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Abstract

The exact formulation of the kinetic of dimer in hypercubic lattices is developed in the framework of the kinetic lattice gas model. The
so-called local evolution rules are used to obtain the hierarchy of equation of motion for the correlation functions where processes like
adsorption and desorption are included. The hierarchy of equations are truncated using a mean field (m,n) closures which allows the
analytical treatment of the system. A general expression for non-interacting dimer isotherm and two particle correlation functions are
obtained in hypercubic lattices.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of the adsorption–desorption kinetics on
surfaces is of fundamental interest in surface science, par-
ticularly, due to the relevance in those processes like gas
separation or heterogeneous catalysis [1–3]. To understand
time dependent phenomena at surfaces like adsorption and
desorption, different methods can be used. One of these
methods is the kinetic lattice gas model (KLGM) applied
to the adsorbed layer [4–6]. The approach is based on the
non-equilibrium statistical mechanics involving time-
dependent distribution functions and it was set up in close
analogy to the time dependent Ising model for magnetic
systems, which has been originally introduced by Glauber
[7,8]. Both models are based on the master equation ap-
proach. In the KLGM, adsorption, desorption, diffusion
and reactions are introduced as Markovian processes
throughout transition probabilities, which must satisfy
the detailed balance principle. Different methods like ma-
trix diagonalization, renormalization group or perturba-
tion approach, were used to solve the master equation in
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order to obtain the time evolution of the different moments
related to the distribution of the adsorbed particles on the
surface. In other formalisms one first derives directly a
hierarchy of equations of motion for n-site correlation
functions, which must be truncated using some closure
scheme, like Kirkwood approximation, to obtain a set of
finite coupled differential equations [9,10]. This method is
effective if the adsorbate remains homogeneously distrib-
uted on the lattice, then with the coverage and some corre-
lation functions one can describe the kinetics of the
process. Alternatively, one can treat the evolution of the
system analyzing the time behavior of one site of the lattice
and obtain a set of evolution rules depending on the state
of the site and its neighborhood, these are the so-called lo-
cal evolution rules. This technique has been used to analyze
irreversible growth models, particularly, to derive the
Langevin equations in (1 + 1)-dimensional systems [11–14].

On the other hand, the kinetics involve questions of en-
ergy transfer, however, from the time behavior of the ob-
servable, one can obtain the equilibrium properties of the
system which are associated to the minimum of the free en-
ergy. In fact, one can derive the adsorption isotherm of a
given system calculating the time dependence of the observ-
ables and taking the limiting value for large times (t!1).
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Alternatively, one can obtain the coupled differential equa-
tions of motion for the observables in a given system and in
the equilibrium they must be set equal to zero. This meth-
odology has been used to obtain the kinetics of adsorption–
desorption of particles in a one-dimensional lattice,
particularly, the equilibrium properties, where an exact
expression for the adsorption isotherms and two particle
correlation functions for interacting particles are obtained
[16]. Extension to two-dimension is treated in Ref. [17]
where, from the kinetics equation, the authors have been
reported the quasichemical approximation.

The non-interacting case, for simple site occupation
(where there are one particle per adsorption site) can be
straightforwardly derived from the rate equation for the
coverage h, as

dh
dt
¼ P adsð1� hÞ � P desh; ð1Þ

where Pads and Pdes are the probability of adsorption and
desorption respectively. Solving Eq. (1), one can obtain
the very well known Langmuir isotherms.

Generalization of Eq. (1) to multisite occupation is not
straightforward, however, most adsorbates, except noble
gases, are polyatomic. Furthermore, surfaces generally
present inhomogeneities due to irregular arrangement of
surface and bulk atoms, the presence of various chemical
species, etc., which can significantly affect the entropic con-
tribution to the adsorbate’s free energy. Typical examples
are O2, N2, CO, CO2 adsorbed in carbon and zeolite mole-
cular sieves [18–20] and oligomers in activated carbon
[21,22]. On the other hand, extensive experimental studies
have been performed confirming the multisite adsorption
on different adsorbate–substrate system, such as ethane
on graphite [23,24]. Recently, direct observation of dioxy-
gen molecules physisorbed in the nanochannels of a micro-
porous copper coordination polymer by the maximum
entropy/Rietveld method, using in situ high-resolution syn-
chrotron X-ray powder diffraction measurements, has been
reported [25]. The obtained MEM electron density revealed
that van der Waals dimers of physisorbed O2 locate in the
middle of nanochannels and form a one-dimensional lad-
der structure aligned to the host channel structure. This
new technique was also used to observe hydrogen mole-
cules adsorbed in similar substrate [26]. These experimental
finding represent clear evidence of one-dimensional ad-
sorbed systems with multisite occupation (dimers).

