Collisional activation of asteroids in cometary orbits*

C. G. Díaz ${ }^{2}$ and R. Gil-Hutton ${ }^{1,2}$
${ }^{1}$ Complejo Astronómico El Leoncito - CONICET - Av. España 1512 sur, J5402DSP San Juan, Argentina e-mail: rgilhutton@casleo.gov.ar
${ }^{2}$ Universidad Nacional de San Juan - Av. J. I. de la Roza 590 oeste, 5400 Rivadavia, San Juan, Argentina e-mail: siempregonza@hotmail.com

Received 12 December 2007 / Accepted 27 April 2008

Abstract

Aims. We study the time an asteroid in a cometary orbit must wait to receive a collision producing a crater depth enough to expose subsurface volatiles, aiming to analyze the possibility of collisional reactivation of these objects if they are dormant comets. Methods. We perform a numerical integration of the asteroids in cometary orbits and a population of projectiles to find the mean intrinsic collision probabilities and mean impact velocities of the targets. The projectile population was obtained as a sample with the same distribution of orbital elements as observed for main belt asteroids, and we also take into account that its size distribution changes for different size ranges. Only 206 asteroids in cometary orbits, that are not members of other asteroid groups, with a Tisserand parameter $2 \leq T_{\mathrm{J}} \leq 2.9$ and perihelion distance $q>1.3 \mathrm{AU}$ were considered. Results. A large fraction of the objects in the sample receive at least 1 collision energetic enough to break the comet crust and allow a dormant comet to reach an active state in a period shorter than a Jupiter Family Comet dynamical lifetime. A large fraction of the objects in the sample with $r_{\mathrm{t}} \geq 8-9 \mathrm{~km}$ receive several collisions and could be active for more than $3 \times 10^{4} \mathrm{yr}$. We found an excess in the number of dormant comet candidates from the expected values which is indicative of the presence in the ACOs population of objects that are not comets in a dormant state. These objects could be asteroids with $T_{\mathrm{J}}<3$ that reach their present orbits by some dynamical mechanism that perturbs the original asteroidal orbit changing its Tisserand invariant.

Key words. minor planets, asteroids - comets: general - solar system: general

1. Introduction

The different formation regions of asteroids and comets in the Solar System produced differences in their physical properties. Asteroids are planetesimals formed during the early ages of the Solar System in the region between Mars and Jupiter while comets were formed in a region that extends from the giant planets to the outer limits of the pre-solar nebula. As a consequence, there is a significant difference in the content of volatile material in both populations. This fact has provided the most apparent distinction between members of these two populations: comet nuclei, when close to the Sun, are usually surrounded by a coma produced by the out-gassing of volatiles caused by solar heating, while asteroids are not. This simple distinction has some complications due to the discovery of icy objects that rarely develop a coma due to their distance from the Sun, the discovery of asteroids with dynamical properties similar to those of comets, and the discovery of objects in typical asteroidal orbits that show temporary comet-like activity.

At the end of their active life some comets might develop an asteroidal appearance when sublimation stops and reaches dormancy or extinction due to the depletion of volatile material or by a crust built up on their surfaces (Rickman et al. 1990; Kührt \& Keller 1994; Benkhoff \& Huebner 1996; Jewitt 2002). The gas activity of a cometary nucleus coming close to the Sun can form a layer of dust grains that are too heavy to be blown off by the gas outflow. This crust could eventually become so thick that subsurface volatiles cannot be warmed up to sublimation

[^0]temperature, ceasing any cometary activity, and the nucleus appears observationally identical to an asteroid. Since this crust does not completely stop the vapor production in the comet interior, it could be possible that a large amount of ice is present below it even though the comet reaches an inactive state (Prialnik \& Mekler 1991).

One way to reactivate dormant comets is by means of impacts with interplanetary bodies. Fernández (1990) and Matese \& Whitman (1994) tried to explain the outburst activity of comets by impacts with small asteroids or meteoroids, and some authors have the opinion that this is the case for comets 41P/Tuttle-Giacobini-Kresák (Kresák 1974; Fernández 1981), 72P/Denning-Fujikawara (Beech 2001), and 133P/Elst-Pizarro (Toth 2000), while Toth (2001) suggested that the splitting of the comet C/1994 S4 (LINEAR) was a result of a collision of the comet with asteroid debris. Collisions of interplanetary boulders with a dormant comet could result in craters that partially destroy the crust on its surface, triggering reactivation by allowing the fresh material buried below the crust to begin sublimation in the next perihelion passage.

The dynamical criterion used to define the sample of objects that are candidate dormant comets is related to the Tisserand parameter (Kresák 1979), which is defined by the relation $T_{\mathrm{J}}=$ $a_{\mathrm{J}} / a+2 \cos I \sqrt{\left(a / a_{\mathrm{J}}\right)\left(1-e^{2}\right)}$, where a and a_{J} are the semimajor axis of the orbits of the object and Jupiter, respectively, while e and I are the eccentricity and inclination relative to the orbital plane of Jupiter of the object's orbit. By this criterion, cometary orbits are defined as those having $T_{\mathrm{J}}<3$, while asteroidal orbits are those with $T_{\mathrm{J}}>3$. Therefore, all the objects with $T_{\mathrm{J}}<3$ that do not present any signature of cometary activity are defined as
an asteroid in a cometary orbit (ACO). Objects with $T_{\mathrm{J}}<2$ have been called Damocloids by Jewitt (2005) and are asteroids in Halley-type cometary orbits, while those with $2 \leq T_{\mathrm{J}} \leq 3$ have orbits similar to the Jupiter family comets (JFCs). Therefore, ACOs are good candidates to be extinct or dormant comets.

Licandro et al. (2005) found differences in the spectroscopic properties of two sub-samples of ACOs, the near Earth objects (NEOs) with perihelion distance $q \leq 1.3 \mathrm{AU}$ and the non-NEOs, these last objects being spectroscopically similar to cometary nuclei. These authors also found that ACOs with featured spectra typical of the main belt have $T_{\mathrm{J}} \geq 2.9$ while those with $T_{\mathrm{J}}<2.9$ shown comet-like spectra, suggesting that the subsample of ACOs with $2.9 \leq T_{\mathrm{J}} \leq 3.0$ could be contaminated by a large fraction of interlopers from the inner part of the belt. On the other hand, Alvarez-Candal \& Licandro (2006) found that the sub-sample of ACOs with $q>1.3$ AU has a size distribution similar to that of the Jupiter family comets and can be composed of a significant fraction of dormant comets, while a large fraction of ACOs with $q<1.3$ AU could be scattered objects from the outer main belt.

The purpose of this paper is to analyze the possibility of reactivation of dormant comets by collisions with interplanetary boulders. Since the physical properties of JFCs are better known than for other comets and taking into account the above considerations, we only consider as dormant comet candidates ACOs with $2 \leq T_{\mathrm{J}} \leq 2.9$ and $q>1.3 \mathrm{AU}$. In Sect. 2 we describe the computational method used and in Sects. 3 and 4 we present and discuss our results. In Sect. 5 we present our conclusions.

