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Abstract

In this paper, we propose a human-vehicle cooperative driving system. The objectives of this research are twofold: (1)
providing a feasible brain-controlled vehicle (BCV) mode; (2) providing a human-vehicle cooperative control mode. For
the first aim, through a brain-computer interface (BCI), we can analyse the EEG signal and get the driving intentions of the
driver. For the second aim, the human-vehicle cooperative control is manifested in the BCV combined with the obstacle
detection assistance. Considering the potential dangers of driving a real motor vehicle in the outdoor, an obstacle detec-
tion module is essential in the human-vehicle cooperative driving system. Obstacle detection and emergency braking can
ensure the safety of the driver and the vehicle during driving. EEG system based on steady-state visual evoked potential
(SSVEDP) is used in the BCI. Simulation and real vehicle driving experiment platform are designed to verify the feasibility
of the proposed human-vehicle cooperative driving system. Five subjects participated in the simulation experiment and real
the vehicle driving experiment. The outdoor experimental results show that the average accuracy of intention recognition
is 90.68 +2.96% on the real vehicle platform. In this paper, we verified the feasibility of the SSVEP-based BCV mode and
realised the human-vehicle cooperative driving system.
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encephalogram (EEG) - Steady-state visual evoked potential (SSVEP)
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Introduction

A brain-computer interface (BCI) can convert different
activity patterns of electroencephalogram (EEG) sig-
nals into control commands to manipulate devices and
machines, such as vehicles [1, 2]. A brain-controlled
vehicle (BCV) is a vehicle controlled by the driver’s mind
through a BCI rather than the driver’s limbs. The driver’s
intentions can be obtained by analysing their EEG signals
and converted into control commands to drive a vehicle.
BCVs provide a new supplementary way for driving,
which can liberate driver’s limbs and enhance people’s
driving experience. For people with physical disabilities,
BCVs have the potential to help them recover their driving
ability, thus broaden their scope of activities, and improve
the living standards. BCVs also provide valuable experi-
ence for other brain-controlled machines and promote the
study of BCI and intelligent machines [3].

Security is a significant issue for brain-controlled vehi-
cles. Considering the current limited performance of BCI
and the potential dangers of driving a vehicle in the out-
door, it is necessary to integrate intelligent driving tech-
nologies on BCVs. Intelligent driving technologies include
obstacle detection technology, object tracking technology
and vehicle control technology, which aim to sense driv-
ing environment, obtain road information and assist driv-
ing operation [4—6]. A manifestation of human-vehicle
cooperative driving is combining the driver’s intention
control with the intelligent assistant driving technology
[7]. A BCV combined with the intelligent assistant driv-
ing technology can significantly improve the safety and
driving performance.

In recent years, some achievements have been made in
BClI assisted driving, brain-controlled wheelchair, brain con-
trol in simulated environment and so on. Nguyen and Chung
developed a method for identifying the driver’s intentions for
the emergency brakes control (EBC) in a simulated vehicle
[8]. The algorithm consists of the EEG band power, auto-
regressive model features and an NN classifier. Its accuracy
was 91.00% in the simulated driving experiment. But this
method was only used in simulation experiments, not in
real vehicle experiments. Bi et al. [9] proposed a method of
emergency situation detection by fusing EEG-based emer-
gency intention detection model of driver with surrounding
information. In the experiment, a set of sensors were embed-
ded into the system to analyse the conditions of the envi-
ronment. The driver’s emergency intention detection system
was implemented in the experiment and the accuracy of the
system was 94.89%. This research limited the application
to emergency brakes only. Jafarifarmand and Badamchiza-
deh applied motor imagination-based BCI system to control
a radio-control car completing a designed specified route
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without crossing the path borders [10]. The ICA-ANC, AR-
CSP and SRSG-FasArt had been applied for ocular artefact
removal, feature extraction and classification, respectively.
The average classification accuracy was 90.43%. However,
this method was only used in simulation experiments, not in
real vehicle experiments. Li et al. proposed a fused system
for vehicle driving decisions to control a simulated vehicle,
which obtained the visual data, and the hybrid EEG signals
simultaneously. The hybrid EEG signals consist of SSVEP
and MI [11]. The wCCA, CSP and kNN were applied for
EOG artefacts removing, feature extraction and classifica-
tion, respectively. The success rate of the on-line experi-
ment was 91.1%. Lu and Bi proposed an EEG-based longi-
tudinal control system for brain-controlled vehicles, which
combined a user interface, a BCI system and a longitudinal
control module [3]. The method was tested by a simulated
vehicle experiment in a virtual scene in the laboratory. The
CSP was employed for augmenting the EEG signal SNR.
The PSD features were extracted from the SSVEP patterns.
The SVM classifier was used for classification. However,
the accuracy of the results was not very robust for individual
subjects. Khan et al. proposed a brain-actuated intelligent
wheelchair with network of sonars and vision-based sensors
which can be controlled by either SSVEP brain signals or
joystick [12]. The SSVEP signals were segmented into 2-s
window size with 50% overlap and features were extracted
by using canonical correlation analysis. For offline control,
an accuracy of 96% was achieved. However, for online con-
trol, the accuracy decreased. Zhuang et al. established a
BCI system using motor imagery EEG signals to control a
simulated vehicle with a shared control strategy [13]. The
strategy transformed online EEG classification results into
control command considering avoiding obstacles detected
by a single-line LiDAR. The PSD features were identified
by using ensemble, SVM and CNN classifiers. The average
classification accuracy was 91.75%. The disadvantage of the
study is that the algorithm is time-consuming, which causes
delay in real-time systems. Fan et al. combined the SSVEP
pattern and alpha EEG waves to control the vehicle simula-
tor for destination selection [14]. The PSD features were
extracted and categorised by the binary LDA algorithm. The
average accuracy of the system was about 99% with an aver-
age selection time of about 26 s. Gohring et al. used a BCI
which was connected to an autonomous car equipped with
a variety of sensors to control steering and braking [15].
The ERD/ERS patterns from the EEG signal were extracted.
However, the reliability of the algorithm was still insuffi-
cient. Other recent research on brain-controlled vehicles,
with special reference to the terrestrial BCV, can be found
in Hekmatmanesh et al. [16]. Table 1 summarises the most
important ones and shows a subsequent comparison with
the state of the art.