The difficulties in the analysis of the multisite adsorp-
tion–desorption kinetics are mainly associate to three fac-
tors: (i) no statistical equivalence exists between particles
and vacancies; (ii) the occupation of a given lattice site en-
sures that at least one of its nearest-neighbor sites is also
occupied; (iii) an isolated vacancy cannot serve to deter-
mine whether that site can ever become occupied. For these
reasons, it has been difficult to formulate, in an analytical
way, the statistic (and kinetics) of occupation for correlated
particles such as dimers, even without lateral interactions.
Very recently, it has been demonstrated that k-mers
adsorption can be described in the framework of a frac-
tional statistics, where particles behave like objects which
occupied partially an adsorption site [27]. This formulation
allows, the exact calculation of the adsorption isotherms
with lateral interaction in one-dimensional space, as is
shown in Refs. [27–29]. However, for dimension d P 2, a
simple expression for the adsorption isotherms can not be
derived up to now, even for the simplest non-interacting
case (Langmuir isotherm).

In view of these difficulties, the purpose of this work is
the calculation of a close expression for the Langmuir
isotherm and two particle correlation functions for non-
interacting dimers in hypercubic lattices. The analytical
formulation is based on the Local Evolution Rules intro-
duced in Refs. [30–32]. One starts with the definitions con-
cerning the lattice gas model and the calculation of the
correlation functions. Next one introduce the so-called
local evolution rules. Then one can write explicitly the
hierarchy of coupled differential equations and proceed to
truncate via a mean-field closure approximation. Equating
to zero the differential equations, the equilibrium solution
can be obtained. A general expression for the Langmuir
isotherms and two particle correlation functions in d-
dimensional hypercubic lattices can be postulated. The
analytical results are compared to those obtained by Monte
Carlo simulation. The last section, contains the
conclusions.

2. Lattice gas model with multisite occupation and

the local evolution rules

2.1. Definitions

A d-dimensional hypercubic lattice with periodic bound-
ary conditions and Nk sites in the kth-dimension will
be considered. The total number of sites amounts to
N = (Nk)d if all Nk are equals. The diatomic molecule ad-
sorbed on different surfaces is modeled as two interaction
centers at a fixed separation, which equals the lattice con-
stant a and will be set equal to one without loose of gener-
ality. In the model, one considered that the dimer is
adsorbed when both parts of the molecule are attached
to the surface. The components of the dimer are labeled
depending on orientation in the lattice, say, the tail T

and the head H. This nomenclature introduced by Ben-
Avraham and Köhler (see Ref. [9]) is necessary to distin-
guished the dimer–dimer correlation function from the
components of a given dimer. In the framework of the
model, a given site located at the coordinates (i1, i2, . . ., id)
of the lattice can be empty E or occupied by one compo-
nent of the dimer, say, T (or H). Let us introduce the occu-
pation numbers H(r)(i1, i2, . . ., id; tn) which can take the
values ‘‘1’’, if site with coordinates (i1, i2, . . ., id) in the gen-
eric realization r at time tn is occupied by the head of a di-
mer, and ‘‘0’’, if it is not occupied by the head of a dimer.
Equivalently, the occupation numbers T(r)(i1, i2, . . ., id; tn)
describe the occupation state of the generic site with coor-



3486 G. Costanza et al. / Surface Science 600 (2006) 3484–3491
dinates (i1, i2, . . ., id) in the generic realization r at time tn, by
the tail of a dimer. The variable E(r)(i1, i2, . . ., id; tn) describ-
ing the ‘‘emptiness’’ of a site with coordinates (i1, i2, . . ., id)
is defined as:

EðrÞði1; i2; . . . ; id ; tnÞ¼ 1�T ðrÞði1; i2; . . . ; id ; tnÞH ðrÞði1þ1; i2; . . . ; id ; tnÞ
�T ðrÞði1�1; i2; . . . ; id ; tnÞH ðrÞði1; i2; . . . ; id ; tnÞ
�T ðrÞði1; i2; . . . ; id ; tnÞH ðrÞði1; i2þ1; . . . ; id ; tnÞ
�T ðrÞði1; i2�1; . . . ; id ; tnÞT ðrÞði1; i2; . . . ; id ; tnÞ

..

.

�T ðrÞði1; i2; . . . ; id ; tnÞH ðrÞði1; i2; . . . ; id þ1; tnÞ
�T ðrÞði1; i2; . . . ; id �1; tnÞH ðrÞði1; i2; . . . ; id ; tnÞ:

ð2Þ
The E(r)(i1, i2, . . ., id; tn) = 1 means that the site (i1, i2, . . ., id)
in the generic realization r at time tn is empty. Note that the
definition of a dimer implies that a site with coordinate
(i1, i2, . . ., id; tn) cannot be occupied by different occupation
numbers. In other words, products like T(r)(i1, i2, . . ., id;
tn)H(r)(i1, i2, . . ., id; tn), T(r)(i1, i2, . . ., id; tn)E(r)(i1, i2, . . ., id; tn),
H(r)(i1, i2, . . ., id; tn)E(r)(i1, i2, . . ., id; tn), etc., are forbidden
and consequently must be set equal to zero.

Denoting with P(c 0; t) the probability that the system
is found in the configuration c 0 = {{T(i1, i2, . . ., id)},
{H(i1, i2, . . ., id)}} at time t, let us define (following the usual
definition of statistical mechanics) the average occupation
numbers as

T ði1; i2; . . . ; idÞ ¼ lim
Ns!1

1

Ns

XNs

r¼1

T ðrÞði1; i2; . . . ; id ; tnÞ

¼
X

c0
T ði1; i2; . . . ; id ; tÞPðc0; tÞ; ð3Þ

Hði1; i2; . . . ; idÞ ¼ lim
Ns!1

1

Ns

XNs

r¼1

H ðrÞði1; i2; . . . ; id ; tnÞ

¼
X

c0
T ði1; i2; . . . ; id ; tÞP ðc0; tÞ ð4Þ

and the correlation in the kth coordinate as

T ði1; . . . ; ik; . . . ; idÞHði1; . . . ; ik þ 1; . . . ; idÞ

¼ lim
Ns!1

1

N s

XNs

r¼1

T ðrÞði1; . . . ; ik; . . . ; id ; tnÞ

� H ðrÞði1; . . . ; ik þ 1; . . . ; id ; tnÞ

¼
X

c0
T ði1; . . . ; ik; . . . ; id ; tÞ

� Hði1; . . . ; ik þ 1; . . . ; id ; tÞP ðc0; tÞ; ð5Þ

where Ns is the number of realizations. In the second
relation in Eqs. (2)–(5) it was defined t = tn and the sum
runs over all microscopic configurations c 0 with each
T(i1, . . ., ik, . . ., id; t) = 0,1 and H(i1, . . ., ik, . . ., id; t) = 0,1.
Note that T(i1, . . ., ik, . . ., id; t), H(i1, . . ., ik, . . ., id; t) and
H(i1, . . ., ik + 1, . . ., id; t) are the different values that
T(r)(i1, . . ., ik, . . ., id; tn), H(r)(i1, . . ., ik, . . ., id; tn) and
H(r)(i1, . . ., ik + 1, . . ., id; tn) can take at time t. It is not diffi-
cult to see that the above three moments are identical. In
the same way it is possible to calculate higher order mo-
ments. In order to save printing the following definition
was also used in the left hand side in Eqs. (2)–(4):

