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Cancer is one of the leading causes of death worldwide and has been associated with ageing. Although there are numerous reports that have
demonstrated the dual role of hyaluronic acid and senescence induction in cancer prevention and promotion, both players have been linked
to ageing in opposite ways. Hyaluronan is recognized for its antiaging role, whereas senescence is associated with ageing. In this review we
address these dual roles, showing their interrelation, hypothesizing that the downregulation of senescence mediated by HA would be a key
factor in the ambivalent effects described. Likewise, the deforestation allegory aims to explain, through the use of a metaphor, the contradictory
yet valid results found in the literature. Considering this background, we propose new strategies for improving tumor therapy. Understanding
the biology of these complex diseases and the temporal implication of the different players in dissimilar contexts could bring us closer to the
therapeutic improvements needed in the field of oncology.
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Introduction

Cancer is one of the leading causes of death worldwide.
Although patient survival has improved, it is still a challenge
to find new therapeutic alternatives and molecular markers
for an early diagnosis and to predict malignancy as well
as response to therapy. For this reason, there are numerous
reports that study the molecules and molecular mechanisms
involved in both the progression and prevention of tumor
pathologies.

Likewise, cancer is a disease associated with ageing
(Hoeijmakers 2009). Interestingly, hyaluronic acid (HA) levels
decline throughout life (Fedarko et al. 1992; Itakura et al.
2009; Simpson et al. 2009; Temple-Wong et al. 2016), whereas
the antiaging effect of HA is highly recognized (Stern and
Maibach 2008; Lee et al. 2019). Moreover, the accumulation
of senescent cells throughout life has been demonstrated and
have been associated with age-related pathologies (Campisi
& d’Adda di Fagagna 2007; Childs et al. 2014; van Deursen
2014).

In this context, both HA and the induction of senescence
seem to be key players due to their dual effect on tumor
progression. Why mention is made of a dual effect? Because
depending on multiple factors, both of them can act as anti- or
pro-tumor modulators (Lujambio 2016; Bohaumilitzky et al.
2017; Liu et al. 2019). The literature is vast with regard to
the effect of HA on malignancy progression (Sironen et al.
2011; Provenzano and Hingorani 2013; Vigetti et al. 2014;
Chanmee et al. 2016; Morera et al. 2017; Heldin et al. 2018;

Theocharis et al. 2019). However, HA is a key player in
the protection against cancer development in naked mole-
rats (NMR; Tian et al. 2013; Seluanov et al. 2018; Takasugi
et al. 2020). Likewise, senescence is a known mechanism
of tumor suppression; however, its chronic induction leads
to an inflammatory state associated with tumor progression
(Childs et al. 2014).

We have previously described that HA is able to avoid the
induction of senescence in human leukemic and glioblastoma
cell lines (Lompardía et al. 2013; Pibuel et al. 2021a; Díaz
et al. 2021). Similarly, the NMR exhibits high levels of HA
without accumulation of senescent cells (Tian et al. 2013;
Bohaumilitzky et al. 2017). In concordance with the previ-
ously mentioned data, it has been reported that the silencing
of HAS (enzymes responsible for HA synthesis) induced senes-
cence in fibroblasts (Li et al. 2016).

This briefly introduced background supports the hypoth-
esis that the capability of HA to avoid senescence induction
would have an impact on ageing, as well as on cancer devel-
opment and progression. Therefore, the aim of this review
was to analyze the relationship between HA and senescence
with respect to cancer progression and ageing. Finally, we
suggest potential therapeutic implications, as well as the alle-
gory of deforestation. Through this metaphor, we attempt
to explain how, depending on the context, HA can prevent
or promote tumor development, just as forests can counter-
act fire initiation in a specific context but act as fuel in a
different one.
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Hyaluronan: dual role in cancer

HA is the main glycosaminoglycan (GAG) of the extracel-
lular matrix (ECM; Toole 2004). It is made up of repeating
disaccharide units of N-acetyl glucosamine and d-glucuronic
acid. Depending on the disaccharide repetition number, it is
classified into oligomeric HA (oHA), low molecular mass HA
(LMM-HA), high molecular mass HA (HMM-HA), or very
high molecular mass HA (vHMM-HA), each of which have
different functions (Liu et al. 2019; Tavianatou et al. 2019).
HA is synthesized by hyaluronic acid synthases (HAS) and
degraded by hyaluronidases (HYALs; Hascall et al. 2014;
Karousou et al. 2017). The balance between its synthesis and
degradation together with receptor-mediated internalization
are the 3 factors that mainly determine its levels (Vigetti et al.
2014).