2. Computational method

In order to break the cometary crust and allow the dormant comet to reactivate in the next perihelion passage, it is necessary to break the target surface with impact craters deep enough to reach the buried ice. The crater diameter D_{c} produced by a collision with a projectile of radius r_{p} and impact velocity v_{p} is found using the expression proposed by Zahnle et al. (1998):
$D_{\mathrm{c}}=1.70 r_{\mathrm{p}}^{0.78} g^{-0.22} v_{\mathrm{p}}^{0.44}\left(\frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{t}}}\right)^{0.333}(\cos \theta)^{0.44}$,
which is essentially the expression recommended by Schmidt \& Housen (1987) but considering that only the normal component of the impact velocity contributes to cratering. In this equation ρ_{t} and ρ_{p} are the densities for the comet and projectile, respectively, g is the surface gravity on the comet, θ is the incidence angle measured from the zenith, and the equation must be evaluated in cgs units. The mean value of θ for the normal component of isotropic velocities is 45° and we always assume densities of $\rho_{\mathrm{t}}=0.5 \mathrm{~g} \mathrm{~cm}^{-3}$ and $\rho_{\mathrm{p}}=2.5 \mathrm{~g} \mathrm{~cm}^{-3}$ for ACOs and projectiles, respectively. The exposed area produced by the crater is:
$A_{\mathrm{c}}=\pi\left(\frac{D_{\mathrm{c}}^{2}}{4}+h_{\mathrm{c}}^{2}\right)$,
where h_{c} is the crater depth. If the crust thickness is h, to reach the ice below the crust we need $h_{\mathrm{c}} \geq h$ and using the crater depth/diameter ratio, which is almost constant for simple craters and equal to $0.18-0.20$ for the Moon and icy Galilean satellites (Schenk et al. 2004), it is possible to find the radius r_{p} of the projectile needed to form such crater.

On the other hand, the mean number of impacts received by the comet with projectiles of radius larger than r_{p} in a time Δt is:

$$
\begin{align*}
\left\langle N_{\mathrm{col}}\left(>r_{\mathrm{p}}\right)\right\rangle= & \left\langle P_{\mathrm{i}}\right\rangle\left(r_{\mathrm{t}}+r_{\mathrm{p}}\right)^{2} \Delta t N_{\mathrm{pro}}\left(>r_{\mathrm{p}}\right) \\
& \approx\left\langle P_{\mathrm{i}}\right\rangle r_{\mathrm{t}}^{2} \Delta t N_{\mathrm{pro}}\left(>r_{\mathrm{p}}\right), \tag{3}
\end{align*}
$$

where r_{t} is the comet radius, $\left\langle P_{\mathrm{i}}\right\rangle$ is the mean intrinsic collision probability between the comet and the projectile population, $N_{\text {pro }}\left(>r_{\mathrm{p}}\right)$ is the number of projectiles in the population with radius larger than r_{p}, and $r_{\mathrm{p}} \ll r_{\mathrm{t}}$. The comet radius has been computed from the absolute magnitude of the object, H, by:
$\log \left(p_{v} \pi r_{\mathrm{t}}^{2}\right)=16.85+0.4\left(m_{\odot}-H\right)$,
where the result is in kilometers, $m_{\odot}=-26.77$ is the apparent visual magnitude of the Sun, and a standard albedo $p_{v}=0.04$ was assumed.

Mean intrinsic collision probabilities and mean impact velocities can be inferred from statistical studies of the occurrence of orbital encounters between the comet and the projectile population, so we decided to estimate these parameters using the numerical method developed by Marzari et al. (1996). In this method the target and a projectile population were numerically integrated over a time span $T_{\text {int }}$ and the encounter distance and encounter velocity between the target and any projectile were recorded. Since Marzari et al. showed that the distribution of the cumulative number of encounters for an encounter distance less than d_{enc} is proportional to d_{enc}^{2}, a distribution of the form:
$N_{\text {enc }}\left(<d_{\text {enc }}\right)=P_{1} \times d_{\text {enc }}^{2}$
was assumed. P_{1} is found by a fit to the data, taken as the standard deviation for each point $\sqrt{N_{\text {enc }}}$. Then, the mean intrinsic collision probability is obtained from:
$\left\langle P_{\mathrm{i}}\right\rangle=\frac{P_{1}}{n_{\text {pair }} T_{\mathrm{int}}}$,
where $n_{\text {pair }}$ is the number of different pairs of objects that can be formed within the interacting population.

Since the asteroid belt is the main source of projectiles, it is enough to use as the interacting population a sample of particles with the same orbital element distribution as that observed for the objects in the asteroid belt. This sample was obtained as follows: first, the objects that form the complete known asteroid population, i.e., those asteroids with mean apparent opposition V magnitudes $V(a, 0)<15.75$ (Tedesco et al. 2005), and with semimajor axis $a>2$ AU were taken from the ASTORB database (ftp://ftp.lowell.edu/pub/elgb/ astorb .html) to get a first sample of 4549 objects. Then, a sixdimensional distribution of the orbital elements was calculated and a final sample of 350 particles was obtained at random from it. The hybrid integrator EVORB (Fernández et al. 2002) was used for the numerical integration of the targets and the particles of the interacting population, under the gravitational influence of the Sun and the planets from Mercury to Neptune. The integration was performed over a time span of $T_{\text {int }}=10^{5} \mathrm{yr}$, and a encounter was recorded every time the mutual distance between the target and a particle was less than 0.05 AU .

To find a value for $N_{\text {pro }}\left(>r_{\mathrm{p}}\right)$ it is necessary to know the cumulative size distribution of the real projectile population, i.e. the size distribution of the main asteroid belt. We assume an exponential size distribution of the form $\mathrm{d} N_{\text {pro }}(>r) \propto r^{-b} \mathrm{~d} r$, where b is a characteristic exponent. Taking into account that the main belt size distribution changes for different size ranges, we have:

$$
\begin{align*}
N_{\text {pro }}\left(>r_{\mathrm{p}}\right) & =N_{\text {pro }}(>500 \mathrm{~m}) \\
& +K_{0} \int_{r_{\mathrm{c}}}^{500 \mathrm{~m}} r^{-b_{0}} \mathrm{~d} r+K_{1} \int_{r_{\mathrm{p}}}^{r_{\mathrm{c}}} r^{-b_{1}} \mathrm{~d} r \tag{7}
\end{align*}
$$

where $N_{\text {pro }}(>500 \mathrm{~m})=1.36 \times 10^{6}$ is the number of objects in the asteroid belt with radius larger than 500 m (Farinella \& Davis 1992; Tedesco \& Desert 2002; Morbidelli \& Vokrouhlický 2003; Bottke et al. 2005). The size distribution of very small main belt asteroids is not well known, so it is not easy to choose values for the parameters $r_{\mathrm{c}}, K_{0}, b_{0}, K_{1}$, and b_{1}. We decide to use two size distributions with $r_{\mathrm{c}}=200 \mathrm{~m}$ and 100 m , respectively, and to assume the size distribution proposed by Yoshida \& Nakamura (2007) in the size range $r_{\mathrm{c}}<r<500 \mathrm{~m}\left(b_{0}=2.29\right)$, and a Dohnanyi (1969) size distribution for objects smaller than r_{c} $\left(b_{1}=3.5\right)$. Using this combined size distribution the total number of objects with a radius larger than 0.5 m is 1.42×10^{13} in the first case and 6.11×10^{12} in the second.