X ðrÞði1; i2; . . . ; id ; tnÞ ¼ X ði1; i2; . . . ; idÞ
for X ¼ T ; H or E: ð6Þ

Performing the average over the sites it is possible to obtain
the coverage and the higher moments as

hT ði1; i2; . . . ; idÞi ¼
1

N

X
fig

T ði1; i2; . . . ; idÞ; ð7Þ

hHði1; i2; . . . ; idÞi ¼
1

N

X
fig

Hði1; i2; . . . ; idÞ ð8Þ

and

hT ði1; . . . ; ik; . . . ; idÞHði1; . . . ; ik þ 1; . . . ; idÞi

¼ 1

N

X
fig

T ði1; . . . ; ik; . . . ; idÞHði1; . . . ; ik þ 1; . . . ; idÞ; ð9Þ

where {i} are the set of sites of the lattice.

2.2. The local evolution rules

The usual way to describe the kinetic lattice gas model is
the master equation approach (MEA). However, in case of
multisite occupation (even in the simplest one) the MEA is
rather cumbersome. Alternatively, the local evolution rules
(LER) has been used successfully in the description of the
one-dimensional dimer kinetics [30], as well as in the anal-
ysis of the irreversible growth models, particularly to derive
the Langevin equations in (1 + 1)-dimensional systems
[14,15]. The method is rather simple and consist in moni-
toring the time evolution of a chosen site, through the
following procedure:

(i) In order to specify the coordinate of the head of the
dimer in the generic realization r at time tn, a set of
d dummy indexes (j1, j2, . . ., jd) is chosen at random
among (N1,N2, . . .,Nd) integer numbers respectively.
To locate the tail of the dimer, one choose at random
one of the d directions, say l. Then the chosen index jl
must be increased in one (jl + 1).

(ii) For dimers, one needs to specify the evolution of two
sites simultaneously, say site (i1, . . ., il, . . ., id) and
(i1, . . ., il + 1, . . ., id), corresponding to the head and
tail of the dimer adsorbed or desorbed on the lattice
at time tn + 1 = tn + s0 (here s0 is the elemental time
step between two successive events at any site of the
lattice).

Then, one needs two evolution equations, one for the
tail and another for the head of the dimer,
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T ðrÞði1; . . . ; ik; . . . ; id ; tnþ1Þ
¼ T ðrÞði1; . . . ; ik; . . . ; id ; tnÞ
þ GðrÞði1; . . . ; ik; . . . ; id ; tnÞjads

þ GðrÞði1; . . . ; ik; . . . ; id ; tnÞjdes ð10Þ

and

H ðrÞði1; . . . ; ik þ 1; . . . ; id ; tnþ1Þ
¼ H ðrÞði1; . . . ; ik þ 1; . . . ; id ; tnÞ
þ GðrÞði1; . . . ; ik þ 1; . . . ; id ; tnÞjads

þ GðrÞði1; . . . ; ik þ 1; . . . ; id ; tnÞjdes; ð11Þ

where G(r)(i1, . . ., ik, . . ., id; tn)jads and G(r)(i1, . . ., ik, . . ., id;
tn)jdes are the local evolution rules that represent the
adsorption and desorption events for the site
(i1, . . ., ik, . . ., id) (a similar set of equation is given for the
site (i1, . . ., ik + 1, . . ., id)). Note that, Eqs. (10) and (11) give
the state T(r)(i1, . . ., ik, . . ., id; tn+1) and H(r)(i1, . . ., ik +
1, . . ., id; tn+1) at time tn+1 as a function of the state
T(r)(i1, . . ., ik, . . ., id; tn), H(i1, . . ., ik + 1, . . ., id; tn) and the
corresponding neighboring sites at the previous time tn.

