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The global magnetic phase diagram for fused azulene oligomers is obtained by using a fermionic Hubbard
model, which is an intermediate between the molecular Pariser-Parr-Pople empiric Hamiltonian and the spin-1/2
antiferromagnetic Heisenberg model. We employ the density matrix renormalization group (DMRG) approach
to explore the ground state properties of azulene-like molecules as a function of the electronic correlation and
the oligomer size. It is shown that, depending on the length of the oligomer, fused azulene transitions from a
singlet (S = 0) to a higher-spin (S = 1, 2) ground state. Near the quantum magnetic phase transition the electric
dipole moment, present on fused azulene molecules, couples with the magnetic moment leading to a divergent
magnetoelectric susceptibility at the boundary lines of the magnetic phase diagram. These spontaneous electric
and magnetic polarizations, together with the magnetoelectric coupling between them, indeed corroborate that
these fused azulene oligomers can be viewed as a purely organic multiferroic material, being a magnetoelectric
molecule.
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I. INTRODUCTION

The name multiferroic is usually used to address a class
of materials which simultaneously display more than one
order parameter. The physical properties of these systems
can be controlled by an external agent (like external fields
or tensions, for example) and, more interestingly, a coupling
between the order parameters can take place for some of these
single-compound materials (also referred to as single-phase
materials). Magnetoelectric multiferroics, for instance, exhibit
at least one kind of magnetic ordering with magnetization
(M) along with electric polarization (P). In some of these
rare single-phase multiferroics, the moments M and P may
be modified by either electric (E) or magnetic (H) external
fields. The coexistence of the two forms of ordering (nonzero
macroscopic magnetic and electric dipole moments) leads to
additional interactions, allowing for induction of magnetiza-
tion by E or charge polarization by H. This magnetoelectric
coupling opens the possibility for charge and spin control
by either of these conjugated fields. For a short review on
multiferroics see, for instance, Refs. [1,2].

Recent advances in understanding the microscopic origins
of the magnetoelectric (ME) effect on single-phase materi-
als, including metal-organic compounds [3–5], have shown
that promising candidates for controlled ME switchings are
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compounds with electronic states close to the ground state
[6,7]. In these materials, the electronic states close to the
ground state are energetically lowered by magnetoelectric
contributions under a perturbation such as an external field.
Consequently, frustrated systems, or systems in the vicinity
of phase boundaries, as well as quantum critical points, are
prime candidates for magnetic phase control using E or, in-
directly, electric polarization by using H. In this way, fused
azulene molecules (forming a quasi-one-dimensional system
and whose geometries do not have inversion symmetry) ex-
hibit the above mentioned characteristics and have already
been theoretically predicted to be a possible purely organic
multiferroic candidate [8].

Molecular organic electronic devices made of oligo-acene,
consisting of even-ring molecules made of fused benzene in
the acene conformation, are already a reality [9–12]. Simi-
lar quasi-one-dimensional geometries, explored by different
computational approaches, have also pointed to the existence
of magnetism at ground state when odd-rings are present
in these theoretical heterostructures [13–15]. Some of these
molecules can also support electric polarization, making avail-
able a large set of possible magnetoelectric molecules. These
are long molecules with seven or more rings. Nevertheless, it
has been recently reported from experiments that the stability
of oligo-acenes increased upon the introduction of azulene
molecules into fused benzene oligomers [16].

Benzene and azulene oligomers are planar structures made
of only carbon (C) and hydrogen (H) atoms. Within the
Hückel molecular orbital theory [17] the physics of these
conjugated systems can be understood in terms of an extended
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FIG. 1. (a) Skeleton structure for 10-benzene, (b) a single azu-
lene molecule, and (c) and (d) 5- and 13-azulene oligomers,
respectively. The area of the dots, as well as the color gradient on
the right, is proportional to the electronic charge when the Coulomb
interaction between electrons at the same site is not taken in ac-
count. The arrows represent the electric polarization due to the
unbalanced charge distribution through n-azulene molecules. The
hydrogen atoms and the corresponding bonds are not shown in this
figure for the sake of clarity.

molecular orbital with a pz orbital for each carbon atom. At
half-filled band the electronic distribution of charge on π or-
bitals allows kinetic and magnetic frustration on azulene-like
geometries, which are absent on benzene, due to the rings with
odd number of carbon atoms. For this reason, and because of
the lack of inversion symmetry, the azulene molecule displays
spontaneous charge polarization and we would expect it to
have a lower-energy triplet excitation than benzene molecules.
The fused-benzene series of molecules has already been syn-
thesized up to nine monomers [18,19] and it has been found
not to display either charge or magnetic polarization.