Cognitive Computation

In this paper, we propose a human-vehicle cooperative
driving system combining BCV mode with laser obstacle
detection, where its feasibility is verified by simulation and
real vehicle driving experiment. Our long-term goal is to
develop a BCV that integrates intelligent driving technolo-
gies. Intelligent driving technologies constitute more of a
complementary service than an alternative to physical driv-
ing. BCV systems integrating with intelligent driving tech-
nologies can assist drivers to operate a vehicle more safely
and more conveniently. In this paper, we take a step forward
towards this goal. We implement the BCV integrating with
obstacle detection technology. Specially, we use EEG signals
of the driver to control the vehicle in the outdoor experimen-
tal environment.

The rest of this paper is organised as follows. “Materials
and Methods” section describes the experimental vehicle,
the strategy of the human-vehicle cooperative driving sys-
tem, the analysis methods of SSVEP-based BCI and how
the experiments are designed. “Results” section presents
the experimental results. “Discussion” section discusses the
results of the experiments. Finally, “Conclusions” section
concludes this work.

Materials and Methods

This section elaborates the adopted materials and methods
for the brain-controlled vehicle system. Specifically, in the
“The Experimental Vehicle” section, the description of the
experimental vehicle is detailed. Then, we introduce the
architecture of the human-vehicle cooperative driving sys-
tem combining BCV mode with intelligent assistant driving
technology, in the “Strategy of the Human-Vehicle Coop-
erative Driving System” section. How we acquire and pro-
cess the EEG signals is fully detailed in the “SSVEP-Based
BCI” section. In “Laser Ranging Obstacle Detection” and
“Communication System” sections, we describe the obsta-
cle detection system on the BCV and the communication
system between the computer processing terminal and the
BCYV, respectively. Finally, how the experiments were con-
ducted is described in the “Experiments of Brain-Controlled
Vehicle” section.

The Experimental Vehicle

The appearance of the experimental vehicle is the same as
that of a normal real car with electronic brake switch. The
laser ranging sensor is located in the front of the vehicle to
collect the distance data of the obstacle in front of the vehi-
cle. The computer processing terminal receives EEG signals
from the BCI and the laser ranging data, and generates the
final vehicle control commands after data processing. The

communication module of the experimental vehicle is modi-
fied such that the vehicle can receive and execute the vehicle
control commands sent by the computer processing terminal.
The schematic diagram of the experimental vehicle is shown
in Fig. 1.

Strategy of the Human-Vehicle Cooperative Driving
System

The system structure of the human-vehicle cooperative
driving system combining the BCV mode with intelligent
driving assistance technology is illustrated in Fig. 2. The
system can be described in five parts: SSVEP-based BCI,
obstacle detection system, computer processing terminal,
communication system and the intelligent vehicle. (1) The
SSVEP-based BCI consists of the SSVEP visual stimulus
sources presented on a computer screen, EEG signal acqui-
sition unit and processing unit. (2) The obstacle detection
system includes the laser ranging sensor and the ranging
data processing unit. (3) The computer processing terminal
integrates the EEG signal processing unit, the ranging data
processing unit and the command transmission determina-
tion unit. (4) The communication system consists of the
serial port, the signal converter and high-speed controller
area network (CAN) bus. (5) The intelligent vehicle with
electronic brake switch is modified in the communication
module.

The SSVEP-based BCI recognises the driver’s intention
by analysing EEG signals. The obstacle detection system
will send a braking signal if an obstacle in front of the vehi-
cle is detected to be closer than a threshold. The communica-
tion system establishes a communication channel between
the computer processing terminal and the experimental
vehicle. Both the BCI and the obstacle detection system are
the vehicle control command generation terminals. Control
commands generated by the BCI and the obstacle detection
system are not sent to the experimental vehicle until they are
judged by the command transmission determination unit.
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Fig.1 Schematic diagram of the experimental vehicle

@ Springer



Cognitive Computation

Visual Stimulus_Brain-Computer Interface
Sources

Visual Stimulus_—

Visual Feedback

Vehicle Control i i
/ EEG Signals EEG Signals Intelligent Vehicle
Acquisiti 1 P i Commands Vehicle Control i
i z - cquisition rocessing o e Electronic
Vs SSVEP Signals Unit Unit Commands Comr‘numcatlon System Brake Switch
Command !
Computer Processing| Transmission Serial Port _L Signal | | High-speed | |
Terminal Determination C ication | | Converter CAN bus
Unit !
R:nging !)ata I Vehicle Status 3
Pr g !
Unit Vehicle Control Treedbask

Laser Ranging Sensor

Commands
Obstacle Detection System

Fig.2 The human-vehicle cooperative driving system combining BCV mode with intelligent assistant driving technology

The command transmission determination unit only sends
the valid commands. Moving commands are invalid if the
obstacle detection system detects that an obstacle is too close
to the vehicle in front.

If a moving signal is sent to the experimental vehicle,
the electronic brake switch loosens, and the vehicle moves
straight at a constant speed of 1.38 m/s. The electronic brake
switch clamps to stop the vehicle if the experimental vehi-
cle receives a braking signal. The electronic brake switch
returns its status, namely, loose or clamped, to the computer
terminal in real time.

In the following sections, we detail the three main parts
of the human-vehicle cooperative driving system: (1) the
SSVEP-based BCI; (2) the laser ranging obstacle detection
system and (3) the communication system.

SSVEP-Based BCl

BCI provides a direct communication channel between the
human brain and the computer system. EEG signals com-
monly used in BCIs include SSVEP, P300 potentials and
motor imagery [3, 13, 17]. In this paper, we use SSVEP
signals in BCI. When a subject’s eyes are focused on a visual
stimulus source with a constant and continuously flickering
frequency, an SSVEP signal containing the same frequency
or a multiple of the frequency of the visual stimulus source
can be measured in the subject’s EEG signals, with the high-
est amplitude on the occipital lobe (visual cortex) [18-20].
The condition for evoking SSVEPs is simple, and SSVEP
signals are stable and easy to realise real-time control. For
the SSVEP experiment, subjects do not need training before
the experiment [2122].