3. Results

The minimum ice exposed area needed to consider the comet as active could be obtained from the known JFC population. Almost all the studied JFCs have a fraction of active surface area below $\sim 10-20 \%$, with a large fraction of active area for the smaller comets and a very small one for the few observed comets with $r_{\mathrm{t}}>3 \mathrm{~km}$ (Tancredi et al. 2006). This could be indicative of a condition of the minimum effective exposed area to consider a comet as active, which could be proportional to r_{t}^{-2}. Thus, we assume that a comet could reach an active state during the next perihelion passage when its exposed area is at least 10% of the total surface area of an object with radius 1 km $\left(1.257 \mathrm{~km}^{2}\right)$. With this definition an object must have a radius larger than 0.316 km to have the possibility of being active, because for smaller objects its total surface area is always less than the required exposed one.

There are different values for the mantle thickness in the literature, ranging from a few millimeters to several centimeters. Since we must be sure that the crater excavates the surface enough to reach the ice below it, only craters with a minimum depth of $h=1 \mathrm{~m}$ are considered to calculate the exposed area.

A sample of 206 dormant comets candidates was obtained from the ASTORB database, considering only ACOs with $2 \leq$ $T_{\mathrm{J}} \leq 2.9$ and $q>1.3 \mathrm{AU}$, and excluding objects with 3.03 $\mathrm{AU}<$ $a<3.70 \mathrm{AU}, e<0.4$ and $i<25^{\circ}$ (possibly main belt or Cybele asteroids), with $3.70 \mathrm{AU}<a<4.20 \mathrm{AU}, e<0.4$ and $i<20^{\circ}$ (Hildas), and with 5.00 $\mathrm{AU}<a<5.40 \mathrm{AU}$, and $e<0.3$ (Trojans). The absolute magnitude and radius of the ACO, mean intrinsic collisional probability, mean collision velocity and its error, the radius of the projectile that produces a crater with the minimum exposed area, and the times needed to receive such a collision for the two projectile size distributions $\left(r_{\mathrm{c}}=200 \mathrm{~m}\right.$ and 100 m , respectively) are listed in Table 1. The errors of the mean intrinsic collision probabilities are always less than $10^{-22} \mathrm{~km}^{-2} \mathrm{yr}^{-1}$ for all the objects. Twenty seven ACOs (5164, 30512, 32511, 37117, 96177, $1983 \mathrm{JZ}_{1}, 1995 \mathrm{WL}_{3}, 2000 \mathrm{AU}_{242}$, $2000 \mathrm{QD}_{181}, 2000 W T_{168}, 2000 \mathrm{XO}_{8}, 2001 Q G_{288}, 2003 B M_{1}$, $2003 U R_{267}, 2004 B T_{1}, 2004 K Z_{7}, 2004 R W_{141}, 2005 E B_{127}$, $2005 J E_{173}, 2005 N X_{43}, 2005 X K_{57}, 2005 ; Y W_{24}, 2006 B V_{7}$, $2006 H S, 2006 H P_{131}, 2006 J O_{65}$, and $2006 S O_{134}$) had one or more close encounters with the planets and escaped before the integration ended. Then, their mean intrinsic collisional probability and mean collision velocity were calculated over a shorter time span, as indicated in Table 1.

4. Discussion

If the ACOs in our sample are dormant comets from the Jupiter family, their dynamics are also dominated by close encounters

Fig. 1. Fraction of ACO sample reaching the minimum exposed area to be considered as active comets in a certain time, for a projectile size distribution with a) $r_{\mathrm{c}}=200 \mathrm{~m}$, and b) $r_{\mathrm{c}}=100 \mathrm{~m}$. Only times shorter than the dynamical lifetime of Jupiter family comets are considered.
with this planet producing strong perturbations in their orbits. Fernández et al. (2002) found that the dynamical lifetime of Jupiter family comets is $\sim 2 \times 10^{5} \mathrm{yr}$, which are relatively short compared to other populations. Assuming that this dynamical lifetime is also valid for the ACOs in our sample, the results presented here show that 53% and 32% of the objects in the sample receive at least 1 collision energetic enough to break the comet crust and allow a dormant comet to reach an active state in a period shorter than a JFC dynamical lifetime, 37% and 16% receive 2 or more collisions, 26% and 11% receive at least 3 , and 16% and 7% receive not fewer than 4 , for projectile distributions with $r_{\mathrm{c}}=200 \mathrm{~m}$ and 100 m , respectively (Fig. 1). Then, many objects in the ACOs sample received 1 or more collisions during their dynamical lifetimes and, if they are dormant comets, they could be reactivated.

On the other hand, in spite of their short dynamical lifetimes, comets become inactive mainly by physical causes due to a steady mass loss by sublimation of volatiles or by formation of a dust mantle. Based on the mean rate of secular brightness decrease, Kresák \& Kresáková (1990) have estimated a mean active lifetime of $\sim 6 \times 10^{3} \mathrm{yr}$ for JFCs with a perihelion distance less than 1.5 AU , while Fernández (1985) found a lifetime of $\sim 2 \times 10^{4} \mathrm{yr}$ for these objects. Taking $1 \times 10^{4} \mathrm{yr}$ as a working value for the mean active lifetime of JFCs before they become dormant, and assuming that each time a dormant comet receives a collision energetic enough to expose fresh ices it becomes active for at least half the initial active period $\left(5 \times 10^{3} \mathrm{yr}\right)$, it is expected to see these objects in an active state during a significant fraction of their dynamical lifetimes. As shown in Fig. 2 and Table 1, a large fraction of the largest objects in the ACO sample ($r_{\mathrm{t}} \geq 8-9 \mathrm{~km}$) receives more than 4 collisions during this period and could be active during more than $3 \times 10^{4} \mathrm{yr}$.