As a matter of example, Fig. 1 illustrates the skeleton
geometries for (a) a 10-acene oligomer (5-fused benzene), (b)
a single azulene molecule, (c) a 5-fused azulene oligomer,
and (d) a 13-fused azulene oligomer. The dots illustrate the
carbon atoms’ positions along with the charge distribution and
electric dipole moment computed using a tight-binding ap-
proach [20]. Although the tight-binding charge distributions,
depicted by the dots in Fig. 1, seem more or less the same on
each site, the electric dipole moment (arrow) evinces that the
five-membered ring, as shown in (b), does accumulate more
negative charge relative to the seven-membered ring. To the
best of our knowledge, there exist geometry optimizations
based on density functional theory (DFT) for the azulene
molecule configurations shown in Fig. 1 up to 6-fused azulene
[21]. There are also independent geometry optimizations of
shorter linear molecules made of fused azulene and benzene
[14–16]. From the above four different studies [14–16,21],
the planar geometry of these polycyclic aromatic hydrocarbon
systems is confirmed and almost negligible bond length varia-
tions are obtained. Thus, to compute the electric polarization,
one can consider perfect 5 and 7 carbon rings.

These fused azulene configurations have been theoretically
studied using different computational techniques [8,15,21,22].
DFT and effective valence bond explorations show the

presence of a nonferromagnetic to ferromagnetic transition
when 6 or more azulene molecules are fused together [21]. A
subsequent study using density matrix renormalization group
(DMRG) reports a ferromagnetic transition for a shorter azu-
lene oligomer (5-fused azulene molecules), together with a
charge polarization. These results suggest that the fused azu-
lene oligomers could be indeed a multiferroic molecule [8].
A configurational interaction study for shorter oligomers (2-
and 3-fused azulene) conjectures that the spin frustration,
due to the geometry of the azulene molecule, could be the
origin of the magnetic polarization in longer odd-membered
chains [22].

Other studies [14,15,23] have shown different magnetic
molecules with configurations not given by Ovchinnikov’s
rule [24]. Despite that the polycyclic aromatic hydrocarbon
molecules found in these simulations have the potential to
be molecular magnets, only the fused azulene with geometry
such as in Fig. 1(c) and those in Refs. [8,15,21,22] have
already been suggested as possible, and unique so far, purely
organic multiferroics.

The fused azulene geometry has also been explored by
using the spin-1/2 antiferromagnetic Heisenberg Hamilto-
nian [8] and the fermionic Hubbard Hamiltonian [15]. For
both models the magnetic ground state moment has been ob-
served to increase with the number of monomers. In addition,
many interesting features have also been reported, such as
a reentrant nonmagnetic state when the exchange interaction
strength of the common bond between rings is varied [13]. Al-
though the origin of the magnetism in fused azulene molecules
is not yet completely understood, their geometries seem in fact
to show a route to synthesize purely organic magnetoelectric
molecules.

An appropriate description of the magnetic excitations in
these conjugated systems demands that full electron correla-
tions should be taken into account. However, such a many-
body problem imposes a severe restriction on the size of the
system to be explored either analytically or computationally.
Even approximate Hamiltonians, like the phenomenological
Pariser-Parr-Pople (PPP) Hamiltonian [25,26], which consid-
ers full long-range Coulomb interactions, are very difficult to
be solved for large systems. Although graphene nanoribbons
with 100 carbon atoms have already been studied within the
PPP model using DMRG algorithms [27,28], Hamiltonians
such as the Heisenberg [8,13,14], Hubbard, and its varia-
tions such as effective Hubbard or extended Hubard models
[15,29,30] have also been used to address such systems. In
a previous work [15], it has been shown that Hubbard and
PPP models, also DFT, give similar results for the elec-
tronic and spin ground state configuration. Moreover, it has
been reported in Ref. [29] that an effective Hubbard model
can be obtained from extended Hubbard models (like PPP)
that describe well the charge and spin state. Similarly, the
Supplemental Material of Ref. [21] also uses the Hubbard
model to obtain the spin configuration on azulene molecules.
These works show that the Hubbard Hamiltonian could be
well suited for studying the main transition properties of the
present azulene molecules.

The Hubbard Hamiltonian, which we will use in this work,
neglects the Coulomb repulsion between electrons of different
atoms and takes into account just the interaction between
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electrons at the same site (on-site Coulomb repulsion). This
model simplifies the complexity of the problem while retain-
ing electronic correlations and has been successfully used to
elicit information on correlated systems, including conjugated
molecules (see, for instance, Refs. [31–33]).

When long-range Coulomb interactions are neglected, the
important parameter is naturally the effective strength of the
on-site Coulomb interaction (an interesting discussion on this
subject for graphene and graphite can be found in Ref. [34]).
The evolution of the electronic structure with the increase of
the on-site interaction has also been investigated in nonor-
ganic multiferroics like the Bi2FeCrO6 perovskite and parent
structures [35].

