0)

for all t ). This provides nontrivial examples, which, in their turn, constitute an interesting
family to pose Kendall’s problem.

Let σ be a unit speed geodesic of Mκ , κ ∈ {0,1,−1}. A Jacobi field along σ arises from
geodesic variations as follows: Let ϕ : R × (−ε, ε) → Mκ be a smooth map such that for
each t ∈R, s 
→ ϕ (s, t) =def ϕt (s) is a unit speed geodesic with ϕ0 = σ . Then the associated
Jacobi field J along σ is given by J (s) = d

dt

∣∣
0
ϕt (s).

Jacobi fields are the solutions of the equation D2J

dt2 + Rκ
(
J,σ ′)σ ′, where Rκ is the

curvature tensor of Mκ , given by Rκ (x, y) z = κ
(〈z, x〉κ y − 〈z, y〉κ x

)
for x, y, z local

vector fields on Mκ . We have then that the Jacobi field along σ with initial conditions
J (0) = u + aσ ′ (0) and DJ

dt
(0) = v + bσ ′ (0), with a, b ∈ R, u,v ∈ σ ′ (0)⊥ turns out to

be

J (s) = cosκ (s)U(s) + sinκ (s)V (s) + (a + sb)σ ′(s), (23)

where U,V are the parallel fields along σ with U (0) = u and V (0) = v.
The Jacobi fields J arising from unit speed geodesic variations are exactly those with

DJ
dt

⊥ σ ′ (or equivalently, with b = 0 in the expression (23)). We call Jσ the vector space
consisting of all such Jacobi fields along σ . There is a canonical surjective linear morphism

Tσ : Jσ → T[σ ] Gκ , Tσ (J ) = d
dt

∣∣
0
[σt ], (24)

where σt is any variation of σ by unit speed geodesics, associated with J (see Sect. 2 in
[11]). The kernel of Tσ is spanned by σ ′. It is convenient for us to work with the surjection
Tσ instead of the more common isomorphism defined on the space of Jacobi fields along
σ which are orthogonal to σ ′ (see for instance [17] for the hyperbolic case). This is due to
the type of geodesic variations appearing in the examples. By a usual abuse of notation, we
sometimes write J ′ = DJ

ds
.

Proposition 16 Fix α �= 0 and let J ∈ Jσ with J (0) ⊥ J ′ (0). If

∥∥J ′ (0)
∥∥ = |α| and J ′ (0) = αJ (0) × σ ′ (0) , (25)

then Tσ (J ) is α-admissible. Moreover, the converse is true if κ = 0,−1. See Fig. 2.

Proof Let � = [σ ], p = σ (0) and A = J (0) − 〈
J (0) , σ ′ (0)

〉
σ ′ (0), which has unit norm

since

|α| = ∥∥J ′ (0)
∥∥ = ∥∥αJ (0) × σ ′ (0)

∥∥ = |α|∥∥A × σ ′ (0)
∥∥ = |α| ‖A‖ .

To prove the first assertion, it suffices to verify that

Tσ (J ) = d
dt

∣∣
0

[
s 
→ φα

�,p,A (s, t)
]

,



    6 Page 14 of 19 M. Anarella, M. Salvai

Fig. 2 The Jacobi field J in the
particular case when J (0) is
perpendicular to σ ′ (0)

or equivalently, that the Jacobi field L along σ associated with the variation φα
�,p,A satisfies

Tσ (L) = Tσ (J ). We compute

L(0) = d
dt

∣∣
0
γcos(αt)Vt+sin(αt)Bt (0) = d

dt

∣∣
0
γA (t) = A.

Also, since D
ds

∣∣
0

d
dt

∣∣
0
= D

dt

∣∣
0

d
ds

∣∣
0
, we have that

L′ (0) = D
dt

∣∣
0

d
ds

∣∣
0
γcos(αt)Vt+sin(αt)Bt (s) = D

dt

∣∣
0

cos (αt)Vt + sin (αt)Bt = αB. (26)

On the other hand, αB = αA × σ ′ (0) = αJ (0) × σ ′ (0) = J ′ (0). Therefore, L′ (0) =
J ′ (0) and L(0) differs from J (0) by a multiple of σ ′ (0). Thus, Tσ (L) = Tσ (J ).

Next we prove the converse for κ = 0,−1. We consider J as in (23) with b = 0 and
notice that J (0) = u + aσ ′ (0) ⊥ J ′ (0) = v. Hence u ⊥ v and so U (s) ⊥ V (s) for all s.