Nakanishi et al. proposed a SSVEP detection method
using the task-related component analysis (TRCA) with
accuracy of 89.83% and trial lengths 1.2~1.5 s [23].
Kumar and Reddy proposed a subject-specific target detec-
tion framework, sum of squared correlations (SSCOR),
to improve the performance of SSVEP. SSCOR had bet-
ter performance than TRCA in the detection accuracy and
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information transfer rates [24]. However, both methods
require acquiring individual training data prior to the online
operation. Waytowich et al. used a compact convolutional
neural network (CNN) to decode signals from a 12-class
SSVEP dataset without user-specific calibration, which only
required raw EEG signals for automatic feature extraction.
The mean accuracy across subjects was approximately 80%
with 4-s trial length in offline experiment [18]. Podmore
et al. applied a deep convolutional neural network (DCNN)),
PodNet, and achieved 86% and 77% inter-subject classifica-
tion accuracy for two data capture periods, respectively, 6 s
and 2 s [25]. The above two studies have lower accuracy and
longer trial time and did not carry out online experiments.
Ravi et al. proposed a CNN-based classification method to
enhance the detection accuracy of SSVEP in the presence
of competing stimuli. The accuracy of the offline classifi-
cation is 75.3% and that of the online simulation is 71.3%
with a stimulus time of 6 s. The accuracy and trial time do
not satisfy the vehicle control [26]. All above studies do not
involve outdoor experiments.

In our work, the SSVEP-based BCI consists of the SSVEP
visual stimulus sources presented on a computer screen,
EEG signal acquisition unit and processing unit. We use two
flickering frequencies of 8 Hz and 10 Hz as SSVEP visual
stimulus sources and use non-invasive BCI to obtain the
SSVEP EEG signals. According to the result of the offline
test with different analysis time lengths, we choose 3 s as
the analysis time length of SSVEP signals. We use canoni-
cal correlation analysis (CCA) method to classify SSVEPs
and the overlap time windows voting (OTWYV) method to
improve the classification accuracy, which is training-free
and used to control a vehicle outdoor. The driver’s intentions
(moving or braking) are extracted by analysing the frequency
features of SSVEP signals. The BCI sends a moving com-
mand or a braking command to the vehicle according to
the classification results. Since repeated moving or braking
commands are invalid for controlling the vehicle, there is no
need for the driver to continuously focus on the stimulus if
the vehicle stays in the desired state.
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To better introduce the SSVEP-based BCI, we split it into
several parts: SSVEP signals, EEG signal pre-processing,
EEG signal acquisition unit, CCA method, offline test with
different analysis time lengths and OTWYV method.

SSVEP Signals

The SSVEP signals are oscillatory potentials elicited in EEG
in response to periodic light stimulation. The SSVEP signals
will occur in the visual cortex when a visual stimulation is
applied to a human. Typical SSVEP response contains peaks
at frequencies that are directly related to the stimulation fre-
quency. The stimuli of different flickering frequencies will
evoke the SSVEPs of different amplitude strengths. In gen-
eral, the strongest, moderately strong and weak SSVEPs can
be observed by the stimuli in the range of low frequency
(1-12 Hz), medium frequency (12-30 Hz) and high fre-
quency (30-60 Hz), respectively [27, 28]. In this paper, to
obtain the strongest SSVEPs, the visual stimuli are in the
low frequency range.

The first and second harmonics of the stimulus frequen-
cies are used for classification in the CCA method, the
first harmonic frequency of the stimulus should be different
from the second harmonic frequency of the other stimu-
lus [29]. Therefore, the SSVEP visual stimulus sources
consist of two rectangular blocks with constant flickering
frequencies of 10 Hz and 8 Hz, respectively. The size of
both flashing rectangular blocks is 5 cm X5 cm, and they
are displayed on a laptop screen. The vehicle is controlled
to move straight by the EEG signals evoked by the SSVEP
visual stimulus source of 10 Hz. And the vehicle is con-
trolled to brake if the flickering frequency of the SSVEP
visual stimulus source is 8 Hz. Figure 3 shows the corre-
sponding FFT frequency spectra of SSVEPs collected from
O_ from a single subject for 3 s in response to 8 Hz (a) and
10 Hz (b) stimulation.

2z A
4 vl 10Hz
ar 40f
30F 30f
8Hz
20 F 20}
10k 16Hz ok 20Hz
L\ ,.A’\ L
0 10 20 Hz 0 10 20 30 Hz

(a) 8 Hz (b) 10 Hz

Fig.3 FFT frequency spectra of SSVEPs in response to 8 Hz a and
10 Hz b stimulation

EEG Signal Acquisition Unit

The used EEG signal acquisition equipment is non-invasive.
Compared with implanting a chip into the brain to enable
intention control, non-invasive equipment does not cause
harm to human body. The device g.USBamp of g.tec medi-
cal engineering GmbH (Austria) was used as the bio-signal
amplifier, which allows 16-channel bio-signal acquisition.
The sampling frequency of the EEG signals was 256 Hz
per channel. In SSVEP-based BCls, channels at the occipi-
tal and parietal (visual cortex) area are always selected to
record the SSVEPs. Subjects were asked to wear a special
cap with fixed electrodes, and the SSVEP signals were col-
lected from O,, Oy, O,, PO,, PO; and PO,, according to the
international 10/20 system, as shown in Fig. 4. The channels
at the centre of visual cortex have higher amplitudes and
therefore provide better features. The outdoor experiment
of BCV requires high visual stimulation response. The six
electrodes are selected to achieve high and stable classifica-
tion accuracy [18, 26, 30].

The ground electrode of g.USBamp was F,, positioned
on the forehead, while the reference electrode was placed
on the right earlobe [31]. The amplifier was directly con-
nected to a PC by a USB cable through which the amplified
and digitalised EEG signals were sent to the PC for further
processing.

EEG Signal Pre-processing

Pre-processing is an important step to remove noisy parts
from the collected EEG signals and prepare them for further

Fig.4 Location distribution of SSVEP signal acquisition electrodes
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analysis. Several filters are used, depending on the aims of
the studies. A 50-Hz notch filter and a Butterworth band-
pass filter were used to filter the power line interference and
the high frequency noise. The Butterworth band-pass filter
was used to extract EEG signals with frequencies between
5 and 60 Hz. A comparison between the raw EEG signals
and the filtered EEG signals using Butterworth band-pass
filter is shown in Fig. 5. In this figure, the EEG signals were
collected from O,, 0|, O,, PO,, PO; and PO,. Data from the
3-s EEG signals were segmented for noise removal.