In the present work, we employ the density matrix
renormalization group (DMRG) approach and the Hubbard
Hamiltonian to explore the ground state properties of azulene-
like molecules as a function of the electronic correlation and
the oligomer size. Thus, we obtain the global magnetic phase
diagram for these molecules in the plane of the oligomer
length n (for 1 � n � 17) versus the ratio of the on-site
Coulomb interaction to the hopping constant between nearest-
neighbor carbon atoms. In addition, we take a step forward, by
showing that there is a coupling between the magnetic and
charge polarization, leading to a divergent magnetoelectric
susceptibility near the magnetic phase transition. This last
result indicates that fused azulene molecules could in fact be
considered a purely organic magnetoelectric multiferroic.

The plan of the paper is the following. In the next sec-
tion we briefly describe the Hubbard model for the n-fused
azulene oligomers and give some details of the DMRG numer-
ical approach. Section III conveys the results for n = 1-, 5-,
and 13-azulene fused oligomers and the global magnetic
phase diagram in the plane of the oligomer length versus the
ratio of the on-site Coulomb interaction to the hopping con-
stant. Some concluding remarks are given in the last section.

II. MODEL AND METHOD

A. Model

We employ herein the Hubbard model [36] to describe the
electronic interactions present in conjugated systems of the
kind depicted in Fig. 2. The model Hamiltonian Ĥ basically
contains a noninteracting part Ĥ0 and a term Ĥ1 that incorpo-
rates the on-site electron-electron interaction, namely

Ĥ = Ĥ0 + Ĥ1. (1)

The noninteracting part is a tight-binding-like Hamiltonian

Ĥ0 = −t
∑

〈i, j〉;σ
(ĉ†

iσ ĉ jσ + ĉ†
jσ ĉiσ ), (2)

which describes the kinetic energy with a hopping constant t
between nearest-neighbor pz orbitals of carbon atoms (hence-
forth, we will take t as the energy unit). In this framework,
the operator ĉ†

iσ (ĉiσ ) creates (annihilates) an electron of spin
σ , localized at site i. 〈i, j〉 indicates a sum over nearest
neighbors.
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FIG. 2. (a) Part of a fused azulene structure and (b) the corre-
sponding DMRG ladder-like scheme for building fused azulenes.
The [ ]X portion is the building block of the oligomer. The numbers
label, for the first eight sites of the building block of the oligomer,
the carbon atoms on the original molecule geometry, panel (a), and
on the corresponding ladder structure, panel (b). In the latter, the
numbers show the order of sites as implemented in our DMRG
algorithm.

The interacting part of Ĥ can be written in the form

Ĥ1 = U
N∑

i=1

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
, (3)

where U is the magnitude of the on-site Coulomb interaction.
The total electron density is n̂i = n̂i↑ + n̂i↓, with n̂iσ = ĉ†

iσ ĉiσ

being the local particle number operator for electrons of spin
σ at site i. N denotes the total number of sites (carbon atoms),
which is equal to the number of electrons in the system. At
half-filled band, the factor 1/2 fixes the chemical potential for
mean occupation 〈n̂i〉 = 1 on each site.

At this point it is worthwhile to address some comments
on the parameters of this Hamiltonian. It is indeed unclear
how to devise a way to change U for the p orbital of the
carbon atom. However, it has been shown for graphene and
benzene that optimal values of U/t differ for each compound
[29]. In this reference, it has also been shown that the effective
on-site Coulomb repulsion U of the Hubbard model can result
from an extended Hubbard model (PPP) as a competition be-
tween the local part of the interaction and a weighted average
of nonlocal interactions. The infinite limit U/t → ∞ of the
Hubbard model (Heisenberg model) has been used to find pos-
sible magnetic molecules [14], as well as perturbations around
U/t ∼ 0 [15]. C20 molecules, with different geometries, have
also been studied by using the Hubbard model with different
numerical techniques [30]. In this work different estimates of
the U to t ratio for the three C20 isomers have been reported.

It is quite clear from the above discussion that the U/t
value is not well defined for different compounds and can be
even modified by the environment and geometry where the
molecule is placed. In this sense, every model adds in the
understanding of the magnetic and electronic properties of
such molecules. For this reason, in this work we try to give
a full picture, in the case of a Hubbard model, of the possible
phases as a function of the ratio U/t .
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FIG. 3. Difference of the ground state energies for the 5-azulene
and 13-azulene as a function of the number of kept states m. EDMRG

stands for the ground state energy of the Hubbard model with U =
0 computed at Sz = 0 spin subspace by using DMRG. Eexact stands
for the exact matrix diagonalization of the Hamiltonian at the same
conditions.