Using this result we can compare the present number of objects in the active comet and ACO sample to test our initial assumption that they are dormant comets. Since the population of dormant comet candidates must be seriously affected by an observational bias, which is more serious for the smaller and fainter objects, to allow a direct comparison only the largest objects in both populations are taken into account to minimize the bias effect. Then, using the radii of JFCs obtained by Tancredi et al. (2006), we found for the active population only 1 comet with

Fig. 2. Time needed to receive a collision energetic enough to reactivate a dormant comet in function of its radius. Only objects with collision time shorter than $2.5 \times 10^{5} \mathrm{yr}$ are shown. The results for the projectile distributions with $r_{\mathrm{c}}=200 \mathrm{~m}$ and 100 m are indicated with squares and circles, respectively.
radius larger than $9 \mathrm{~km}, 2$ objects with radius larger than 5 km , and 5 objects with radius larger than 4 km . Taking into account these values and the period the comets are in an active state found previously, we must expect $\sim 6, \sim 12$ and ~ 32 dormant comets in each radius range, respectively. In the ACO sample we found 15,46 and 59 objects, respectively, that are in excess from the expected values and are indicative of the presence in the ACO population of objects that are not comets in a dormant state. These objects could be asteroids (possibly Hildas) with $T_{\mathrm{J}}<3$ obtaining their present orbits by some dynamical mechanism that perturbed the original asteroidal orbit changing its Tisserand invariant (Di Sisto et al. 2005).

The objects (1373) Cincinatti, (2938) Hopi, and (20898) Fountainhills receive collisions energetic enough to reactivate a dormant comet at a rate of $>1-2 \times 10^{-4} \mathrm{yr}^{-1}$, depending on the projectile size distribution. With these collision rates, they are the best candidates in the ACO sample to be observed during a reactivation if they are dormant comets.

While all the assumptions made here are reasonable, it is necessary to consider two of them more deeply. First, if the projectile size distribution used for the calculations is not accurate, the results presented here could be highly modified. Since the size distribution changes for different size ranges and for very small objects is not well known, it is not easy to choose values for their parameters in the smaller size end of the distribution. As a first guess we used the size distribution proposed by Yoshida \& Nakamura (2007) for objects with a radius between 500 m and 200 or 100 m , in spite that these authors proposed it for objects larger than 250 m . It is possible that this size distribution could be still valid for smaller objects (for example, for $r \lesssim 100 \mathrm{~m}$) producing a shallow size distribution and a shortage of small projectiles, making the ACO collisional reactivation process very improbable. Nevertheless, this shallow size distribution extended to very small sizes is difficult to reconcile with the cratering records of (243) Ida, (253) Mathilde, and (951) Gaspra (Chapman 2002).

Second, the choice of the minimum exposed area on the cometary surface to be considered active during its next perihelion passage is rather arbitrary. Taking the double of the original value (20% of the total surface area of an object with
radius 1 km), the radius of the projectile needed to make a crater with that dimension is 1.56 times the original radius and the time needed to receive such a collision is $2-3$ times longer, depending on the size distribution used and if the radius of the projectile is larger or smaller than r_{c}. In this case, 37% and 16% of the objects in the sample receive at least 1 collision energetic enough to break the comet crust and allow a reactivation, and 16% and 7% receive more than 2 collisions for the projectile distributions with $r_{\mathrm{c}}=200 \mathrm{~m}$ and 100 m , respectively. Then, the objects in the ACO sample with $r_{\mathrm{t}} \geq 8-9 \mathrm{~km}$ receive more than 2 collisions during this period and could be active during $>10 \%$ of their dynamical lifetimes, and we must expect $\sim 9, \sim 18$ and ~ 45 dormant comets for a comet radius of $>9 \mathrm{~km},>5 \mathrm{~km}$, and $>4 \mathrm{~km}$, respectively, which are also indicative of the presence in the ACO population of objects that are not comets in a dormant state.

5. Conclusions

We compute the mean intrinsic collision probability, the mean collision velocity, and the time needed to be reactivated by a collision for a sample of 206 ACOs that are dormant comet candidates from the Jupiter family.

The results presented here show that a large fraction of the objects in the sample receive at least 1 collision energetic enough to break the comet crust and allow a dormant comet to reach an active state in a period shorter than a JFC dynamical lifetime. A large fraction of the objects in the ACO sample with $r_{\mathrm{t}} \geq 8-9 \mathrm{~km}$ receive several collisions and could be active during more than $3 \times 10^{4} \mathrm{yr}$.

Three objects, (1373) Cincinatti, (2938) Hopi, and (20898) Fountainhills, receive collisions energetic enough to reactivate a dormant comet at a high rate, being the best candidates in the ACO sample of being observed during a reactivation if they are dormant comets.

Comparing only the largest objects in the active JFC population and ACO sample, we found an excess in the number of dormant comet candidates from the expected values which is indicative of the presence in the ACO population of objects that are not comets in a dormant state. These objects could be asteroids with $T_{\mathrm{J}}<3$ obtaining their present orbits by a dynamical mechanism that perturbs the original asteroidal orbit, changing its Tisserand invariant.

Acknowledgements. The authors wish to thanks J. A. Fernández for his comments and suggestions. The authors acknowledge the partial financial support by CICITCA, Universidad Nacional de San Juan, through a research grant.

References

Alvarez-Candal, A., \& Licandro, J. 2006, A\&A, 458, 1007
Beech, M. 2001, MNRAS, 327, 1201
Benkhoff, J., \& Huebner, W. F. 1996, Planet. Space Sci., 44, 1005
Bottke, W. F., Durda, D. D., Nesvorný, et al. 2005, Icarus, 179, 63
Chapman, C. R. 2002, in Asteroids III, ed. W. F. Bootke, Jr., A. Cellino, P. Paolicchi, \& R. P. Binzel (Tucson: Univ. of Arizona Press), 315
Di Sisto, R. P., Brunini, A., Dirani, L., \& Orellana, R. B. 2005, Icarus, 174, 81
Dohnanyi, J. W. 1969, J. Geophys. Res., 74, 2531
Farinella, P., \& Davis, D. R. 1992, Icarus, 97, 111
Fernández, J. A. 1981, Moon Plan., 25, 507
Fernández, J. A. 1985, Icarus, 64,308
Fernández, J. A. 1990, in Asteroids, Comets, Meteors III, ed. C.-I. Lagerkvist, H. Rickman, B. A. Lindblad, \& M. Lindgren, Uppsala University, Uppsala, 309
Fernández, J. A., Gallardo, T., \& Brunini, A. 2002, Icarus, 159, 358
Jewitt, D. 2002, AJ, 123, 1039
Jewitt, D. 2005, AJ, 129, 530