Canonical Correlation Analysis Method

The most prominent features of SSVEPs are in frequency
domain. SSVEPs can be classified according to the fre-
quency components. CCA method is used to classify
SSVEPs by comparing the correlation between the collected
SSVEP signals and each stimulus frequency. CCA is a statis-
tical method, which has been traditionally and widely used
to analyse relationships between two sets of variables in var-
ious fields [27, 32, 33]. The objective of CCA is to analyse
the degree of correlation between two data sets by finding
their transformed variants with the highest correlation by
calculating their correlation coefficient. Two data sets are
more relevant if their correlation coefficient is higher.

The principle of the CCA method is described as follows.
Given two data sets X and Y, CCA attempts to find a pair of
vectors W, and W, that maximise the correlation between lin-
ear combinations of x and y, where x and y are calculated as:

O: |y " i, N ,“-;‘"‘w A “"‘L.fh‘ / My ,“ O: “‘J\""‘Iu‘rllr'll ;"'k’\‘v“’h“.,ﬂ\_ f] UI’f"\|l‘ll\»\z“~.r'
0 f'h_‘,..‘.\WM«.\@‘-”'“"{ﬂ\r‘f\f‘«%‘J"‘-V-"'fmﬁ.f O1 U'r'LJJ”'..J"UJI L MAr s
0> vﬂmu"*\WWq\w‘m\,ﬁm"’ﬂ'i’“f"fm\ 0: ,l‘"h'“‘l,,1rl'u‘|v.ﬂlli"-fl.|'1"'\""n'*"';"‘ml‘lL
PO ’MU"""\r\“"\"‘.W“m"'V’\“"\,«-\f"“\’ PO: | ATV

\ I i N fi Ny l|"Il \ A 'J‘"’ rl o=
; | W/ LY .““ i ’J POs '-Jil‘u' ‘.'IU"LII “H "wf \ '»u‘”‘| ”M W ¥
P03 g W i ) .,v'b“““\ ! V v

TN W P T PO
‘ ftvﬂ PO+ '”U‘Un]l“j |.||J k“lly"l.\uLpl.lh L‘-.J.U“""l,.rlkllhllr"

J AR a0
MW I
Vil A

P 04 { M“U,“\“"\(H’ '\"J“}"m\&w I I
0 1 2 3 0 1 2 3
Time (s) Time (s)
(a) Raw EEG Signals  (b) Denoised EEG Signals

Fig.5 Comparison between the raw EEG signals and the denoised
EEG signals. a Raw EEG signals. b Denoised EEG signals
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x=X"W, (1)
y=Y'W, )

In addition, x and y are known as canonical variates,
which are uncorrelated in each data set and have zero mean
and unit variance. W, and W, are the canonical coefficient
vectors. p is the correlation coefficient of x and y, and can
be calculated as follows:

p = max(corr(x,y))

Covlx,y]
= max(———)
Var[x]Var|[x]
T

VE[XTXE[yTy]

E[WIXYTW,]

= max(

\/E[WXTXXTWX]E[W},TYYTWy]

In Eq. (3), Var, Cov and E represent the variance, the
covariance and the expectation, respectively. The cross-
correlation matrix of X and Y is described as:

Cyy = EXY") )

The autocorrelation matrices of X and Y are Cy and Cy,
respectively, which are computed as:

Cy = E(XXT) Q)

Cy = E(YYT) (6)

The collected SSVEP signals and a stimulus frequency
are represented by two data sets, X and Y, respectively. X
and Y are used to calculate the CCA correlation coefficients.
The CCA method can detect harmonic frequencies [29]. In
this paper, SSVEP signals containing the same and twice
(first and second harmonic) frequencies of the corresponding
visual stimulus are analysed. The visual stimulus signals Y
with frequency f are defined as follows:

sin(2zft)
cos(2xft)
sin(4zft) O
cos(4rft)

The flickering frequency of the visual stimulus that is
more relevant to the collected SSVEP signals is considered
as the classification result.

Offline Test with Different Analysis Time Lengths

To analyse the relationship between the time length of sig-
nals and the classification accuracy, the offline test with
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different analysis time lengths was carried out. At the same
time, the accuracy of SSVEP classification was verified
by the offline test. Five healthy subjects participated in the
experiments (three males and two females). All subjects par-
ticipated in the offline test on a voluntary basis and letters of
consent were obtained from all participants.

In the offline test, each subject was asked to focus alter-
nately on the two SSVEP visual stimulus sources of 8 Hz
and 10 Hz. The SSVEP signals of each subject were col-
lected to analyse the relationship between the time length
of signals and the classification accuracy. SSVEP signals of
four types of duration (1 s, 2 s, 3 s and 4 s) were analysed
using the CCA method, respectively. The offline test was
repeated 10 times, and the results including the correlation
coefficient and the classification accuracy are presented in
the “Offline Test Result of Different Analysis Time Lengths”
section. Based on these results, 3 s was chosen as the analy-
sis time for SSVEP signals in BCV experiments to obtain
high classification accuracy and fast response time.

Overlap Time Windows Voting Method

The OTWYV method was used to improve the classification
accuracy of the SSVEP signals and the stability of com-
mand output. The principle of the OTWYV method is shown
in Fig. 6. SSVEP signals were analysed using a 3-s data
window and a 1-s offset. From each 3-s data window, one
result (one vote) is obtained. The classification result with
more than two votes is considered the final result of the clas-
sification. The OTWV method can improve the classification
accuracy of the SSVEP signals without increasing the time
length, which can be proved as follows.