Explicitly, one can write,

GðrÞði1; . . . ; ik; . . . ; id ; tnÞjads¼HðrÞadsdðk;lÞ
Yd

p¼1

dðip;jpÞ

�EðrÞði1; . . . ; ik; . . . ; id ; tnÞ
�EðrÞði1; . . . ; ikþ1; . . . ; id ; tnÞ ð12Þ

and

GðrÞði1; . . . ; ik; . . . ; id ; tnÞjdes ¼ HðrÞdesdðk; lÞ
Yd

p¼1

dðip; jpÞ

� T ðrÞði1; . . . ; ik; . . . ; id ; tnÞ
� H ðrÞði1; . . . ; ik þ 1; . . . ; id ; tnÞ:

ð13Þ

In the above equations HðrÞads and HðrÞdes are defined as,

HðrÞads ¼ HðP ads � nðrÞn Þ ð14Þ
and

HðrÞdes ¼ HðP des � nðrÞn Þ; ð15Þ
where d(k, l), d(ip, jp) are Kronecker deltas and H(r)(z) is the
well known step function defined as 1 for z P 1 and 0
otherwise. In the argument of the Kronecker deltas l and
jp are obtained in the generic realization r at time tn. The
randomly chosen number nðrÞn is uniformly distributed in
[0,1]. Following the definitions of Ref. [29] Pads and Pdes

(the probability of adsorption and desorption at vanishing
lateral interaction (V = 0)) are given by

P ads ¼ dNs0W 0 ð16Þ

and

P des ¼ dNs0W 0C0; ð17Þ
where

C0 ¼ expðbðV s � lÞÞ: ð18Þ

The constant Vs is the adsorption energy site and l is the
chemical potential. On the other hand

W 0 ¼ S0as
Pb1=2

ð2pmÞ1=2
; ð19Þ

where S0 is the sticking coefficient at vanishing coverage, as

is the adsorption area for a dimer of mass m, P is the pres-
sure and b is the inverse of the temperature parameter. In
the rest of the paper one considers Vs = 0 without loose
of generality.

To obtain the equations of motion for the coverage and
correlations from the local evolution rules one can use the
following procedure. For example, let us consider the evo-
lution equation corresponding to the one particle correla-
tion. Taking the average on both sides of Eq. (10), using
the approximation

hT ði1; i2; . . . ; id ; tnþ1Þi � hT ði1; i2; . . . ; id ; tnÞi

� s0

dhT ði1; i2; . . . ; id ; tnÞi
dtn

ð20Þ

and letting tn = t in Eq. (19) the differential equation for
hT(i1, i2, . . ., id; t)i becomes,

s0
dhT ði1; i2; . . . ; id ; tÞi

dt
¼
�

HðrÞadsdðk; lÞ
Yd

p¼1

dðip; jpÞ

� EðrÞði1; . . . ; ik; . . . ; id ; tÞ

� EðrÞði1; . . . ; ik þ 1; . . . ; id ; tÞ
�

�
�

HðrÞdesdðk; lÞ
Yd

p¼1

dðip; jpÞ

� T ðrÞði1; . . . ; ik; . . . ; id ; tÞ

� H ðrÞði1; . . . ; ik þ 1; . . . ; id ; tÞ
�
:

ð21Þ
Similarly, for hH(i1, i2, . . ., id; t)i, hT(i1, . . ., ik, . . ., id; t)

H(i1, . . ., ik + 1, . . ., id; t)i, etc., after performing the products
of the dynamic variables in the required sequence and taken
the average on both sides, the equations of motion are con-
structed. Details of such procedure can be found in Ref. [30].
Next, one can obtain the set of evolution equations for one,
two and three-dimensional lattices for non-interacting dimer
adsorption–desorption kinetics.

3. Dimer isotherms and two particle correlation function

in one-, two- and three-dimensional lattices

In this section, we will derive the first (coverage) and sec-
ond moments (two particle correlation function) for dimers
in hypercubic lattices with d = 1,2,3. This moments are en-
ough to obtain the Langmuir isotherms (non-interacting
dimers) in all cases.
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3.1. One-dimensional lattice

The evolution equation for the first moment is given by

dhT ði1ÞHði1 þ 1Þi
dt

¼ W 0hEði1ÞEði1 þ 1Þi

� W 0C0hT ði1ÞHði1 þ 1Þi: ð22Þ

The corresponding to the second moment or two-particle
correlation function can be written as

dhT ði1ÞHði1 þ 1ÞT ði1 þ 2ÞHði1 þ 3Þi
dt

¼ 2W 0hT ði1ÞHði1 þ 1ÞEði1 þ 2ÞEði1 þ 3Þi
� 2W 0C0hT ði1ÞHði1 þ 1ÞT ði1 þ 2ÞHði1 þ 3Þi: ð23Þ