The physiological functions of this GAG are copious (Csoka
and Stern 2013; Dicker et al. 2014). In addition to its struc-
tural and support roles, HA is able to bind several receptors
such as CD44, RHAMM, Lyve-1, HARE, TLR-2 and 4,
triggering different signaling pathways. In this way, HA is a
key factor for the maintenance of hematopoietic and neural
stem cells pools (Khaldoyanidi et al. 2014; Su et al. 2018).
Furthermore, it favors tissue repair (Aya and Stern 2014;
Frenkel 2014), enhances cell proliferation and migration (Solis
et al. 2012) and participates in leukocyte trafficking (Jackson
2009; Jackson 2019), among others.

Interestingly, alterations in HA quantity and quality have
been reported in both cancer and ageing (Toole 2009; Misra
et al. 2015; Theocharis et al. 2019). Indeed an increase in
HA levels compared with normal tissue has been described in
numerous types of tumors, which have been associated with
a worse prognosis (Auvinen et al. 2013; Tammi et al. 2008;
Provenzano and Hingorani 2013; Caon et al. 2020; Pibuel
et al. 2021b). In this context, malignant cells take advantage of
the physiological role of HA in pursuit of tumor progression.
For instance, the protection exerted by HA on stem cells by
the activation of efflux pumps capable of expelling genotoxic
compounds is used by tumor cells to extrude chemotherapeu-
tic agents (Bourguignon et al. 2008; Lompardía et al. 2013).
Likewise, its effects on cell proliferation and migration, which
are important in tissue repair, are used by tumor cells in
pursuit of their survival and disease progression (Mascaro
et al. 2017; Klarić et al. 2019; Pibuel et al. 2020). Its anti-
inflammatory and regulatory effects are used to contribute
to the immunosuppressive microenvironment that favors the
evasion of the antitumor immune response (Termeer et al.
2003; Cordo Russo et al. 2012). Similarly to what occurs
in the physiological context, in malignancies the effects of
HA are mediated by its interaction with membrane receptors
(mainly CD44 and RHAMM) and the consequent activation
of signaling pathways such as PI3K/Akt and MAPK in cancer
cells (Toole 2009).

In contrast, it was described that HMM-HA shows antitu-
mor effects on colon carcinoma and melanoma cells (Mueller
et al. 2010; Takabe et al. 2015) and that it is a key player
in cancer resistance in NMR (Tian et al. 2013). In addition,
Tian et al. described that as a result of knocking down HAS2
or overexpressing HYAL2, NMR cells become susceptible
to malignant transformation (Tian et al. 2013). It is worth
noting that recent studies showed that the molecular mass of
HA from the NMR would be on average 2.5 MDa (being
HMM-HA) and not vHMM-HA (Del Marmol et al. 2021).

Del Marmol et al. (2021) demonstrated that NMR have larger
amounts and higher molecular weight of HA in serum and
several tissues tested than guinea pigs (Cavia porcellus) and
mice (Mus musculus). Still, HA (HMM or vHMM) would be
a key player in preventing cancer development and extending
the lifespan of NMR (Tian et al. 2013; Faulkes et al. 2015;
Bohaumilitzky et al. 2017; Seluanov et al. 2018; Gorbunova
et al. 2020). Therefore, the dual role of HA in preventing or
promoting cancer would depend on its quality and quantity,
as well as on the physiological or pathophysiological context
studied (Bohaumilitzky et al. 2017). As is known, cancer is a
disease associated with ageing and throughout life a decrease
in HA levels has been described (Meyer and Stern 1994;
Simpson et al. 2009). Thus, HA showed antiaging qualities
both due to its filling effect and regenerative capacity (Lee
et al. 2019). Taking into account this background, HA could
prevent cancer development, whereas, with ageing, tumor
initiation would be promoted by decreasing its levels. Once
cancer is established, HA is increased in the tumor microenvi-
ronment and would act as a stimulating factor for malignancy
progression.

Senescence: implication in cancer and
ageing

Senescence is characterized by the irreversible arrest of the cell
cycle. It is essential for homeostasis, being considered one of
the most important mechanisms of tumor suppression (Childs
et al. 2014; Salama et al. 2014).