SSVEP signals SSVEP signals
\ ‘ | “‘ I 1l ‘Hl‘ fi | | “‘ ““ ‘Hl‘
¥ | | UL | l\ 1 | ol |
| | ' (N |
Time — Time —
Is e ' 3.8 _
3s [ ‘ ‘ 3

Time window Time window'

(b)

Fig.6 Data processing diagram a with the OTWV method and b
without the OTWYV method

The classification accuracy of a 3-s SSVEP signals in a
time window is p, and the classification accuracy using the
OTWYV method is p’. For simplicity, we assume that the
classification results for each time window are independ-
ent. There are two possible cases: (1) the signals in the 3-s
time windows are all of the same class and (2) signals in
one of the 3-s time windows are of different class from the
other two windows. However, the first case holds in most
of the trials because the classes of the signals in continuous
time are usually the same. In the first condition, p’ can be
calculated as:

p =Cp*A-p)+p’ ®)

where C% refers to the number of combinations of 2 elements
taken from 3 elements at a time. The right-hand side of the
equation presents the probability of the case that the clas-
sification of one of the 3-s time windows is wrong, and that
the classification of the 3-s time windows is right. It means
to solve the following inequation:

G’ =p)+p’ >p ©)
The inequation can be simplified to:
pCp-Dp -1 <0 (10)

In the second case, p' can be calculated as:
p =p +p°( =p)+ Cyp(1l - p)? (11)

In a similar way to the first case, the inequation is simpli-
fied to:

rCp-DHp-1)>0 (12)

In the second case, if the classification accuracy p is
larger than 0.5 and smaller than 1, the OTWYV method can
reduce the classification accuracy of the SSVEP signals.
However, in most cases in the real experiment we meet the
first condition. In the “Analysis of Overlap Time Windows
Voting Method” section, we compare the classification
accuracy of the SSVEP signals between experiment with
OTWYV method and without OTWYV method. It shows that
the OTWYV method can actually improve the SSVEP signal
classification accuracy.

Theoretically, with the OTWV method, a classification
result is generated every 1 s in continuous signal processing,
ignoring data processing and transmission time. However,
without the OTWYV method, it takes at least 3 s to generate a
classification result. Therefore, the OTWYV method improves
the generating rate of the classification results. At the same
time, OTWYV method can avoid the frequent change of the
output control command and improve the stability of vehicle
control in online experiments.

@ Springer
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Laser Ranging Obstacle Detection

Considering the potential dangers of driving a real motor
vehicle in the outdoor, an obstacle detection module is
essential on the BCV. Obstacle detection techniques can
detect obstacles appearing around the vehicle and alert the
driver about possible collisions with obstacles [34, 35].
Considering the potential dangers of driving a vehicle in
the outdoor, the laser ranging obstacle detection system is
integrated into the vehicle to improve the security of the
BCYV, which realises the human-vehicle cooperative driving
system. The obstacle detection system includes the laser
ranging sensor and the ranging data processing unit. The
laser ranging sensor is located at the front of the vehicle
to collect the distance data of the obstacle in front of the
vehicle. It transfers the measured distance information to
the ranging data processing unit. If an obstacle is detected
to be too close in front of the vehicle, the obstacle detec-
tion system will send a braking signal to stop the vehicle
and avoid collision, which keeps the vehicle in a safe state.

Millimetre wave radars, visual sensors and LiDAR sen-
sors are all important sensors in the field of intelligent
driving. Millimetre wave radars have high adaptability
to weather. However, traffic scenario elements, such as
roads, buildings, vegetation, vehicles, pedestrians and so
on, will introduce noise interference, which will lead to
the decline or even failure of the radar detection and meas-
urement accuracy [36]. Visual sensors are used to detect
roads, lane signs, obstacles and objects. However, they
are easily influenced by light changes, and the detection
accuracy will be greatly reduced when encountering com-
plex shadows or bad weather conditions [37]. Therefore,
visual sensors are usually combined with laser scanners
to achieve high-accuracy information. LiDAR sensors
are widely used to detect objects and obstacles with good
range resolution and high accuracy. Generally, LIDAR
sensors can be divided into 2D LiDAR and 3D LiDAR
sensors. 3D LiDAR sensors can obtain much richer infor-
mation of the surroundings. However, the data obtained by
a 3D LiDAR is large and complicated, which takes longer
processing time compared to a 2D LiDAR one. Moreover,
a 3D LiDAR sensor is more expensive [38]. In this paper,
considering the low cost and simple data processing, the
UTM-30LX, produced by HOKUYO, is used as the 2D
laser ranging sensor of the vehicle. The UTM-30LX is a
compact, lightweight 2D LiDAR sensor with a 270° field-
of-view up to 30 m. With enhanced internal filtering and
ingress protection rating, this LIDAR device is less sus-
ceptible to ambient outdoor light [39]. The LiDAR sen-
sor is located horizontally on the bonnet of the car. The
effective measurement range of the laser ranging obstacle
detection system is set at 3 m and 90° in front of the vehi-
cle, as illustrated in Fig. 7.
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Fig.7 UTM-30LX 2D laser ranging sensor located in the front of the
vehicle

The collision avoidance behaviour acts as a full stop. It
will be activated if the distance between the vehicle and the
obstacle is detected to be less than the effective measure-
ment distance. Then, the obstacle detection system triggers
a braking signal to stop the vehicle. The collision avoidance
behaviour can ensure the safety of the driver and the vehicle
during driving, thus improving the performance of the BCV.

Communication System

Control commands, generated by the BCI and the obstacle
detection system, are judged by the command transmission
determination unit. Then, the communication system sends
the control command to the electronic brake switch to per-
form the BCV control. The communication system supports
the communication between the computer processing ter-
minal and the experimental vehicle. It requires a fast signal
transmission using a BCI combined with obstacle detection
technologies to control a real vehicle. In this paper, the high-
speed CAN communication is selected to transmit the vehi-
cle control signals [40]. The communication system consists
of three parts: the serial port, the signal converter and the
high-speed CAN bus. The serial port is the first part of the
communication system. Through the serial port, the BCI
sends control commands to the signal converter. The serial
port baud rate is 115,200 bps using an 8-bit data format, no
parity bit and one stop bit. The signal converter is a signal
conversion interface between the serial port and the high-
speed CAN bus. Through the signal converter and the high-
speed CAN bus, control commands are sent to the controlled
component of the experimental vehicle, namely, the elec-
tronic brake switch. Meanwhile, the electronic brake switch
returns the status information of the vehicle to the computer
terminal in real time via the communication system.