In order to simplify the notation in the last two equa-
tions t was eliminated in the arguments of the dynamical
variables T, H and E. To solve the above set of equations
it is necessary to use the following (2,1) mean field closure:

hT ði1ÞHði1 þ 1ÞEði1 þ 2ÞEði1 þ 3Þi

¼ hT ði1ÞHði1 þ 1ÞEði1 þ 2ÞihEði1 þ 2ÞEði1 þ 3Þi
hEði1 þ 2Þi ; ð24Þ

where

hEði1ÞEði1 þ 1Þi ¼ 1� 3hT ði1ÞHði1 þ 1Þi
þ hT ði1ÞHði1 þ 1ÞT ði2 þ 2ÞHði1 þ 3Þi:

ð25Þ

To obtain the equilibrium solution of the adsorption–
desorption kinetics, it is necessary to equate the lefthand
side of Eqs. (22) and (23) to zero. After that, the solution
for the Langmuir isotherm and the two particle correlation
function for dimers in 1D are obtained as,

h ¼ 1þ 4ebl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ebl
p

1þ 4ebl
ð26Þ

and

X 11 ¼
ðh=2Þ2

1� ðh=2Þ ; ð27Þ

where X11 = hT(i1)H(i1 + 1)T(i1 + 2)H(i1 + 3)i and h =
2hT(i1)H(i1 + 1)i.

As is very well known, in one-dimensional space, the
knowledge of the coverage and correlation between two
consecutive site (pairs correlation function) is enough to
obtain the complete statistical description of the system
[33]. In fact, it is demonstrated that quasichemical approx-
imation with z = 2 (where z is the coordination number) is
the exact solution for the one-dimensional lattice gas with
nearest-neighbor interaction.

The expression for coverage and pairs correlation func-
tion for interacting dimers in one-dimension lattice have
been reported in Ref. [30], where (2,1) mean field closure
scheme have been used to obtain a system of differential
equations which is exactly solved. These expressions coin-
cide with those obtained by statistical mechanics [28].
Eqs. (26) and (27) are particular cases of such expressions.

Next, the two-dimensional case will be considered.

3.2. Two-dimensional lattice

Following the same procedure as in the one-dimensional
case one can obtained the evolution equation for the first
two correlation functions. Due to the cumbersome nota-
tion let us define the correlation functions in the simplified
version as:

X 0¼hEði1; i2Þi;
X 1¼hT ði1; i2ÞHði1þ1; i2Þi;
X 00¼hEði1; i2ÞEði1þ1; i2Þi;
X 10¼hT ði1; i2ÞHði1þ1; i2ÞEði1; i2�1ÞEði1þ1; i2�1Þi;
X 11¼hT ði1; i2ÞHði1þ1; i2ÞT ði1; i2�1ÞHði1þ1; i2�1Þi;
X 20¼hT ði1; i2ÞHði1þ1; i2ÞEði1þ1; i2�1ÞEði1þ2; i2�1Þi;
X 21¼hT ði1; i2ÞHði1þ1; i2ÞT ði1þ1; i2�1ÞHði1þ2; i2�1Þi;
X 30¼hT ði1; i2ÞHði1þ1; i2ÞEði1þ2; i2ÞEði1þ3; i2Þi;
X 31¼hT ði1; i2ÞHði1þ1; i2ÞT ði1þ2; i2ÞHði1þ3; i2Þi;
X 40¼hT ði1; i2ÞHði1þ1; i2ÞEði1þ2; i2ÞEði1þ2; i2þ1Þ

þEði1; i2ÞEði1þ1; i2ÞT ði1þ2; i2ÞHði1þ2; i2þ1Þi;
X 41¼hT ði1; i2ÞHði1þ1; i2ÞT ði1þ2; i2ÞHði1þ2; i2þ1Þi;