B. Density matrix renormalization group

Although the DMRG algorithm was first designed to study
one-dimensional problems [37], different low-dimensional
structures, like quasi-one-dimensional models, can also be
accurately treated within this approach [15,38,39]. One simple
example is a two-legged ladder structure, which is quite suit-
able for representations of oligo-acenes [as in Fig. 1(a)] and
fused azulenes [as in Figs. 1(c) and 1(d)] as well. As shown in
Fig. 2, one can easily map any n-fused azulene to the Hubbard
Hamiltonian with hopping defined on a two-legged ladder
with alternating perpendicular and skewed rungs. It turns out
that such finite strip structure can be easily implemented on a
DMRG algorithm.

It is clear that oligomers described by the Hamiltonian
in Eq. (1) have SU(2) symmetry, so we can take advantage
of the degeneracy of spin projections MS for a total spin S,
and compute the low-lying energy of the system in a chosen
subspace. The ground state energy in the S subspace is found
when |MS| � S and E (MS ) � E (MS + 1), where E (MS ) is
the lowest energy within MS subspace [40,41]. In this case,
the DMRG algorithm computes the total energy with a fixed
number of electrons (equal to the number of carbon atoms)
and fixed total spin projection MS .

In order to establish the accuracy of our DMRG simula-
tions we have compared the DMRG results for the energy
at U = 0 with the exact solution of the tight-binding Hamil-
tonian Ĥ0. We have obtained the ground state (GS) energy
with different sizes of the Hilbert space, keeping a typical
cutoff in the number of dominant density matrix eigenvectors
m = 800 to a maximum of m = 1800 states per block at the
final iteration. In these conditions the energy precision is in the
fourth decimal digit. The relative energy error is comparable
to the DMRG weight lost, and is kept lower than 10−5 in the
worst cases. In Fig. 3 we a have a numerical comparison, at
U = 0, of the relative difference of the ground state energies
computed from the exact matrix diagonalization Eexact and
those coming from the DMRG procedure EDMRG for different

values of m and for 5- and 13-azulene oligomers. Note that
Eexact is negative and, due to the variational character of the
DMRG, EDMRG is always greater than Eexact.

III. RESULTS AND DISCUSSION

We have performed DMRG simulations to compute the
spin gap excitations of the energy, the charge polarization,
and the electric susceptibility for n-fused azulene oligomers
for 1 � n � 17; see Figs. 1(b) and 1(c) for examples with
n = 1, 5, and 13. These specific conjugated configurations,
with an armchair edge in one side of the chain and zigzag
edges on the other side of the chain (in analogy with graphene
edges), lead to a kind of semicircular shape when 17 azulene
molecules are fused together (138 carbon atoms).

The spin gap excitations of the energy is defined as the
difference between the energy of the higher spin configuration
E (MS ), computed at the higher MS subspace, and the energy
of the spin configuration E (MS − 1), namely

�MS = E (MS ) − E (MS − 1), (4)

for MS = 1, 2, . . ..
The vector charge polarization, computed at a given value

of the MS subspace, is defined by the spontaneous electric
dipole moment

P(MS ) =
∑

i

(〈ni〉 − 1)ri, (5)

where 〈ni〉 is the average on-site electronic charge at the
subspace MS and the number 1 here arises due to the nucleus
charge.

Finally, the magnetoelectric charge susceptibility is given
by

χP = P(MS ) − P(MS − 1)

E (MS ) − E (MS − 1)
, (6)

where P(MS ) is the magnitude of the vector charge polariza-
tion P(MS ).

A. Single azulene molecule (n = 1 and 10 carbon atoms)

We start by showing the magnetic and electric ground state
(GS) properties for a single azulene-like molecule, Fig. 1(b),
as the ratio U/t is varied. In Fig. 4 we have the corre-
sponding results as a function of U/t ranging from zero
(uncorrelated system) up to U/t = 10 (strongly correlated
system). Figure 4(a) shows the difference of the energy com-
puted on the MS = 1 and MS = 0 spin subspaces. A finite
spin gap indicates that only a singlet ground state is found
for this molecule, in agreement with previous results from
Refs. [8,21,22]. A nonvanishing singlet-triplet spin gap for the
azulene molecule with U/t shows that the azulene molecule
does not undergo any magnetic phase transition and remains
always in a singlet S = 0 state.

Figure 4(b) shows the magnitude of the vector charge
polarization computed at MS = 0 and MS = 1 subspaces. In
both cases, the computed electric dipole moment strongly
decreases when the system goes from the weak electronically
correlated to the correlated regime. This behavior reflects the
strong on-site correlation that leads the electrons to avoid the
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FIG. 4. (a) The singlet-triplet spin gap �1; (b) absolute value of
the electric polarization P, in logarithmic scale; and (c) susceptibility
χP, all of them as a function of U/t for the single azulene molecule in
Fig. 1(b) (10 carbon atoms). The dashed line shows the asymptotic
limit of the susceptibility for large values of U/t and full lines are
just guides to the eyes. The DMRG data have an error bar which is
smaller than the symbol sizes.

double occupancy on each carbon atom, thus favoring local-
ization and diminishing the value of the charge polarization.
As a consequence, the magnetoelectric charge susceptibility
increases (from its negative saturation value) with U/t , and
goes to zero in the strong correlated regime region, as shown
in Fig. 4(c).