Table 2 shows the definition of the control protocol in
terms of SSVEP frequencies, vehicle control commands
and hexadecimal commands. The control protocol is defined
according to the vehicle internal protocol. These defined
hexadecimal commands are only used to control vehicle
movement and braking.



Cognitive Computation

Experiments of Brain-Controlled Vehicle

In this study, we conducted two kinds of experiments on five
subjects. One is the simulated BCV experiment to verify the
feasibility of the SSVEP-based BCI system; the other one
is the real vehicle controlling experiment to verify the new
controlling mode in the outdoor environment.

Subjects

Five healthy subjects aged between 21 and 27 participated in
the experiment on a voluntary basis, and letters of consent
were obtained from all of them. Some subjects had taken
part in other earlier BCI experiments. However, none of
them had experience in controlling a real vehicle via the
BCI prior to the experiment. In addition, none of the subjects
had a history of brain or neurological disease.

Experiment Design and Procedures

Two experiments were performed: (1) the simulated BCV
experiment and (2) real vehicle controlling experiment. In
the simulated vehicle controlling experiment, we verified
the feasibility of the SSVEP-based BCI system to control
a simulated vehicle in the virtual driving environment. In
the real vehicle controlling experiment, we implemented
the human-vehicle cooperative driving combining the BCV
system with obstacle detection and verified the new control-
ling mode in the outdoor. The simulation experiment and the
real vehicle driving experiment were performed on different
days. Before the experiments, we gave the instructions to
the subject so that they could operate correctly during the
experiments.

Simulated Brain-Controlled Vehicle Experiment

The experiment was carried out in a virtual driving platform
with the simulated vehicle based on open graphics library
(OpenGL), as illustrated in Fig. 8. The simulated environ-
ment was run on the Windows 7 operating system.

The architecture of the simulated BCV driving experi-
ment included two main parts, SSVEP-based BCI and virtual

Fig. 8 Virtual environment of the simulated BCV driving
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Fig.9 Architecture of the simulated BCV driving experiment

driving platform with simulated vehicle, as shown in Fig. 9.
The SSVEP-based BCI module consisted of the SSVEP vis-
ual stimuli presented on a computer screen, SSVEP signal
acquisition unit and SSVEP signal processing unit. The BCI
sent generated control commands to the simulated vehicle
via socket communication. After receiving a control com-
mand, the simulated vehicle performed the corresponding
action.

The BCI analysed segments of 3 s of the SSVEP signals
and sent the generated control commands to the simulated
vehicle every 3 s. If the subject was focusing on the visual
stimulus of 10 Hz or 8 Hz, the SSVEP signals would be
recognised as a moving command or a braking command,
respectively. The simulated vehicle moved straight or braked
after a moving command or a stop command was sent to it.

Subjects were asked to wear the EEG signal acquisi-
tion equipment and sat in front of the computer screen. The
experiment was repeated four times for each subject. In each
time, subjects were required to successively send ten com-
mands, including five moving commands and five braking
commands. Moving commands and braking commands were
alternately sent to control the simulated vehicle moving and
braking. We timed the response time from the driver starts
focusing on the stimulus to the time that the corresponding
command is generated (the simulated vehicle starts or stops).
The results of the simulation experiment, including the aver-
age response time and the accuracy, are shown in the “Result
of Simulated Vehicle Controlling Experiment” section.

Real Vehicle Controlling Experiment

In the simulation experiment, subjects were familiar
to use the BCI and prepared for controlling the experi-
mental vehicle. In the real vehicle driving experiment,
subjects controlled the real vehicle via the BCI com-
bined with the laser obstacle detection in the outdoor. To
realise human-vehicle cooperative driving, the outdoor

@ Springer
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Fig. 10 Schematic diagram of the outdoor experimental environment

environment was built on an empty site. The schematic
diagram of the outdoor experimental environment is pre-
sented in Fig. 10. The vehicle is an automatic car of size
4.856 mx 1.926 m x 1.900 m, with seven-speed automatic
transmission, electronic brake force distribution, antilock
braking system, brake assist system, etc. Two flags were
set on the roadside. The distance between the adjacent
flags was 20 m. In addition, an obstacle was placed at the
end of the experimental road. The size of the obstacle was
about 70 cm X 50 cm X 150 cm (length X width X height).
The obstacle detection range of the laser ranging obstacle
detection system was set at 3 m. The distance between the
obstacle and the second flag was 5 m.

Each subject was required to complete experiment five
times. The subjects were asked to control the experimental
vehicle to move from the start position each time. When
the vehicle arrived at the flag positions, subjects controlled
the vehicle to stop. If the obstacle was detected too close
in front of the vehicle, the obstacle detection system sent
a braking signal to stop the vehicle. The response time was
timed from the moment the driver starts to focus on the
stimulus until the corresponding command is generated (a
beep is heard when the command is sent). This is where
the process of the experiment ended. Subjects were asked
to wear the EEG signal acquisition equipment, as shown in
Fig. 11. The BCI analysed SSVEP signals and generated a
hexadecimal vehicle control commands every 3 s. Control
commands generated by the BCI and the obstacle detection
system were sent to the experimental vehicle after they
were judged by the command transmission determination
unit. Moving commands of the BCI were invalid if the
obstacle detection system detected an obstacle too close

Computer Processing
Terminal and
SSVEP Visual

Stimulus Sources

EEG Signals
Acquisition Unit

Fig. 11 Experimental environment in the experimental vehicle
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in front of the vehicle. Repeated commands to move or
brake were also invalid, so the driver only has to focus on
the stimulus when the vehicle state changes.

Results

In this section, we first report the results of offline tests
with different analysis durations. Next, we compare the
classification accuracy using and not using the OTWYV
method. Finally, we present the results of the simulated
and real vehicle control experiments and compare the dif-
ferences between them.

Offline Test Result of Different Analysis Time
Lengths

The results of the offline test with different analysis time
lengths are shown in Table 3. It can be found that the
correlation coefficient p increases and the classification
accuracy improves with the increase of the time length of
the SSVEP signals.