ð28Þ

where the following relations can be established,

X 0 ¼ hEði1; i2Þi ¼ 1� 4X 1: ð29Þ

and

X 00 ¼ 1� 7X 1 þ 2X 11 þ 2X 21 þ X 31 þ 4X 41: ð30Þ

With these definitions one can write the evolution equation
for the first moment as

dX 1

dt
¼ W 0X 00 � W 0C0X 1: ð31Þ

Due that there are four different two particle correlation
functions, see Fig. 1(a), the corresponding set of differential
equations are:

dX 11

dt
¼ 2W 0X 10 � 2W 0C0X 11;

dX 21

dt
¼ 2W 0X 20 � 2W 0C0X 21;

dX 31

dt
¼ 2W 0X 30 � 2W 0C0X 31;

dX 41

dt
¼ W 0X 40 � 2W 0C0X 41:

ð32Þ



Fig. 1. Schematic representation of a generic pair of sites (filled line),
surrounding by the different pair of sites which generates all the possible
two particle correlations (dashed lines): (a) two-dimensional square lattice
and (b) three-dimensional cubic lattice.
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Using the following (2,1) mean field closures:

X 10 ¼
ðX 1 � X 11 � X 21 � X 41ÞX 00

X 0

;

X 20 ¼ X 10;

X 30 ¼
ðX 1 � X 31 � 2X 41ÞX 00

X 0

;

X 40 ¼
ðX 1 � X 11 � X 21 � X 41ÞX 00

X 0

þ ðX 1 � X 31 � 2X 41ÞX 00

X 0

ð33Þ

one can obtain the Langmuir isotherm equating the left-
hand side of Eqs. (31) and (32) to zero and solving the
resulting algebraic system. The final expression for the
coverage is

h ¼ 2
1þ 8ebl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12ebl
p

1þ 16ebl
; ð34Þ

where h = 4X1. Similarly for the two particle correlation
functions one get

X Z1 ¼
ðh=4Þ2

1� ðh=4Þ for Z ¼ 1; . . . ; 4: ð35Þ

Note that this solution is not exact as in the one-dimen-
sional lattice, however it provide the first approximation
level for the problem.
3.3. Three-dimensional lattice

Following the same procedure as in the previous cases,
the evolution equation for the first and second correlation
functions can be obtained without a considerably effort. In
this case just an additional equation is necessary. As above
let us define the following correlations

X 0 ¼ hEði1; i2; i3Þi;

X 1 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þi;

X 00 ¼ hEði1; i2; i3ÞEði1 þ 1; i2; i3Þi;

X 10 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� Eði1; i2 � 1; i3ÞEði1 þ 1; i2 � 1; i3Þi;

X 11 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� T ði1; i2 � 1; i3ÞHði1 þ 1; i2 � 1; i3Þi;

X 20 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� Eði1 þ 1; i2 � 1; i3ÞEði1 þ 2; i2 � 1; i3Þi;

X 21 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� T ði1 þ 1; i2 � 1; i3ÞHði1 þ 2; i2 � 1; i3Þi;

X 30 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� Eði1 þ 2; i2; i3ÞEði1 þ 3; i2; i3Þi;

X 31 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� T ði1 þ 2; i2; i3ÞHði1 þ 3; i2; i3Þi;

X 40 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� Eði1 þ 2; i2; i3ÞEði1 þ 2; i2 þ 1; i3Þ

þ Eði1; i2; i3ÞEði1 þ 1; i2; i3ÞT ði1 þ 2; i2; i3Þ

� Hði1 þ 2; i2 þ 1; i3Þi;

X 41 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� T ði1 þ 2; i2; i3ÞHði1 þ 2; i2 þ 1; i3Þi;

X 50 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� Eði1 þ 1; i2 þ 1; i3ÞEði1 þ 1; i2 þ 1; i3 þ 1Þi;

X 51 ¼ hT ði1; i2; i3ÞHði1 þ 1; i2; i3Þ

� T ði1 þ 1; i2 þ 1; i3ÞHði1 þ 1; i2 þ 1; i3 þ 1Þi;

ð36Þ

where the following relations are introduced:

X 0 ¼ 1� 6X 1 ð37Þ

and

X 00 ¼ 1� 11X 1 þ 3X 11 þ 3X 21 þ X 31 þ 8X 41 þ 8X 51: ð38Þ

With these definitions one can write the evolution equation
for the one particle correlation functions as
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Fig. 2. Comparison between the theoretical results given in Eq. (44) (line)
and Monte Carlo simulation (symbol): (a) two-dimensional square lattice
and (b) three-dimensional cubic lattice.
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dX 1

dt
¼ W 0X 00 � W 0C0X 1: ð39Þ

There are five different two particle correlation functions
(see Fig. 1(b)), then the corresponding differential equa-
tions are:

dX 11

dt
¼ 2W 0X 10 � 2W 0C0X 11;

dX 21

dt
¼ 2W 0X 20 � 2W 0C0X 21;

dX 31

dt
¼ 2W 0X 30 � 2W 0C0X 31;

dX 41

dt
¼ W 0X 40 � 2W 0C0X 41;

dX 51

dt
¼ 2W 0X 50 � 2W 0C0X 51:

ð40Þ

Using the following (2,1) mean field closures:

X 10 ¼
ðX 1 � X 11 � X 21 � X 41 � 2X 51ÞX 00

X 0

;

X 20 ¼ X 10;

X 30 ¼
ðX 1 � X 31 � 4X 41ÞX 00

X 0

;

X 40 ¼
ðX 1 � X 11 � X 21 � X 41 � 2X 51ÞX 00

X 0

þ ðX 1 � X 31 � 4X 41ÞX 00

X 0

;

X 50 ¼ X 10

ð41Þ

one can proceeds as in the other cases. After equating to
zero the lefthand side of Eqs. (39) and (40) and solving
the system, the expression for Langmuir isotherm can be
written as

h ¼ 3
1þ 12ebl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 20ebl
p

1þ 36ebl
; ð42Þ

where h = 6X1. Equivalently for the two particles correla-
tion functions,

X Z1 ¼
ðh=6Þ2

1� ðh=6Þ for Z ¼ 1; . . . ; 5: ð43Þ

In such way, we can write the general expression for the
coverage as a function of the chemical potential and the
two particle correlation functions as

h ¼ d
1þ 4debl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð2d � 1Þebl

p
1þ 4d2ebl

ð44Þ

and

X Z1 ¼
ðh=2dÞ2

1� ðh=2dÞ 8Z: ð45Þ

with d = 1,2,3.
In Fig. 2 one can observe a comparison between the pre-

vious results and Monte Carlo simulations. As is shown in
the figure, the difference between the numerical experi-
ments and the analytical model is rather small, particularly
in three-dimension.

4. Conclusions

In this paper, closed expressions for the non-interacting
dimer isotherms and the two particle correlation functions
in hypercubic lattices (with d = 1,2,3) are obtained. The lo-
cal evolution rules are implemented in order to obtain the
evolution equations for the coverage and higher correla-
tions. After a truncation and using a (2,1) mean-field clo-
sure approximations, the system can be exactly solved in
one-, two- and three-dimensional hypercubic lattices and
a general expression for the Langmuir adsorption iso-
therms and the two particle correlation functions for di-
mers are postulated. The one-dimensional results coincide
with the exact solution obtained by statistical mechanical
methods (combinatorial analysis, transfer matrix calcula-
tions, etc.). In higher-dimension the (2,1) mean field closure
provide a close expression for the adsorption isotherms and
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two particles correlation function. Beside that the analyti-
cal isotherms are in good agreement with Monte Carlo
simulations. Although the method seems to be rather com-
plicate concerning the notation, presents various advanta-
ges as compared to the Master equation formulation,
where an explicit expression for the Hamiltonian is neces-
sary. On the contrary, in the local evolution approach, it
is only needed the interactions between particles. In the last
years new experimental techniques have been developed to
analyze the behavior of simple dimer molecules adsorbed in
quasi one-dimensional structures [25,26]. The analytical
expression for the adsorption isotherms with multisite
adsorption, with and without lateral interaction, can help
to understand the behavior of the adsorbed phase, not only
in one but in higher-dimensions.
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