B. Five-fused azulene molecule (n = 5 and 42 carbon atoms)

The same analysis for a five-fused azulene-like molecule is
displayed in Fig. 5. One can clearly see that for this oligomer
length, a spontaneous phase transition from the singlet (S = 0)
to the triplet (S = 1) ground state occurs at Uc1/t ∼= 2.6, as
shown in Fig. 5(a). Here, Uc1 is the critical value of the
electronic correlation in which the system undergoes a phase
transition. Furthermore, another transition from the triplet
back to the singlet ground state is also observed for U ′

c1/t ∼=
4.3. The inset in Fig. 5(a) shows the energy difference �2 of
the system at MS = 2 and MS = 1 subspaces. The finite spin
gap �2 > 0 in the entire range of U/t indicates that the ground
state of the system belongs indeed only to the subspaces with
S = 0 and S = 1, and no transition to higher values of the total
spin is present.

The multiferroic character of the system is revealed by the
abrupt change of the electric polarization and magnetoelectric
susceptibility that occurs near the magnetic phase transition.
Figure 5(b) shows the charge polarization magnitude com-
puted at MS = 0 and MS = 1 total spin subspaces. We observe
that the charge polarization at MS = 0 subspace is larger in the
singlet ground state than in the MS = 1 subspace for U/t <
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FIG. 5. The same as Fig. 4 for the 5-azulene oligomer, in this
case with a total of 42 carbon atoms. The inset in (a) shows �2,
which is the difference of the energy computed on the MS = 2
and MS = 1 spin subspaces. Uc1 is the critical value of the on-site
Coulomb interaction at the transition from the MS = 0 to the MS = 1
spin subspaces and U ′

c1 is the corresponding critical interaction at the
transition from the MS = 1 back to the MS = 0 spin subspaces. As
before, the DMRG data have error bars which are smaller than the
symbol sizes.

Uc1/t and U/t > U ′
c1/t . The polarization is the same between

Uc1/t and U ′
c1/t (similar behavior happens for the PPP model

[8]). At the borders we have a sudden change in the dipole
moment when the spin GS goes from the singlet to triplet
phases, and vice versa. This change at the absolute value of
polarization leads to a strong magnetoelectric response near
the magnetic transition, as indicated by the divergence of
the charge susceptibility around Uc1/t and U ′

c1/t , as shown
in Fig. 5(c). This means that the charge polarization can be
tuned by changing the external magnetic field value around
the quantum magnetic phase transition.

It should be stressed that the values of Uc1/t and U ′
c1/t

have been obtained from the spin energy gap and, besides the
intrinsic errors from the DMRG calculations, they also carry
uncertainties from the steps of U/t used in the simulations.
Taking into account all these uncertainties we were able to
locate these transition values with error of the order ±0.1
and ±0.5 (for short and long oligomer sizes, respectively).
For the present oligomer length the critical values are Uc1/t =
2.6 ± 0.1 and U ′

c1/t = 4.3 ± 0.1.

C. 13-fused azulene molecule (n = 13 and 106 carbon atoms)

The results for the 13-fused azulene molecule are depicted
in Fig. 6. It is interesting to see now that besides a transition
from the singlet to the triplet ground state around Uc1/t ∼= 0.7,
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FIG. 6. (a) Spin energy gap �MS ; (b) absolute value of the elec-
tric polarization P; and (c) susceptibility χP (the inset shows the
corresponding inverse of χP). All quantities are given as a function
of U/t for the 13-azulene oligomer with 106 carbon atoms for three
different values of the total spin MS = 0, 1, 2. The DMRG data
have error bars which are smaller than the symbol sizes for most
U/t values. Notably, for 2 � U/t � 3 the polarization shows a large
uncertainty.

an additional transition to the S = 2 ground state takes place
around Uc2/t ∼= 2. The S = 2 ground state, however, is not
stable for larger values of the electron-electron repulsion and
for U ′

c2/t ∼= 4 the system transitions back to the S = 1 state.
These quantum phase transitions are clearly seen in the

spin gap energy �MS shown in Fig. 6(a), namely �1 between
the states MS = 1 and MS = 0 and �2 between the states
MS = 2 and MS = 1. We have noticed that this triple transition
behavior occurs here only for lengths n � 13, while using the
PPP model such transitions are predicted to happen when the
system reaches about 11 fused azulene units [8]. Note that
at this point we are introducing a convenient notation Uc1/t
and Uc2/t for transitions to the spin states S = 1 and S = 2,
respectively, and the primed quantities U ′

c1/t and U ′
c2/t for

transitions back to the spin states S = 0 and S = 1.
The magnitude of the charge polarization computed at

the MS = 0, MS = 1, and MS = 2 subspaces is shown in
Fig. 6(b). As happens for the 5-fused azulene, the dipole
moment abruptly varies when the spin of the GS goes from
singlet to higher spin GS (S = 1, 2). Again, this behavior of
the absolute value of the polarization causes a divergence of
χP near the magnetic transition, as shown in Fig. 6(c). The
inset in Fig. 6(c) depicts the inverse of the susceptibility as
a function of U/t . For this oligomer size, however, the elec-
tric polarization for different values of MS and 2 � Uc/t � 3
presents a large uncertainty. For this reason we have estimated