The analysis time of SSVEP signals must not be too
long or too short; otherwise, it will reduce the performance
of the BCI. To find a balance between a high classification
accuracy and quick response time, we used 3 s of SSVEP
signals to recognise the user’s operation intentions in the
experiments of BCV according to the result shown as 0.

Analysis of Overlap Time Windows Voting Method

The OTWYV method can improve the classification accuracy
of the SSVEP signals if the classification accuracy is larger
than 0.5 and smaller than 1. 0 shows that the classifica-
tion accuracy of 3-s SSVEP signals is about 80%, which is
consistent with the condition of using the OTWYV method.

We carried out the offline tests with or without the
OTWYV method. We chose continuous SSVEP signals of
the five subjects when they were stimulated, and processed
the data until the system with or without the OTWV
method output ten classification results. Table 4 compares
the classification accuracy of the SSVEP signals. It shows
that the average classification accuracy of the SSVEP sig-
nals with the OTWYV method is higher than that of the
SSVEP signals without the OTWV method.

Result of Simulated Vehicle Controlling Experiment
Table 5 shows the performance of the simulated BCV

across all subjects in the simulation experiment. Every
subject repeated the experiment four times and sent ten
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commands in each trial. The average response time and
accuracies of the five subjects are presented in 0. The
average response time of all subjects is 3.08 s with stand-
ard deviation (SD) 0.0084 s, and the average accuracy is
92.0% (SD 0.075%).

Results of Real Vehicle Controlling Experiment

Table 6 shows the performance of the brain-controlled
real vehicle operated by the five subjects in the outdoor.
Each subject repeated the experiment five times. The five
subjects’ average response time and accuracy of the BCV
outdoor driving are presented in 0. The obstacle detec-
tion system detected the obstacle and made the BCV stop
safely, to ensure that the subjects are safe in every time
of the experiments. All subjects completed the outdoor
experiment safely according to the expected requirements.
The BCV was not hit in any way. We verified the feasibil-
ity of the BCV mode in the outdoor. The average response
time of all subjects was 4.30 (SD 0.11) seconds, and the
average accuracy was 90.68% (SD 2.96%).

Comparison Between the Simulation and Real
Vehicle Controlling Experiment

We compared the mean response time and mean accu-
racy of each subject in the two experiments to analyse
the differences in BCI performance between the simula-
tion experiment and the real vehicle control experiment.
Figure 12 shows the comparison of BCI performance
between the two experiments. As shown, the performance
of the five subjects in the real vehicle controlling experi-
ment was not as good as that in the simulation experi-
ment. The simulation experiment had a higher mean accu-
racy, shorter mean response time and smaller standard
deviation than the real vehicle control experiment.

Fig. 12 Comparison of BCV
performance between the
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Discussion

In this paper, we propose a human-vehicle cooperative
driving system which combines the BCV mode with laser
obstacle detection, and its feasibility is verified by simula-
tion and real vehicle driving experiment. The architecture
of the human-vehicle cooperative driving system consists of
three main parts, which are the SSVEP-based BCI, the laser
obstacle detection system and the communication system.

The BCI system and the laser ranging obstacle detection
system generate hexadecimal vehicle control commands and
send them to the vehicle via the communication system to
control the vehicle moving and braking. The BCI system
recognises the driver’s intentions and converts the driver’s
SSVEP signals into vehicle control commands. To avoid
collisions with obstacles and keep the driver and the vehicle
safe, the obstacle detection system will send a braking com-
mand to stop the vehicle if an obstacle is detected to be too
close in front of the vehicle.

The CCA method and the OTWV method are used to
analyse the SSVEP signals of the driver. The OTWV method
can improve the classification accuracy and the result gen-
erating rate of the SSVEP signals. At the same time, the
OTWYV method can avoid the frequent change of the out-
put control command and improve the stability of vehicle
control in online experiments. EEG signal analysis for one
order takes longer, while the interval between adjacent out-
put orders is short.

Five healthy subjects participated in the experiments.
In the simulation experiment, we verified the feasibility of
using the SSVEP-based BCI system to control a simulated
vehicle. The mean accuracy of all subjects was 92.00% (SD
0.075%) with a mean response time of 3.08 (SD 0.0084) sec-
onds. Note that in particular, there are tests with a response
time below 3 s. The reason is that the OTWYV method
improves the generating rate of the classification results as
illustrated in the “Offline Test with Different Analysis Time
Lengths” section.

Simulation Experiment

100% Real Vehicle Controlling Experiment

o
S
X
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Table 2 Definition of control protocol

SSVEP Vehicle control Hexadecimal commands
frequencies commands

10 Hz Move straight A5 5A 04 B4 B8 AA

8 Hz Brake A55A 04 B3 B7 AA

In addition, we implemented the BCV system combined
with obstacle detection and verified the feasibility of the con-
trol mode using human intentions to control a real vehicle in
an outdoor experimental environment. All subjects safely com-
pleted the experiments in the outdoor according to the expected
requirements. The mean accuracy, in that case, was 90.68% (SD
2.96%) with mean response time of 4.30 (SD 0.11) seconds.

The performance of the real vehicle control experiment
was slightly lower than that of the simulation experiment.
The simulation experiment had a higher mean accuracy,
lower mean response time and lower standard deviation than
the real vehicle control experiment.

One of the reasons may be that none of the participants
had previous experience in controlling a real experimen-
tal vehicle via the BCI before the experiment. In addition,
other uncontrollable factors still exist, such as light intensity,
noise and the smoothness of the road, which have impacts
on the performance of SSVEP-based BCIs in outdoor

Table 3 The offline test result of different analysis time lengths

Subjects  Time 8 Hz 10 Hz
length of
SSVEP Average p Average Average p Average
signal (s) accuracy accuracy
Subject A 1 0.003 40% 0.003 50%
2 0.021 70% 0.022 70%
3 0.122 80% 0.131 80%
4 0.225 80% 0.231 90%
Subject B 1 0.003 50% 0.003 50%
2 0.019 60% 0.021 70%
3 0.115 80% 0.121 90%
4 0.212 90% 0.196 90%
Subject C 1 0.003 50% 0.004 50%
2 0.015 70% 0.019 60%
3 0.123 80% 0.119 80%
4 0.223 90% 0.215 90%
SubjectD 1 0.003 50% 0.004 60%
2 0.016 60% 0.021 70%
3 0.122 80% 0.136 80%
4 0.186 90% 0.232 100%
SubjectE 1 0.003 60% 0.003 50%
2 0.013 70% 0.018 80%
3 0.128 80% 0.139 90%
4 0.226 90% 0.251 100%