Suppose that Tσ (J ) is admissible, that is, Tσ (J ) ∈ A α
κ . Since Tσ (J ) ∈ T�Mκ , there

exist p ∈ � and a unit vector A ∈ TpMκ orthogonal to � such that Tσ (J ) = d
dt

∣∣
0
��,p,A (t)

(here, p and A are different from the point and the vector with those names in the first part
of the proof). Let so ∈ R such that σ (so) = p. Putting J (s) = d

dt

∣∣
0
φα

�,p,A (s, t), we have

that s 
→ J (s − so) ∈ Jσ and its image under Tσ equals Tσ (J ). Since Tσ is a surjective
morphism, J (s) = J (s − so) + cσ ′ (s) holds for some c ∈ R. Then

J (so) = J (0) + cσ ′ (s) = d
dt

∣∣
0
φα

�,p,A (0, t) + cσ ′ (so) = A + cσ ′ (so) .

Similar computations as in (26) yield

J ′ (so) = D
ds

∣∣
so

d
dt

∣∣
0
γcos(αt)Vt+sin(αt)Bt (s − so) = αB0 = αA × σ ′ (so) .

In particular,
∥∥J ′ (so)

∥∥ = |α|. Therefore, if we show that so = 0, then both equations in (25)
are true. We observe that J (so) ⊥ J ′ (so). Since we know that U ⊥ V , using expression (23),
we have that

0 = 2 〈cosκ (so)U(so) + sinκ (so)V (so),−κ sinκ (so)U(so) + cosκ (so)V (so)〉
= (−κ ‖u‖2 + ‖v‖2

)
sinκ (2so) .

Now, we see that the first factor does not vanish and hence so = 0, as desired. Indeed,
if it were zero, then ‖v‖ = 0 and so J ′ (so) = −κ sinκ (so)U(so). If κ = 0, this implies that
J ′ (so) = 0. If κ = −1, then ‖u‖ = ‖v‖ = 0, and so J ′ (so) = 0 as well. In either case we
have a contradiction, since

∥∥J ′ (so)
∥∥ = |α| �= 0. �

Next we focus on the Euclidean case. Let φ : R2 −→ R
3, φ (s, t) = β (t) + sV (t) be a

ruled parametrized surface with ‖V ‖ = 1 which is nowhere cylindrical, that is, V ′ (t) �= 0
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for all t . It is said to be standard if β ′ ⊥ V ′. It is well-known that every nowhere cylindrical
ruled surface admits such a parametrization; in this case β is called the striction line.

Corollary 17 Let α �= 0, let φ : R2 −→ R
3, φ (s, t) = β (t) + sV (t), be a standard parame-

trized ruled surface and let � be the curve in G0 given by � (t) = [s 
→ φ (s, t)]. Then �′ (0)

is α-admissible if and only if

∥∥V ′ (0)
∥∥ = |α| and V ′ (0) = αβ ′ (0) × V (0) . (27)

Proof Let σ (s) = φ (s,0) and let J be the Jacobi field along σ associated with the varia-
tion φ, that is, J (s) = β ′ (0) + sV ′ (0). Since φ is standard we have that J (0) = β ′ (0) is
orthogonal to J ′ (0) = V ′ (0). Now, �′ (0) = Tσ (J ), and so the assertion is an immediate
consequence of the previous proposition in the Euclidean case. �

In the next proposition we present the details of Example (c) after Proposition 6.

Proposition 18 Given α �= 0, let ϕ be the ruled surface describing the circular helicoid with
radius r and angular velocity α, that is, ϕ (s, t) = c (t) + sv (t) with

c (t) = r
(
cos

(
t
r

)
e1 + sin

(
t
r

)
e2

)
and v (t) = cos (αt) 1

r
c(t) + sin (αt) e3,

and let � (t) = [s 
→ ϕ (s, t)] be the associated curve in G0. Then �′ (0) is not α-admissible.

Proof Since ϕ is nowhere cylindrical, it admits a standard parametrization ψ (s, t) = β (t)+
sv (t) whose associated curve in G0 is �. By the Lemma above, we have then that

∥∥v′ (0)
∥∥ =

|α| is a necessary condition for �′ (0) to be α-admissible. But
∥∥v′ (0)

∥∥2 = ‖(1/r) e2 + αe3‖2

= α2 + 1/r2. Then, �′ (0) is not α-admissible. �

Now we characterize the α-admissible homogeneous curves in G0 that is, those which are
orbits of monoparametric groups of rigid transformations. We exclude the trivial case α = 0.
For s ∈R, let Rs be the rotation through the angle s around the z-axis and Ts the translation
given by Ts (x) = x + se3.