Senescence can be induced by different stressors (telomere
shortening, over-activation of oncogenes, chemotherapy, and
oxidative stress) that determine the type of senescence trig-
gered (replicative, oncogene-induced, chemotherapy-induced,
or premature senescence). This complex stress response can
also be induced by external stimuli (nonautonomous senes-
cence), being senescent cells capable of triggering senescence
in neighboring cells (Pérez-Mancera et al. 2014).

The senescent phenotype is characterized by the increase
in cell cycle inhibitors, senescence-associated β-galactosidase
activity, presence of senescence-associated heterochromatin
foci, mitochondrial dysfunction, among others (Hernan-
dez-Segura et al. 2018). Although senescent cells lose their
replicative capacity, their metabolism remains very active
and they are able to interact with the microenvironment
through the synthesis and release of factors due to the
senescence-associated secretory phenotype (SASP; Lujambio
2016). The conformation of the SASP depends on the type of
senescence and the stimulus that triggered it, being widely
varied (Tchkonia et al. 2013). Physiologically, one of the
main functions of the SASP is to activate the immune
system (IS) to kill the transformed or damaged cells. In this
context, senescence is an acute process in which such cells are
eliminated (Childs et al. 2014). However, throughout life there
is an accumulation of senescent cells (chronic senescence) due
to failure in their elimination mechanisms, which leads to a
chronic inflammatory process responsible to a great degree
for age-related diseases such as cancer (Childs et al. 2014).
Remarkably, the quality of the SASP seems to be crucial in
the modulation of such processes, since it can present both
antitumor or pro-tumor features (Lecot et al. 2016).

The evidence described supports the dual role of senes-
cence in both preventing and promoting cancer depending
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on the specific context. The acute induction of senescence,
with the consequent elimination of the transformed cells, is
crucial for accurate tumor suppression. However, failures in
the clearance of senescent cells lead to their accumulation,
which is associated with a chronic inflammatory process and
ageing. This situation generates a propitious environment for
the development of diseases such as cancer.

Interplay between hyaluronan and senescence

There are few reports that describe a direct relationship
between HA and senescence, most of which are cited by
Bohaumilitzky et al. in an interesting and pioneering review
that raises the dual role of HA and senescence (Bohaumilitzky
et al. 2017). Moreover, we demonstrated that the inhibition of
HA synthesis leads to senescence induction in human leukemic
cell lines, whereas the addition of exogenous HA avoids senes-
cence induction (Lompardía et al. 2013). Likewise, we showed
that imatinib decreases HA production and induces senes-
cence; whereas the addition of this GAG abrogates imatinib-
induced senescence in human CML cells (Lompardía et al.
2019). In agreement with the previously mentioned, Alessio
et al. reported that HA treatment delays replicative senescence
of mesenchymal stem cells (Alessio et al. 2018). Furthermore,
it was reported that the synthesis of HA is downregulated in
senescent mesenchymal stem cells (Jung et al. 2011). Likewise,
Li et al. demonstrated that HAS-2 deletion induces fibroblast
senescence in pulmonary fibrosis (Li et al. 2016). Likewise,
it was described that miR-23a-3p inhibits HAS-2 expression,
inducing senescence, which would be involved in skin ageing
(Röck et al. 2014). Moreover, we recently demonstrated that
HA prevents senescence induction in human glioblastoma and
acute leukemia cells (Pibuel et al. 2021a; Díaz et al. 2021).

Other reports indirectly seem to show a relationship
between HA and senescence. For instance, it was described
that HA exerts a protective effect on oxidative DNA damage
(Zhao et al. 2008; Gorbunova et al. 2020), one of the most
recognized stimuli for senescence induction. Furthermore,
reactive oxygen species are capable of degrading HA, as
well as inducing senescence (Ziegler et al. 2015; Liu et al.
2019). Similarly, UV radiation is able to induce senescence and
skin ageing (Gragnani et al. 2014), whereas UV-B increases
HYAL activity in keratinocytes (Kurdykowski et al. 2011;
Bourguignon and Bikle 2015). Finally, it was shown that
senescent cells alter the extracellular matrix (Mavrogonatou
et al. 2019), whereas, as previously mentioned, NMR have
large amounts of HMM-HA/vHMM-HA, not showing
accumulation of senescent cells (Bohaumilitzky et al. 2017;
Tian et al. 2013; Del Marmol et al. 2021).