Kresák, L. 1974, Bull. Astron. Inst. Czechosl., 25, 293
Kresák, L. 1979, in Asteroids, ed. T. Gehrels (Tucson: Univ. of Arizona Press), 289
Kresák, L., \& Kresáková, M. 1990, Icarus, 86, 82
Kührt, E., \& Keller, H. U. 1994, Icarus, 109, 121
Licandro, J., de León, J., Pinilla, N., \& Serra-Ricart, M. 2005, Adv. Space Res., 38, 1991
Marzari, F., Scholl, H., \& Farinella, P. 1996, Icarus, 119, 192
Matese, J. J., \& Whitman, P. G. 1994, Icarus, 109, 258
Morbidelli, A., \& Vokrouhlický, D. 2003, Icarus, 163, 120
Prialnik, D., \& Mekler, Y. 1991, ApJ, 366, 318
Rickman, H., Fernández, J. A., \& Gustafson, B. 1990, A\&A, 237, 524

Schenk, P. M., Chapman, C., Moore, J., \& Zahnle, K. 2004, in Jupiter: Planet, Satellites, and Magnetosphere, ed. F. Bagenal, \& W. McKinnon (Cambridge: Cambridge Univ. Press), 427
Schmidt, R. M., \& Housen, K. R. 1987, Int. J. Impact Eng., 5, 543
Tancredi, G., Fernández, J. A., Rickman, H., \& Licandro, J. 2006, Icarus, 182, 527
Tedesco, E. F., \& Desert, F. 2002, AJ, 123, 2070
Tedesco, E. F., Cellino, A., \& Zappalá, V. 2005, AJ, 129, 2869
Toth, I. 2000, A\&A, 360, 375
Toth, I. 2001, A\&A, 368, L25
Yoshida, F., \& Nakamura, T. 2007, Planet. Space Sci., 55, 1113
Zahnle, K., Dones, L., \& Levison, H. F. 1998, Icarus, 136, 202
C. G. Díaz and R. Gil-Hutton: Collisional activation of asteroids in cometary orbits, Online Material pl

Table 1. Physical and collisional parameters for ACOs in the dormant comet candidate sample.

| | | | | | | | | |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

${ }^{1} T_{\text {int }}=77563 \mathrm{yr}$.
${ }^{2} T_{\text {int }}=18033 \mathrm{yr}$.
${ }^{3} T_{\text {int }}=75521 \mathrm{yr}$.
${ }^{4} T_{\text {int }}=54421 \mathrm{yr}$.
${ }^{5} T_{\text {int }}=86800 \mathrm{yr}$.
${ }^{6} T_{\text {int }}=50501 \mathrm{yr}$.
${ }^{7} T_{\text {int }}=86502 \mathrm{yr}$.

Table 1. continued.

ACO	H	$\begin{array}{r} r_{\mathrm{t}} \\ \mathrm{~km} \\ \hline \end{array}$	$\begin{gathered} \left\langle P_{\mathrm{i}}\right\rangle \\ \mathrm{km}^{-2} \mathrm{yr}^{-1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline\left\langle V_{\text {col }}\right\rangle \\ \mathrm{km} \mathrm{~s}^{-1} \end{gathered}$	$\begin{gathered} \sigma_{v_{\mathrm{col}}} \\ \mathrm{~km} \mathrm{~s}^{-1} \end{gathered}$	$\begin{aligned} & r_{a} \\ & \mathrm{~m} \end{aligned}$	T_{200} yr	$\begin{gathered} \hline \hline T_{100} \\ \mathrm{yr} \\ \hline \end{gathered}$
2000 AU242 ${ }^{8}$	13.41	6.91	$0.99 \mathrm{E}-18$	10.66	3.86	163.61	29015	67380
2000 BK2	16.72	1.50	$0.41 \mathrm{E}-19$	10.03	2.60	110.16	5406868	12555950
2000 CA13	17.90	0.87	$0.49 \mathrm{E}-18$	11.54	3.09	87.31	759727	1764254
2000 EJ37	13.21	7.58	$0.12 \mathrm{E}-18$	14.69	3.15	140.13	136520	317029
2000 GQ132	17.24	1.18	$0.89 \mathrm{E}-18$	13.08	2.88	88.64	236828	549967
2000 GH147	17.62	0.99	$0.12 \mathrm{E}-17$	14.54	3.37	79.48	194581	451861
2000 KD41	16.60	1.59	$0.25 \mathrm{E}-17$	12.03	2.69	100.98	64513	149813
2000 OZ21	16.33	1.80	$0.83 \mathrm{E}-19$	11.01	3.55	109.94	1883303	4373448
2000 QJ46	15.37	2.80	$0.22 \mathrm{E}-19$	8.67	2.08	142.51	5619233	13049109
2000 QD181 ${ }^{9}$	15.08	3.20	$0.60 \mathrm{E}-18$	8.23	2.57	152.40	186129	432234
2000 SB1	15.02	3.29	$0.71 \mathrm{E}-18$	13.28	2.81	117.26	77370	179670
2000 SL44	15.61	2.51	$0.18 \mathrm{E}-17$	12.85	2.92	110.64	46601	108218
2000 SO182	13.69	6.07	$0.80 \mathrm{E}-18$	8.04	2.30	184.97	62612	145399
2000 TG24	15.81	2.29	$0.63 \mathrm{E}-18$	13.97	3.27	102.84	128804	299112
2000 WT168 ${ }^{10}$	14.35	4.48	$0.67 \mathrm{E}-18$	12.90	3.55	130.03	57129	132666
2000 XO8 ${ }^{11}$	15.54	2.59	$0.18 \mathrm{E}-18$	10.61	2.92	124.39	564616	1311164
2000 YN30	16.82	1.44	$0.19 \mathrm{E}-18$	13.02	3.01	93.85	856170	1988216
2000 YL90	13.87	5.59	$0.15 \mathrm{E}-17$	11.73	2.62	146.02	22141	51416
2001 CT20	15.29	2.91	$0.10 \mathrm{E}-17$	12.47	2.80	117.31	68690	159514
2001 HW18	17.64	0.98	$0.66 \mathrm{E}-18$	15.16	4.17	77.43	329400	764941
2001 HJ30	17.04	1.30	$0.11 \mathrm{E}-17$	11.99	2.86	95.55	184993	429595
2001 JO	14.96	3.38	$0.11 \mathrm{E}-17$	12.38	2.82	122.95	54194	125851
2001 KX67	16.16	1.95	$0.10 \mathrm{E}-17$	12.44	2.86	104.92	119059	276481
2001 OK17	18.71	0.60	$0.11 \mathrm{E}-17$	16.06	3.08	65.23	345238	801719
2001 QF6	14.97	3.37	$0.50 \mathrm{E}-18$	14.05	3.25	114.33	97966	227498
2001 QS145	16.62	1.58	$0.24 \mathrm{E}-17$	12.82	2.66	97.17	63192	146746
2001 QQ199	12.22	11.95	$0.53 \mathrm{E}-18$	13.17	3.12	169.48	19780	45933
2001 QG288 ${ }^{12}$	15.69	2.42	$0.40 \mathrm{E}-18$	8.41	2.59	139.08	390587	907030
2001 SK276	17.31	1.15	$0.95 \mathrm{E}-18$	11.56	3.16	94.18	273585	635326
2001 TX16	13.90	5.51	$0.13 \mathrm{E}-18$	10.95	3.54	151.21	287255	667069
2001 UO16	17.53	1.04	$0.14 \mathrm{E}-17$	9.99	2.70	99.38	263461	611816
2001 VE	15.05	3.25	$0.12 \mathrm{E}-17$	10.19	2.69	135.62	65515	152140
2001 WX1	14.95	3.40	$0.11 \mathrm{E}-17$	11.63	2.82	127.52	56175	130452
2001 XN88	18.62	0.63	$0.12 \mathrm{E}-17$	14.47	3.29	69.99	358418	832327
2001 XW150	16.78	1.46	$0.48 \mathrm{E}-18$	9.46	3.48	112.97	530463	1231854
2001 YK61	13.76	5.88	$0.20 \mathrm{E}-20$	8.57	2.62	176.82	23498712	54569236
2002 AA16	15.80	2.30	$0.11 \mathrm{E}-17$	12.16	2.68	111.36	87189	202471
2002 AW33	16.93	1.37	$0.67 \mathrm{E}-18$	10.84	2.93	102.60	339665	788777
2002 AO148	12.67	9.71	$0.56 \mathrm{E}-19$	6.78	1.91	232.49	627359	1456867
2002 JC68	16.50	1.66	$0.91 \mathrm{E}-18$	12.80	2.97	98.78	153139	355623
2002 JE109	18.57	0.64	$0.19 \mathrm{E}-17$	9.96	2.88	86.97	366299	850627
2002 JW115	15.81	2.29	$0.59 \mathrm{E}-18$	17.59	3.54	90.31	99617	231334
2002 KJ8	20.25	0.30	$0.27 \mathrm{E}-17$	10.10	2.73	69.37	667800	1550781
2002 LJ27	18.01	0.83	$0.87 \mathrm{E}-18$	11.87	3.17	84.72	437563	1016120
2002 MO3	16.55	1.63	$0.17 \mathrm{E}-17$	18.96	3.01	78.63	47734	110849
2002 OL15	18.27	0.74	$0.18 \mathrm{E}-17$	8.24	3.12	100.63	415792	965562
2002 PA96	15.14	3.11	$0.13 \mathrm{E}-17$	12.02	2.82	122.12	53806	124950
2002 QC25	17.14	1.24	0.81E-18	13.32	2.91	88.88	239026	555071