Proposition 19 a) Any homogeneous curve in G0 is congruent, via an orientation preserving
isometry, to the orbit under the one parameter group t 
→ RθtTλt (for some θ,λ) of the
oriented line

� = [s 
→ ρe2 + s (sinη e1 + cosη e3)] , (28)

for some ρ ≥ 0 and η.

b) Let α �= 0. Then the curve � in G0 given by � (t) = RθtTλt� is α-admissible if and only
if

|θ sinη| = |α| and α (λ + ρθ cotη) = θ . (29)

For instance, for ρ = 0, η = π/2, θ = α and λ = 1, we have that � = �α
o as in (11). Also,

for ρ > 0, λ = 0 and θ, η related by the equations, � is an α-admissible curve sweeping a
hyperboloid of one sheet.
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Proof a) Let t 
→ gt be a monoparametric group of rigid transformations of R3. It is well
known that there exist θ , λ and h ∈ G0 such that gt = hRθtTλth

−1 for all t . Given �′ ∈ G0,
we can find f ∈ G0 commuting with RθtTλt such that f −1

(
h−1�′) is � as in (28) for some

ρ ≥ 0, η. Then, t 
→ gt�
′ = hRθtTλth

−1�′ = hRθtTλtf � = hf RθtTλt�, as desired.

b) We have that � (t) = [s 
→ φ (s, t)] with

φ (s, t) = Rθt (ρe2 + s (sinη e1 + cosη e3)) + tλe3 = β (t) + sV (t) ,

where β (t) = ρRθte2 + tλe3 and V (t) = Rθt (sinη e1 + cosη e3). We may suppose that
θ sinη �= 0, since otherwise, on the one hand, equations (29) do not hold and on the other
hand, the orbit of � sweeps either a plane or a cylinder and so it is not α-admissible for
α �= 0. Straightforward computations yield that φ is a standard parametrized ruled surface,
β ′ (0) = λe3 − ρθe1 and V ′ (0) = θ sinη e2.

In order to apply Corollary 17, we compute
∥∥V ′ (0)

∥∥ = |θ sinη|. Also, the equation
αβ ′ (0) × V (0) = V ′ (0) translates into α (λe3 − ρθe1) × (sinη e1 + cosη e3) = θ sinη e2,
or equivalently,

α (λ sinη + ρθ cosη) e2 = θ sinη e2.

Therefore, by the corollary, �′ (0) is α-admissible if and only if equations (29) hold. By the
homogeneity of � and A α

0 , this is equivalent to �′ (t) being α-admissible for all t . �

3 Kendall’s Problem for Some Families of α-Admissible Curves

This section addresses the analogue mentioned in the introduction of the well known rolling
Kendall’s problem. Given a family F of curves in a smooth manifold N , the Kendall num-
ber of F is the minimum number of pieces in F of continuous curves in N taking an initial
point to a final point in N , both arbitrary and different.

We consider N = G0 and two families of distinguished α-admissible curves there: the
family Pα , consisting of all (pure) α-helicoidal curves, that is, all curves �α

�,p,A as in Def-
inition 3, and the family H α of all the α-admissible homogeneous curves in G0. Note that
this renders the result in Theorem 7 superfluous in the Euclidean case.

In the original Kendall’s problem of a sphere rolling on the plane without slipping and
spinning, the most difficult case was to roll along successive straight lines from a given
position to another one over the same point, but rotated through some angle. In our problem,
the most complex case will be to reach −� from �, two lines with the same image and
opposite directions.

3.1 Kendall’s Problem for the Family Pα

Proposition 20 For α �= 0, the Kendall number of the family Pα is 3.

We begin by stating the following proposition, that implies that this number is greater
than or equal to 3.

Proposition 21 Given α �= 0, the oriented straight lines � and −� cannot be connected by a
continuous curve of two α-helicoidal pieces.
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Fig. 3 The lines �, �′ and �1
intersecting the vertical plane
x = 0

Fig. 4 The line �2 in the plane
x = t2; ‖p3 − p2‖ = π

2α

Proof Without loss of generality, we may suppose that � = [s 
→ se1] (so, −� = [s 
→ −se1])
and that the first piece is ��,0,e2 , defined on the interval [0, t0]. We call �1 = ��,0,e2 (t0) �= −�.
We denote by v the direction of �1, which is orthogonal to e2 (the direction of the axis of the
first piece), so we can write v = xe1 + ze3 with x2 + z2 = 1.

Now we assume that there exist p ∈ �1, a unit vector A orthogonal to �1 and t1 such
that ��1,p,A (t1) = −�. Since the axis of ��1,p,A is orthogonal to −� and �1, we have that
〈A,e1〉 = 0 = 〈A,v〉. Hence z 〈A,e3〉 = 0.