U
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FIG. 7. Ground state magnetic phase diagram in the n versus
U/t plane. The empty, shaded, and hatched regions represent, re-
spectively, the ground state phases of the total spin S = 0, S = 1,
and S = 2 of the molecule. The symbols represent the quantum
phase transitions between different total spin of the molecule, with
full symbols to a higher spin value and open symbols back to the
lower spin value. The lines are second-order perturbation theory
calculations [15] for the closing value of the spin gap at spin S = 0 to
S = 1 transition (�1; full line) and S = 1 to S = 2 spin ground state
(�2; dashed line) transition, respectively.

the transition point by using only the energy gap �MS for all
oligomer sizes.

Taking into account all the error sources we can estimate,
for this oligomer size, Uc1/t = 0.7 ± 0.1, Uc2/t = 2.25 ±
0.25, and U ′

c2/t = 4.0 ± 0.25.

D. Quantum magnetic phase diagram

Following the above procedure in the same way for other
oligomer lengths, we can construct the magnetic ground state
phase diagram for these azulene-like molecules by computing
the critical value of the ratio Uc/t at each transition as a
function of the oligomer size n. In Fig. 7, for any oligomer
length n � 17, Uc gives the corresponding critical value of
the electronic correlation for which the system undergoes a
quantum phase transition. S is the corresponding value of the
ground state spin. As previously done, for each oligomer size
n, the strengths of the ratios Uci/t and U ′

ci/t , i = 1, 2, have
been estimated with a precision of at least 0.5.

It is clear from Fig. 7 that depending on the molecule
length, the system (i) stays in the singlet state for any value of
the on-site Coulomb interaction for n < 5; (ii) for 5 � n � 6
it displays a quantum transition from the singlet (S = 0) to
the triplet (S = 1) ground state at Uc1/t and back again to the
singlet state at U ′

c1/t ; (iii) in the region 6 < n < 13 only a
quantum transition from the singlet to the triplet ground state
is observed; and (iv) after the transition from the singlet to
the triplet state, it can additionally transition to the quintuplet
S = 2 ground state at Uc2/t , and back again to the triplet state
at U ′

c2/t , when 13 � n � 17. In short, the molecules become
ferromagnetic as soon as their length is greater than n = 5.
The results are summarized in Table I, together with critical
values obtained from a second-order perturbation approach
for comparison.
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TABLE I. Critical values of the U/t ratio for each oligomer size n obtained by using the DMRG. Uc1/t is the transition interaction from
the singlet (S = 0) to the triplet (S = 1) spin state. U ′

c1/t is the transition interaction from the triplet (S = 1) back to the singlet (S = 0) spin
state. Similarly, Uc2/t is from the triplet (S = 1) to the quintuplet (S = 2) spin state with U ′

c2/t from the quintuplet (S = 2) back to the triplet
(S = 1) spin state. U PT

c1 /t and U PT
c2 /t are, respectively, the critical interaction values for the singlet (S = 0) to the triplet (S = 1) and for the

triplet (S = 1) to the quintuplet (S = 2) spin states according to a second-order perturbation theory [15].

n-azulene Uc1/t U ′
c1/t Uc2/t U ′

c2/t U PT
c1 /t U PT

c2 /t

5 2.7 ± 0.1 4.2 ± 0.1
6 2.0 ± 0.1 5.8 ± 0.1 2.376
7 1.5 ± 0.1 1.593
8 1.2 ± 0.1 1.211
9 1.1 ± 0.1 0.965
10 1.0 ± 0.5 0.792 2.578
11 0.9 ± 0.5 0.664 2.037
12 0.8 ± 0.5 0.566 1.697
13 0.7 ± 0.1 2.25 ± 0.25 4.0 ± 0.25 0.488 1.452
14 0.7 ± 0.5 2.5 ± 0.25 4.5 ± 0.25 0.426 1.263
15 0.7 ± 0.5 2.5 ± 0.5 5.0 ± 0.5 0.375 1.113
16 0.7 ± 0.5 2.5 ± 0.5 5.2 ± 0.5 0.333 0.990
17 0.7 ± 0.5 2.5 ± 0.5 5.2 ± 0.5 0.298 0.888

IV. CONCLUDING REMARKS

The global magnetic phase diagram depicted in Fig. 7
shows indeed an interesting pattern of reentrant magnetic
phases. Unfortunately, up to our knowledge, we still do not
have in the literature, for the present model, any similar
phase diagram to compare with. However, some particular
details of the behavior shown in Fig. 7 can be correlated with
results from other analogous systems. For instance, similar
reentrances have also been observed when using the Hubbard
model to explore different quasi-one-dimensional geometries,
such as quantum nanowires of As/Si(100) [42] and general-
izations of the quantum J1-J2 model defined on two-legged
ladders with skewed rungs [13].