${ }^{8} T_{\text {int }}=8142 \mathrm{yr}$.
${ }^{9} T_{\text {int }}=61536 \mathrm{yr}$.
${ }^{10} T_{\text {int }}=83083 \mathrm{yr}$.
${ }^{11} T_{i n t}=69831 \mathrm{yr}$.
${ }^{12} T_{i n t}=52223 \mathrm{yr}$.

Table 1. continued.

ACO	H	$\begin{gathered} r_{\mathrm{t}} \\ \mathrm{~km} \end{gathered}$	$\begin{gathered} \left\langle P_{\mathrm{i}}\right\rangle \\ \mathrm{km}^{-2} \mathrm{yr}^{-1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline\left\langle V_{\text {col }}\right\rangle \\ \mathrm{km} \mathrm{~s}^{-1} \end{gathered}$	$\begin{gathered} \hline \sigma_{v_{\mathrm{col}}} \\ \mathrm{~km} \mathrm{~s}^{-1} \end{gathered}$	r_{a} m	T_{200} yr	T_{100} yr
2002 RQ28	18.44	0.68	$0.15 \mathrm{E}-18$	8.92	3.29	94.13	5080341	11797681
2002 SU	16.74	1.49	$0.18 \mathrm{E}-17$	17.24	2.90	80.94	57479	133478
2002 TQ65	15.36	2.81	$0.10 \mathrm{E}-17$	11.89	2.82	119.41	76000	176489
2002 TT67	16.09	2.01	$0.17 \mathrm{E}-17$	11.94	2.77	108.35	71342	165672
2002 TV68	17.99	0.84	$0.57 \mathrm{E}-18$	14.75	4.54	75.14	484987	1126248
2002 TR96	15.99	2.11	$0.16 \mathrm{E}-17$	10.91	2.39	115.50	81908	190208
2002 TM190	14.16	4.89	$0.12 \mathrm{E}-17$	11.73	2.80	140.62	31855	73974
2002 UR12	16.10	2.00	$0.17 \mathrm{E}-17$	17.72	2.96	86.61	40199	93352
2002 UP36	17.13	1.25	$0.26 \mathrm{E}-18$	7.29	2.33	125.04	1725249	4006412
2002 VP94	17.14	1.24	$0.35 \mathrm{E}-18$	11.99	3.01	94.32	634692	1473896
2002 YK29	17.98	0.84	$0.14 \mathrm{E}-17$	9.35	2.53	97.30	376375	874026
2003 BL	16.04	2.06	$0.72 \mathrm{E}-18$	18.20	3.68	85.98	89383	207568
2003 BM1 ${ }^{13}$	18.30	0.73	$0.33 \mathrm{E}-18$	8.08	2.47	101.35	2375798	5517132
2003 BA19	13.88	5.56	$0.15 \mathrm{E}-17$	12.76	2.84	139.07	20064	46593
2003 BU35	16.19	1.92	$0.47 \mathrm{E}-18$	10.86	3.32	112.83	307978	715193
2003 CC22	13.27	7.37	$0.19 \mathrm{E}-19$	9.44	2.77	178.43	1644499	3818892
2003 DA10	15.11	3.16	$0.12 \mathrm{E}-17$	11.89	3.09	123.35	58049	134803
2003 GB	15.41	2.75	$0.93 \mathrm{E}-18$	12.62	2.92	114.72	79628	184914
2003 JC11	18.74	0.59	$0.91 \mathrm{E}-18$	13.98	3.21	70.26	515614	1197371
2003 KK20	17.78	0.92	$0.18 \mathrm{E}-17$	13.46	2.79	81.31	153509	356483
2003 SJ5	19.79	0.37	$0.11 \mathrm{E}-17$	13.29	3.10	63.08	875317	2032680
2003 SC255	15.61	2.51	$0.12 \mathrm{E}-17$	11.66	2.79	116.88	80468	186863
2003 TA	18.14	0.78	$0.12 \mathrm{E}-17$	14.83	3.46	73.47	258252	599719
2003 UW	15.89	2.20	$0.31 \mathrm{E}-19$	7.23	2.37	147.58	7107220	16504543
2003 UR267 ${ }^{14}$	16.53	1.64	$0.13 \mathrm{E}-18$	7.54	1.95	132.63	2341997	5438638
2003 UY283	15.15	3.10	$0.83 \mathrm{E}-21$	12.37	0.00	120.00	78441720	182159104
2003 VA3	16.44	1.71	$0.12 \mathrm{E}-17$	11.70	2.71	104.73	130577	303228
2003 XX	16.55	1.63	$0.18 \mathrm{E}-17$	13.23	2.63	96.33	75411	175121
2003 YA	14.94	3.42	$0.20 \mathrm{E}-17$	11.02	2.57	131.63	34568	80275
2003 YH63	16.36	1.78	$0.28 \mathrm{E}-18$	13.95	3.98	95.83	406654	944341
2004 AE9	17.39	1.11	$0.31 \mathrm{E}-18$	11.11	2.67	95.31	940805	2184758
2004 BT1 ${ }^{15}$	14.67	3.87	$0.71 \mathrm{E}-19$	9.02	2.61	152.63	1074427	2495058
2004 DO29	12.95	8.54	$0.29 \mathrm{E}-18$	12.41	3.87	159.41	60167	139722
2004 DA62	12.51	10.46	$0.24 \mathrm{E}-18$	18.13	3.16	136.29	33506	77808
2004 EU20	15.95	2.14	$0.12 \mathrm{E}-17$	13.92	2.85	101.19	75468	175253
2004 ET48	17.31	1.15	$0.14 \mathrm{E}-17$	11.39	2.68	94.97	192328	446628
2004 FN1	16.51	1.66	$0.88 \mathrm{E}-18$	13.78	2.94	94.63	143986	334367
2004 FC29	19.80	0.36	$0.51 \mathrm{E}-18$	14.42	3.15	60.16	1640783	3810262
2004 JD2	15.76	2.34	$0.11 \mathrm{E}-17$	12.10	2.76	112.25	86339	200499
2004 KZ7 ${ }^{16}$	15.32	2.87	$0.72 \mathrm{E}-18$	13.63	2.80	111.13	87841	203986
2004 LH18	19.54	0.41	$0.95 \mathrm{E}-19$	8.67	3.04	82.91	15667835	36384200
2004 MU7	14.86	3.54	$0.75 \mathrm{E}-18$	13.44	4.06	118.91	65003	150950
2004 PA44	13.53	6.54	$0.28 \mathrm{E}-20$	7.41	0.66	197.75	18040806	41894764
2004 RH9	17.04	1.30	$0.84 \mathrm{E}-18$	14.10	2.99	87.20	199693	463732
2004 RR109	17.42	1.09	$0.78 \mathrm{E}-18$	20.34	3.14	67.50	161770	375667
2004 RT109	18.45	0.68	$0.26 \mathrm{E}-18$	11.00	3.84	83.52	2135891	4960014
2004 RP111	17.87	0.89	$0.45 \mathrm{E}-18$	11.82	3.38	86.48	792315	1839933
2004 RW141 ${ }^{17}$	14.29	4.61	0.60E-19	5.84	1.81	204.92	1878830	4363061