If z = 0, then v = ±e1 and so p = t0e2 + s0e1 for some s0. Since the axis t 
→ p + tA of
��1,p,A intersects −� at t1, we have that p + t1A = s ′

0e1 for some s ′
0. Now,

so = 〈t0e2 + s0e1, e1〉 = 〈−t1A + s ′
0e1, e1

〉 = s ′
0.

Then there exists ε = ±1 such that A = εe2 and t1 = −εt0 and thus ��1,p,A travels the
same path as ��,s0e1,e2 if ε = 1 or backwards if ε = −1. Therefore, ��1,p,A (t1) = � �= −�. If
〈A,e3〉 = 0, then A = ±e2, a situation we have already considered. �

Proof of Proposition 20 We know from the previous proposition that the Kendall number of
Pα is greater than or equal to 3. Given � and �′ in G0, we want to achieve �′ from � via
the juxtaposition of three α-helicoidal curves in G0. Without loss of generality we may as-
sume that �′ = [s 
→ se1] and � = [s 
→ de2 + sv] for some d ≥ 0 and some unit vector v

orthogonal to e2. We consider first the case α > 0.
Let �1 = �α

�,de2,e2
, that is, the α-helicoidal curve with initial ray � and axis parting from

de2 with direction e2. Let y1 (t) e2 be the point where �1 (t) intersects the y-axis. Let t1 > 0
be such that the direction of �1 =def �1 (t1) is −e3 and y1 (t1) > π

2α
. See Fig. 3

Let �2 = �α
�1,p1,e1

where p1 = y1 (t1) e2. For each t we consider the distance f (t) be-
tween �2 (t) and �′. We have that f (0) = y1 (t1). By the continuity of f , if τ is the first
positive zero of f , there exists 0 ≤ t2 < τ such that f (t2) = π

2α
.

Call �2 = �2 (t2) and let p2 and p3 be the points in �2 and �′, respectively, realizing the
distance between these lines. Let A = p3−p2

‖p3−p2‖ and �3 = �α
�2,p2,A. Then �3

(
π
2α

) = �′, since
π
2α

is the time an α-helicoidal curve takes to make one fourth of a complete turn. See Fig. 4.
If α < 0, similar arguments hold, setting the direction of �1 equal to e3 and substituting

π
2α

with π
2|α| . �
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Fig. 5 Standard position of � and
�′ when they intersect. Also,
(dhπ/θ )0(u) = (u′)

3.2 Kendall’s Problem for the Family H α

The elements of the family H α of all α-admissible homogeneous curves in G0 for α �= 0
have been described in Proposition 19.

Proposition 22 Let α �= 0. The Kendall number of the family H α is 2.

Proof First of all, we check that two intersecting lines � and �′, with �′ �= ±�, can be joined
by one curve in H α . If they form an angle 0 < 2η < π , we may suppose without loss of
generality that

� = [s 
→ s (sinη,0, cosη)] and �′ = [
s 
→ (

0,0, π
α

) + s (− sinη,0, cosη)
]

.

Let � be the curve in G0 determined by the orbit of � under the monoparametric group
ht =def RθtTλt as in Proposition 19, with θ = α

sinη
and λ = 1

sinη
(ρ = 0). The curve is α-

admissible since the corresponding equations given in (29) are satisfied. One can also verify
easily that �

(
π
θ

) = �′. Thus, � and �′ can be joined by one α-admissible homogeneous
curve. See Fig. 5.

Now we consider two lines � and �′ in G0 that do not intersect. Let �1 ∈ G0 containing
the shortest segment joining � to �′, which is perpendicular to both of them. By the case
above with 2η = π

2 , �′ can be reached from � via the juxtaposition of two curves in H α , the
first joining � to �1 and the second joining �1 to �′. If �′ = −�, one can take as �1 any curve
orthogonal to �. Then, the Kendall number is at most 2.

Finally, we show that the Kendall number is greater than 1. It suffices to see that for the
monoparametric group t 
→ gt = RθtTλt as in Proposition 19, if t 
→ gt (�) is α-admissible
for some � ∈ G0, then gt (�) �= −� for all t . We may suppose that � = [s 
→ ρe2 + sv] is as
in (28). The direction of gt (�) is Rt (v). If gt (�) = −�, then Rt (v) = −v and equating the
third components yields cosη = − cosη and so cosη = 0. In particular, � is contained in the
plane z = 0. Now, equations (29) imply that

|θ | = |α| and αλ = θ .

Hence, gt = RλαtTλt with λ = ±1. Since gt� is contained in the plane z = λt , we have that
gt� �= −� for all t (otherwise, we get λ = 0, a contradiction). �
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