In light of this background, an inverse relationship between
HA levels and induction of senescence could be established.
Therefore, we hypothesize that high levels of HA, such as
those observed in the early stages of life, would prevent DNA
damage, induction of senescence and, finally, tumor initiation.
Conversely, in old age when HA levels decrease, DNA damage
could occur, consequently leading to induction of senescence.
The lower activity of the IS observed in ageing could favor
accumulation of senescent cells. Thus, chronic senescence
would generate a microenvironment of chronic inflammation
due to the SASP, which would promote cancer initiation. Once
the tumor process is established, the malignant cells, as well
as the tumor-associated cells could synthetize high amounts
of HA, generating a propitious microenvironment for its

Fig. 1. Hypothesis about the relationship between HA and senescence.
Under physiological conditions, HA protects cells from genomic damage,
thus preventing the induction of senescence. However, in the face of
cellular stress, this process is triggered, and through the release of
SASPs can activate the IS favoring the elimination of senescent cells
(acute senescence). Thus, the development of cancer would be avoided.
However, throughout life the levels of HA and the competence of the IS
drop, which would promote the induction and the accumulation of
senescent cells (chronic senescence). Thus, the state of chronic
inflammation would favor ageing and related diseases such as cancer. In
this pathological context, HA enhances disease progression by
promoting cell proliferation, migration, invasion, multidrug resistance
(MDR) and, by evasion of apoptosis, senescence and IS.

pro-survival properties and avoiding senescence induction.
Thereby, the dual role of HA and the induction of senescence
related to the initiation and progression of cancer could be
explained (Fig. 1). In accordance with this hypothesis, the
results of Mikami et al. show that the systemic inhibition of
HA synthesis favors liver carcinogenesis (Mikami et al. 2018).
However, in a cancer context, there are high levels of HA and
the treatment with 4-methylumbelliferone (4MU) results in a
marked antitumor effect in accordance with the hypothesis
raised (Piccioni et al. 2012; Lompardía et al. 2013; Pibuel et al.
2020; Karalis et al. 2018; Lokeshwar et al. 2010).

Therapy implications

Considering the role of HA and senescence in ageing and
cancer progression, the modulation of such players would be
relevant for an accurate therapeutic approach.

In this way, a reduction of HA levels would be needed to
improve cancer therapy. One promising alternative is the inhi-
bition of HA synthesis using 4MU. This coumarin derivative
shows substantial antitumor effects in several cancer models
(Nagy et al. 2015; Lompardía et al. 2019; Pibuel et al. 2021a;
Kudo et al. 2017; Yates et al. 2015; Lokeshwar et al. 2010;
Yoshida et al. 2016; Piccioni et al. 2012; Urakawa et al.
2012; Díaz et al. 2021; Pibuel et al. 2020; Vitale et al. 2021).
It is worth noting that 4MU is a safe drug and its use in
humans, as a choleretic agent, is approved in Asia and Europe
(Nagy et al. 2015). Therefore, the use of 4MU in cancer
therapy implies a repurposing of this drug. Another approach
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to reducing HA levels is the use of HYALs, showing interest-
ing results with advanced clinical trials in pancreatic cancer
(McAtee et al. 2014; Doherty et al. 2018). In order to mitigate
HA effects, the use of oHA is a valid option. These small
molecules are not able to cross-link the HA receptors, and
the literature is vast regarding their antitumor effects (Alaniz
et al. 2006; Cordo Russo et al. 2008; Slomiany et al. 2009;
Lompardía et al. 2013; Lompardía et al. 2016).

Moreover, CD44 and RHAMM are associated with therapy
resistance and a worse prognosis in several cancer types, being
both studied as targets for therapy (Tzankov et al. 2011;
Mooney et al. 2016; Zhou et al. 2017; Liu et al. 2019;
Carvalho et al. 2021). Taking into account the overexpression
of CD44 and RHAMM in numerous cancer types (Sironen
et al. 2011; Tzankov et al. 2011; Schwertfeger et al. 2015;
Ferrer et al. 2018; Shalini et al. 2018), HA drug delivery
nanotechnology systems are being studied for cancer therapy
(Shah et al. 2015; Han et al. 2016). Moreover, considering the
particular antitumor features of vHMM-HA (Tian et al. 2013;
Faulkes et al. 2015; Bohaumilitzky et al. 2017; Kulaberoglu
et al. 2019), it is also being studied as a new and promising
strategy to be used in nanotechnology to target tumor cells
and improve the patient outcomes (Gorbunova et al. 2020).