${ }^{13} T_{\text {int }}=45796 \mathrm{yr}$.
${ }^{14} T_{\text {int }}=26023 \mathrm{yr}$.
${ }^{15} T_{\text {int }}=79108$ yr.
${ }^{16} T_{\text {int }}=57151 \mathrm{yr}$.
${ }^{17} T_{\text {int }}=55126 \mathrm{yr}$.

Table 1. continued.

ACO	H	$\begin{array}{r} \hline \hline r_{\mathrm{t}} \\ \mathrm{~km} \\ \hline \end{array}$	$\begin{gathered} \left\langle P_{\mathrm{i}}\right\rangle \\ \mathrm{km}^{-2} \mathrm{yr}^{-1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline\left\langle V_{\text {col }}\right\rangle \\ \mathrm{km} \mathrm{~s}^{-1} \end{gathered}$	$\sigma_{v_{\text {col }}}$	r_{a}	T_{200}	T_{100}
2004 RO288	16.45	1.70	$0.82 \mathrm{E}-20$	7.80	2.62	131.47	33024586	76690424
2004 SK	16.79	1.46	$0.11 \mathrm{E}-17$	13.41	3.24	92.66	143921	334216
2004 TS166	20.45	0.27	$0.27 \mathrm{E}-17$	9.52	2.50	69.88	835583	1940409
2004 UZ	17.25	1.18	$0.12 \mathrm{E}-17$	10.76	2.59	98.83	223665	519401
2004 XL	17.12	1.25	$0.80 \mathrm{E}-18$	15.09	3.39	83.06	200216	464945
2004 XR17	16.15	1.96	$0.10 \mathrm{E}-17$	12.63	3.06	104.16	111149	258113
2004 XH50	16.53	1.64	$0.72 \mathrm{E}-18$	20.72	2.95	74.99	99433	230905
2004 XY100	15.25	2.96	$0.15 \mathrm{E}-18$	7.80	2.86	153.65	888575	2063469
2004 XA131	13.25	7.44	$0.86 \mathrm{E}-18$	12.49	2.72	152.76	24211	56223
2004 YW	14.87	3.53	$0.10 \mathrm{E}-17$	12.51	2.87	123.66	52564	122064
2005 AY30	13.80	5.77	$0.12 \mathrm{E}-17$	12.81	2.79	140.21	23152	53763
2005 CR16	14.23	4.74	$0.30 \mathrm{E}-18$	11.11	3.82	143.69	146213	339540
2005 DE	17.32	1.14	$0.10 \mathrm{E}-17$	12.34	2.83	90.65	229639	533274
2005 EB127 ${ }^{18}$	15.78	2.32	0.92E-18	10.13	3.31	123.77	137724	319825
2005 GP81	15.84	2.26	$0.22 \mathrm{E}-17$	11.16	2.45	116.28	52839	122703
2005 JM3	19.90	0.35	$0.89 \mathrm{E}-18$	12.89	2.70	63.26	1174698	2727909
2005 JC46	16.67	1.54	$0.76 \mathrm{E}-18$	13.78	2.90	92.69	183322	425714
2005 JE173 ${ }^{19}$	15.99	2.11	$0.34 \mathrm{E}-18$	9.58	3.28	124.29	458994	1065886
2005 KL8	16.36	1.78	$0.11 \mathrm{E}-17$	12.02	2.90	104.23	128288	297914
2005 NX43 ${ }^{20}$	16.44	1.71	$0.92 \mathrm{E}-18$	8.59	2.78	124.67	257984	599096
2005 NK61	16.47	1.69	$0.60 \mathrm{E}-19$	8.62	2.99	123.94	4011633	9315904
2005 QT176	17.73	0.94	$0.10 \mathrm{E}-17$	12.48	2.96	85.41	291690	677368
2005 RW9	16.68	1.53	$0.11 \mathrm{E}-17$	13.53	2.81	93.53	136000	315821
2005 SB216	12.33	11.36	$0.35 \mathrm{E}-19$	8.85	2.00	209.08	560013	1300475
2005 TC53	16.75	1.48	$0.79 \mathrm{E}-18$	13.52	2.95	92.72	188854	438561
2005 VX116	13.14	7.82	$0.17 \mathrm{E}-17$	11.37	2.71	163.39	12933	30032
2005 WY3	13.51	6.60	$0.26 \mathrm{E}-18$	16.11	2.89	127.94	64550	149900
2005 WS54	18.23	0.75	$0.76 \mathrm{E}-18$	13.50	2.94	76.57	476199	1105840
2005 XQ1	16.84	1.42	$0.53 \mathrm{E}-18$	15.92	3.41	83.57	237755	552119
2005 XK57 ${ }^{21}$	15.02	3.29	$0.30 \mathrm{E}-18$	12.09	2.43	123.63	207738	482413
2005 XV91	13.87	5.59	$0.68 \mathrm{E}-19$	9.75	2.78	162.07	630605	1464404
2005 YW3	14.96	3.38	$0.99 \mathrm{E}-18$	12.34	2.75	123.17	59232	137551
2005 YW24 ${ }^{22}$	15.66	2.45	$0.76 \mathrm{E}-19$	8.97	2.60	134.64	1840053	4273012
2005 YQ127	15.15	3.10	$0.40 \mathrm{E}-18$	10.81	2.47	129.49	196735	456862
2005 YR204	16.68	1.53	$0.12 \mathrm{E}-17$	11.78	2.67	101.13	140237	325662
2006 BV7 ${ }^{23}$	19.58	0.40	$0.29 \mathrm{E}-19$	26.21	3.40	44.19	11132053	25851100
2006 BQ55	16.08	2.02	$0.62 \mathrm{E}-18$	16.00	3.20	91.98	126997	294916
2006 BF208	14.40	4.38	$0.52 \mathrm{E}-18$	13.95	2.72	123.61	67727	157277
2006 BH257	13.51	6.60	$0.18 \mathrm{E}-18$	8.14	3.16	188.03	252892	587271
2006 DQ153	16.28	1.84	$0.11 \mathrm{E}-17$	11.90	2.75	105.91	124055	288084
2006 EA1	19.57	0.40	$0.18 \mathrm{E}-17$	11.89	2.53	69.11	528780	1227944
2006 ED1	18.58	0.64	$0.71 \mathrm{E}-18$	15.02	3.06	68.89	544388	1264190
2006 ES36	17.94	0.86	$0.11 \mathrm{E}-17$	13.59	3.16	79.21	277825	645171
2006 FV4	12.90	8.74	$0.13 \mathrm{E}-18$	11.65	2.56	166.27	146705	340681
2006 FH51	18.07	0.81	$0.13 \mathrm{E}-17$	12.39	2.80	82.05	290534	674685
2006 HS ${ }^{24}$	15.18	3.06	$0.40 \mathrm{E}-18$	17.76	4.04	97.48	99074	230071