@ Springer

Table 4 Classification accuracy of the 3-s SSVEP signals obtained by
CCA with/without the OTWYV method

Subjects 8 Hz 10 Hz

Accuracy Average with Accuracy Average with
without OTWV without OTWV
OTWV OTWV

A 80% 90% 80% 90%

B 80% 80% 90% 100%

C 80% 90% 80% 100%

D 80% 90% 80% 80%

E 80% 80% 90% 100%

Average 80% 86% 84% 94%

driving environments [41-43]. More practice should facili-
tate improvement in the performance of controlling BCVs.
Moreover, controlling a real vehicle in the outdoor experi-
mental environment may influence the psychological state
of the driver, which may also have an impact on the perfor-
mance of the BCI [11]. In addition, the driver is distracted
by focusing on the visual stimulus and paying attention to
the surrounding environment when driving an SSVEP-based
BCV. In the future, it would be important to improve the
intelligence of the vehicle and try different and more com-
fortable BCI paradigms such as motor imagery.

Compared with other human—machine interfaces, like
touch screen displays, hand gesture recognition systems and
speech recognition systems, the users can use BCIs without
body movement. In addition, analysing the EEG signals of
drivers is currently the most direct and convenient way to
obtain drivers’ intentions. Therefore, the brain-controlled
mode can provide valuable services not only for people with
physical disabilities, but also for healthy people. For people
with physical disabilities, BCVs have the potential to help
them recover their driving ability, thus broaden their scope of
activities, and improve the living standards. For healthy peo-
ple, BCVs provide a more cerebral control mode than the con-
trol using the limbs, thus liberate driver’s limbs and enhance
people’s driving experience. Moreover, BCVs also provide
valuable experience for other brain-controlled machines and
promote the study of BCI and intelligent machines.

One limitation of the proposed framework is that stress
and noise are the main factors that affect the accuracy level
and reliability of the BCV [43]. Another limitation is that
the vehicle control commands converted by EEG signals
are switching values in the form of 0’s and 1’s, which can-
not perform fine tuning, such as steering. Note also that our
experiments were conducted in common weather conditions,
such as sunny, cloudy and overcast. They did not involve
all weather conditions, such as rainy and snowy days. Bad
weather may have an impact on the performance of the BCV
system in outdoor experimental environment.
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Table 5 Performance of the

. . Subjects Average response time for each trial (s) Average time (s) Accuracy
brain-controlled simulated
vehicle in the simulation Trial 1 Trial 2 Trial 3 Trial 4
experiment
A 32 2.7 33 3.1 3.075 92.5%
B 2.7 2.9 35 33 3.1 87.5%
C 2.6 33 3.0 2.8 2.925 95.0%
D 3.1 34 3.0 32 3.175 92.5%
E 3.1 2.8 35 3.0 3.1 92.5%
Average - - - - 3.075 92.0%
Tab|e§ Performance of the Subjects Trial 1 Trial2 Trial 3 Trial4 Trial 5 Average
BCV in the outdoor experiment
A Average response time of each trial (s) 4.2 3.7 35 4.3 4.3 4.0
Number of BCI commands 5 5 7 5 5 N
Number of wrong BCI commands 0 0 2 0 1 -
Number of braking commands 1 1 1 1 1 -
Accuracy (%) 100 100 71.4 100 80 90.28
B Average response time of each trial (s) 4.6 4.7 4.7 5.1 39 4.6
Number of BCI commands 5 7 7 5 5 -
Number of wrong BCI commands 0 2 2 0 0 -
Number of braking commands 1 1 1 1 1 -
Accuracy (%) 100 71.4 71.4 100 100 88.56
C Average response time of each trial (s) 3.6 4.3 5.2 5.3 5.2 4.72
Number of BCI commands 6 6 5 5 5 -
Number of wrong BCI commands 1 1 0 0 0 -
Number of braking commands 1 1 1 1 1 -
Accuracy (%) 83.3 83.3 100 100 100 93.32
D Average response time of each trial (s) 4.3 5.1 3.6 43 3.7 4.2
Number of BCI commands 5 7 5 5 5 -
Number of wrong BCI commands 1 2 0 0 0 -
Number of braking commands 1 1 1 1 1 -
Accuracy (%) 80 71.4 100 100 100 90.28
E Average response time of each trial (s) 3.5 3.6 43 3.6 5.1 4.02
Number of BCI commands 5 6 5 7 5 -
Number of wrong BCI commands 0 1 0 2 0 -
Number of braking commands 1 1 1 1 1 -
Accuracy (%) 100 83.3 100 71.4 100 90.94

The further development of intelligent driving technolo-
gies can bring additional benefits to the research of BCV.
And we can better realise functions relating to brain control-
ling with the help of the intelligent driving system. BCV sys-
tems that integrate intelligent driving technologies can help
drivers to operate a vehicle more safely and comfortably.

The outdoor driving environment of the experiments is
simple. In the future, we will try to drive the BCV in more
complex environment. The SSVEP-based BCVs are distract-
ing for the drivers, we will try more comfortable BCI para-
digm such as motor imagery. Current and future research
in this field will further improve the intelligence level and
humanisation level of driving mode.

Conclusions

In this paper, we propose a new human-vehicle coopera-
tive driving system which combines the BCV with obstacle
detection technology. Its feasibility is verified by the simula-
tion and real vehicle driving experiment. The human-vehicle
cooperative driving system consists of three main parts: the
SSVEP-based BCI, the laser obstacle detection system and
the communication system. Two experiments were carried
out: (1) the simulated BCV experiment and (2) real vehicle
controlling experiment. In the simulated vehicle controlling
experiment, we verified the feasibility of the SSVEP-based
BCI system to control a simulated vehicle in the virtual
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driving environment. We have implemented this coopera-
tive human-vehicle driving mode by combining the BCV
system with obstacle detection. The safe driving of the BCV
was accomplished by this mode, which has been verified in
the real vehicle control experiment.
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