On the other hand, senolytic compounds are able to induce
death in senescent cells (Davan-Wetton et al. 2021). Consid-
ering the role of senescent cell accumulation in ageing and
the undesirable effects of chemotherapy, senolytic drugs could
represent an interesting therapeutic alternative (Jeon et al.
2017; Scudellari 2017; Zhu et al. 2017). In this respect, it
was described that senolytics are able to alter the extracellular
matrix, decreasing fibrosis that is associated with ageing-
related diseases (Harvey et al. 2016; Lehmann et al. 2017;
Hu et al. 2020). In addition, numerous chemotherapeutic
agents induce senescence as part of their antitumor mecha-
nism of action (Gewirtz 2014; Villodre et al. 2017), and our
reports indicate that the inhibition of HA synthesis, as well
as the mitigation of its effects mediated by HA oligomers
induce senescence in leukemia cells (Lompardía et al 2016;
Lompardía et al 2017). Although senescence is a tumor sup-
pression mechanism capable of promoting the removal of
transformed cells mediated by the IS, it is also known that
SASP can promote cancer progression, and some undesirable
effects of chemotherapeutic drugs were attributed to senes-
cent cells (Baar et al. 2017; Campisi & d’Adda di Fagagna
2007; Demaria et al. 2017). Likewise, the immunoregulatory
features of the tumor microenvironment could avoid the clear-
ance of senescent cells, leading to their accumulation. Thereby,
the use of senolytic drugs after the use of chemotherapeutic
agents or radiotherapy would be an interesting and novel
therapeutic strategy in oncology (Scudellari 2017; Wang et al.
2022). Chemotherapy or radiotherapy kill some cancer cells
and induce senescence in others since the latter require a
greater stressful stimulus for death. The cells that are resistant
to cancer therapy can be impacted by the SASP, consequently
these factors could induce non-cell autonomous senescence
in therapy resistant cells. Thus, the use of senolytic drugs
would kill those senescent cells, abrogating their accumulation
and improving cancer therapy.

Deforestation allegory

In view of all the reports cited, as well as the hypothesis
suggested previously (Fig. 1), the deforestation allegory is
proposed:

Fig. 2. Deforestation allegory I. The forest is necessary to avoid fire
initiation, and so is HA to abrogate chronic senescence, ageing and
cancer.

On the one hand, let’s think of a forest, a young, dense forest
full of green trees favoring a moist soil, which makes it difficult
to start a fire, and, on the other hand, a less dense cleared
forest, with a greater amount of light that passes through that
causes the ground to become drier with remains of felled trees
and stumps, thus increasing the probability of a spark causing
a fire (Fig. 2, upper panel). Therefore, to avoid this process,
it is important to promote dense afforestation. However, in
another context such as in the presence of fire, dense foresta-
tion represents a greater threat and greater difficulty to control
the fire than a deforested area (Fig. 3, upper panel). In this
sense, considering HA as the trees in our forest, the decrease
in its levels due to ageing (deforestation), in addition to the
lower activity of the IS, leads to senescence, favoring cancer
(fire) initiation. Therefore, the quality and adequate levels of
the GAG would avoid the induction of chronic senescence
and age-related diseases such as cancer (Fig. 2, lower panel).
However, in a cancer context, high levels of HA increase cell
proliferation and migration, and could prevent the induction
of senescence, thus promoting disease (Fig. 3, lower panel).

Conclusion

In this brief review, we propose a viable explanation for
the dual role of HA with respect to cancer initiation and
progression. In this way, we try to clarify the opposite but valid
results with regard to the pro- and antitumor effects of HA
and its relationship with senescence modulation. Although
this is a hypothesis and may not be entirely correct, it provides
a feasible description of the ambivalent effect of HA and
senescence on cancer progression, considering the physiolog-
ical and pathological context, as well as its chronological
analysis. Based on the hypothesis suggested, different potential
therapeutic approaches were analyzed, such as the potential
uses of 4MU, vHMM-HA and senolytic drugs to improve
cancer therapy. Finally, the deforestation allegory also tries to
explain the relationship between hyaluronan and senescence
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Fig. 3. Deforestation allegory II. In a different context, that same forest
can serve as fuel making it difficult to control a fire. Similarly, in a
pathological context, high levels of HA promote the progression of
cancer, avoiding the induction of senescence and enhancing the
proliferation and migration of malignant cells, which leads to therapeutic
complications and a worse prognosis.

in regard to cancer and ageing, through a metaphor of macro-
molecular life.
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