${ }^{18} T_{\text {int }}=17774 \mathrm{yr}$.
${ }^{19} T_{\text {int }}=75332 \mathrm{yr}$.
${ }^{20} T_{\text {int }}=28392 \mathrm{yr}$.
${ }^{21} T_{\text {int }}=49969 \mathrm{yr}$.
${ }^{22} T_{\text {int }}=50370 \mathrm{yr}$.
${ }^{23} T_{\text {int }}=12766 \mathrm{yr}$.
${ }^{24} T_{i n t}=24073 \mathrm{yr}$.
C. G. Díaz and R. Gil-Hutton: Collisional activation of asteroids in cometary orbits, Online Material p 5

Table 1. continued.

ACO	H	$\begin{gathered} \hline \hline r_{\mathrm{t}} \\ \mathrm{~km} \end{gathered}$	$\begin{gathered} \left\langle P_{\mathrm{i}}\right\rangle \\ \mathrm{km}^{-2} \mathrm{yr}^{-1} \end{gathered}$	$\begin{gathered} \hline \hline\left\langle V_{\mathrm{col}}\right\rangle \\ \mathrm{km} \mathrm{~s}^{-1} \end{gathered}$	$\sigma_{v_{\text {col }}}$	r_{a}	T_{200}	T_{100}
2006 HP131 ${ }^{25}$	18.11	0.79	$0.95 \mathrm{E}-18$	8.06	2.13	104.03	739433	1717128
2006 HT131	17.33	1.14	$0.17 \mathrm{E}-17$	8.50	2.64	111.72	244219	567131
2006 JO65 ${ }^{26}$	17.03	1.30	$0.48 \mathrm{E}-18$	8.45	3.21	116.55	712295	1654107
2006 QL39	13.58	6.39	$0.23 \mathrm{E}-19$	9.99	1.75	166.00	1484856	3448167
2006 RN16	13.90	5.51	$0.45 \mathrm{E}-19$	7.01	2.55	194.47	1547351	3593293
2006 SO134 ${ }^{27}$	16.43	1.72	$0.38 \mathrm{E}-19$	8.28	1.39	127.45	6426652	14924113
2006 SH281	14.23	4.74	$0.19 \mathrm{E}-17$	10.62	2.59	147.39	24573	57064
2006 SV301	14.30	4.59	$0.13 \mathrm{E}-18$	8.05	2.36	170.76	543258	1261567
2006 TP	16.80	1.45	$0.12 \mathrm{E}-17$	11.47	2.79	101.07	168601	391529
2006 UE63	19.80	0.36	$0.24 \mathrm{E}-18$	10.58	2.61	71.64	5539549	12864065
2006 UJ170	18.14	0.78	$0.11 \mathrm{E}-17$	13.11	3.11	78.76	315397	732421
2006 WR3	15.64	2.47	$0.66 \mathrm{E}-18$	17.16	3.45	93.62	83630	194208
2006 WS3	16.97	1.34	$0.22 \mathrm{E}-18$	13.81	3.52	89.03	760855	1766875
2006 WF6	16.47	1.69	$0.72 \mathrm{E}-18$	8.95	2.66	121.34	315861	733498
2006 XL5	16.79	1.46	$0.19 \mathrm{E}-18$	8.06	2.49	123.49	1691704	3928513
2006 YC	14.07	5.10	$0.20 \mathrm{E}-17$	18.18	2.95	111.12	10024	23279
2007 AD12	15.75	2.35	$0.13 \mathrm{E}-17$	9.65	2.87	127.70	99807	231774
2007 AK22	15.88	2.22	$0.15 \mathrm{E}-17$	9.85	2.42	124.12	91869	213341
2007 BU3	15.39	2.78	0.13E-17	12.03	2.58	118.16	61073	141826

${ }^{25} T_{\text {int }}=5480 \mathrm{yr}$.
${ }^{26} T_{\text {int }}=56236 \mathrm{yr}$.
${ }^{27} T_{i n t}=10191 \mathrm{yr}$.

[^0]: * Table 1 is only available in electronic form at http://www.aanda.org