In Ref. [8] were computed the singlet and the triplet
spin ground states using a semiempirical approach, namely
the PPP model with the intersite Coulomb interaction
parametrized by the Ohno formula [43] and fixed on-site
Coulomb interaction U/t = 4.7. In this case, the transition
happens when six azulene molecules are fused. Note that
within the present fermionic approach the transition only oc-
curs when the oligomer length reach five fused molecules.
This is in fact an expected result because the Hubbard model

plays a role between a finite fixed value for the Coulomb
interaction (PPP Hamiltonian) and infinite intersite Coulomb
repulsion (Heisenberg Hamiltonian).

We note that the U/t strength needed to induce the fer-
romagnetic phase for n � 5 decreases when increasing the
oligomer size (it eventually saturates for n � 13), in qual-
itative agreement with results from a simple second-order
perturbation treatment of electronic correlations by means
of Rayleigh-Schrödinger perturbation theory analysis [15].
Thus, besides presenting the full n versus U/t phase di-
agram for fused-azulenes, the present work shows that a
divergent magnetoelectric susceptibility appears close to the
magnetic transition, signalizing a magnetoelectric multifer-
roic behavior. We point out that this same magnetoelectric
effect could be present on other purely organic magnetic
molecules [14,15].

ACKNOWLEDGMENTS

This work has been supported by the Argentinian agency
CONICET, PICT 2012/1069 (A.V. and D.J.G.), and by the
Brazilian agencies FAPEMIG, CAPES, and CNPq.

[1] N. A. Spaldin, MRS Bull. 42, 385 (2017).
[2] N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
[3] P. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby,

N. S. Dalal, H. W. Kroto, and A. K. Cheetham, J. Am. Chem.
Soc. 131, 13625 (2009).

[4] B. Kundys, A. Lappas, M. Viret, V. Kapustianyk, V. Rudyk, S.
Semak, C. Simon, and I. Bakaimi, Phys. Rev. B 81, 224434
(2010).

[5] J. Ding, H. Li, L. Wen, X. Kang, H. Li, and J. Zhang, J. Magn.
Magn. Mater. 346, 91 (2013).

[6] M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
[7] N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).

[8] S. Thomas, S. Ramasesha, K. Hallberg, and D. García, Phys.
Rev. B 86, 180403(R) (2012).

[9] A. N. Aleshin, J. Y. Lee, S. W. Chu, J. S. Kim, and Y. W. Park,
Appl. Phys. Lett. 84, 5383 (2004).

[10] R. W. I. de Boer, T. M. Klapwijk, and A. F. Morpurgo, Appl.
Phys. Lett. 83, 4345 (2003).

[11] C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich,
D. J. Gundlach, and B. Batlogg, J. Appl. Phys. 96, 2080
(2004).

[12] M. Watanabe, Y. J. Chang, S.-W. Liu, T.-H. Chao, K. Goto, I.
Minarul, C.-H. Yuan, Y.-T. Tao, T. Shinmyozu, and T. J. Chow,
Nat. Chem. 4, 574 (2012).

174426-7

https://doi.org/10.1557/mrs.2017.86
https://doi.org/10.1021/jp000114x
https://doi.org/10.1021/ja904156s
https://doi.org/10.1103/PhysRevB.81.224434
https://doi.org/10.1016/j.jmmm.2013.07.018
https://doi.org/10.1088/0022-3727/38/8/R01
https://doi.org/10.1126/science.1113357
https://doi.org/10.1103/PhysRevB.86.180403
https://doi.org/10.1063/1.1767282
https://doi.org/10.1063/1.1629144
https://doi.org/10.1063/1.1767292
https://doi.org/10.1038/nchem.1381


VALENTIM, GARCÍA, AND PLASCAK PHYSICAL REVIEW B 105, 174426 (2022)

[13] G. Giri, D. Dey, M. Kumar, S. Ramasesha, and Z. G. Soos,
Phys. Rev. B 95, 224408 (2017).

[14] M. Rano, S. K. Ghosh, and D. Ghosh, Chem. Sci. 10, 9270
(2019).

[15] A. Valentim, G. A. Bocan, J. D. Fuhr, D. J. García, G. Giri, M.
Kumar, and S. Ramasesha, Phys. Chem. Chem. Phys. 22, 5882
(2020).

[16] M. Murai, S. Iba, H. Ota, and K. Takai, Org. Lett. 19, 5585
(2017).

[17] L. Salem, The Molecular Orbital Theory of Conjugated Systems
(W. A. Benjamin, New York, 1966).

[18] B. Purushothaman, M. Bruzek, S. Parkin, A. Miller, and J.
Anthony, Angew. Chem. Int. Ed. 50, 7013 (2011).

[19] C. Tönshoff and H. Bettinger, Angew. Chem., Int. Ed. 49, 4125
(2010).

[20] D. I. Khomskii, Basic Aspects of the Quantum Theory of
Solids: Order and Elementary Excitations (Cambridge Univer-
sity Press, New York, 2010).

[21] Z. Qu, S. Zhang, C. Liu, and J.-P. Malrieu, J. Chem. Phys. 134,
021101 (2011).

[22] G. Chiappe, E. Louis, E. San-Fabin, and J. A. Vergs, J. Phys.:
Condens. Matter 27, 463001 (2015).

[23] N. Guihery, D. Maynau, and A. Jean-Paul Malrieu, New J.
Chem. 22, 281 (1998).

[24] A. A. Ovchinnikov, Theor. Chim. Acta 47, 297 (1978).
[25] R. Pariser and R. G. Parr, J. Chem. Phys. 21, 466 (1953).
[26] J. A. Pople, J. Chem. Soc. Faraday Trans. 49, 1375 (1953).
[27] V. M. L. Durga Prasad Goli, S. Prodhan, S. Mazumdar, and S.

Ramasesha, Phys. Rev. B 94, 035139 (2016).
[28] S. Prodhan and S. Ramasesha, Phys. Rev. B 97, 195125 (2018).

[29] M. Schüler, M. Rösner, T. O. Wehling, A. I. Lichtenstein, and
M. I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013).

[30] F. Lin and E. S. Sorensen, Phys. Rev. B 78, 085435 (2008).
[31] B. Sinha, I. D. L. Albert, and S. Ramasesha, Phys. Rev. B 42,

9088 (1990).
[32] Z. G. Soos, S. Ramasesha, and D. S. Galvão, Phys. Rev. Lett.

71, 1609 (1993).
[33] Y. Anusooya, S. K. Pati, and S. Ramasesha, J. Chem. Phys. 106,

10230 (1997).
[34] T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein,

M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805
(2011).

[35] P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B 72,
214105 (2005).

[36] J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).
[37] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[38] I. Peschel, N. Kaulke, X. Q. Wang, and K. Hallberg, editors,

Density-Matrix Renormalization: A New Numerical Method in
Physics, Lecture Notes in Physics, Vol. 528 (Springer, Berlin,
1999).

[39] K. A. Hallberg, Adv. Phys. 55, 477 (2006).
[40] E. Lieb and D. Matris, in Condensed Matter Physics and Ex-

actly Soluble Models: Selecta of Elliott H. Lieb, edited by B.
Nachtergaele, J. P. Solovej, and J. Yngvason (Springer, Berlin,
2004), p. 135.

[41] E. Lieb and D. Mattis, J. Math. Phys. 3, 749 (1962).
[42] R. Arita, K. Kuroki, H. Aoki, A. Yajima, M. Tsukada, S.

Watanabe, M. Ichimura, T. Onogi, and T. Hashizume, Phys.
Rev. B 57, R6854 (1998).

[43] K. Ohno, Theor. Chim. Acta 2, 219 (1964).

174426-8

https://doi.org/10.1103/PhysRevB.95.224408
https://doi.org/10.1039/C9SC02414J
https://doi.org/10.1039/C9CP06065K
https://doi.org/10.1021/acs.orglett.7b02729
https://doi.org/10.1002/anie.201102671
https://doi.org/10.1002/anie.200906355
https://doi.org/10.1063/1.3533363
https://doi.org/10.1088/0953-8984/27/46/463001
https://doi.org/10.1039/a708330k
https://doi.org/10.1007/BF00549259
https://doi.org/10.1063/1.1698929
https://doi.org/10.1039/tf9534901375
https://doi.org/10.1103/PhysRevB.94.035139
https://doi.org/10.1103/PhysRevB.97.195125
https://doi.org/10.1103/PhysRevLett.111.036601
https://doi.org/10.1103/PhysRevB.78.085435
https://doi.org/10.1103/PhysRevB.42.9088
https://doi.org/10.1103/PhysRevLett.71.1609
https://doi.org/10.1063/1.474076
https://doi.org/10.1103/PhysRevLett.106.236805
https://doi.org/10.1103/PhysRevB.72.214105
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1080/00018730600766432
https://doi.org/10.1063/1.1724276
https://doi.org/10.1103/PhysRevB.57.R6854
https://doi.org/10.1007/BF00528281

