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Abstract
Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by 
recent technological advances. Given the extent to which the brain has been studied, there is also available ontological 
knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with 
studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between 
voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework 
for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on 
ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited 
propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on 
first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, 
and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective 
is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained 
cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. 
After presenting the language and its general query answering architecture, we discuss real-world use cases showing how 
NeuroLang can be applied to practical scenarios.

Keywords  Datalog · Open-world Assumption · Probabilistic Programming · Query Answering · Meta-Analysis · 
Neuroimaging

Introduction

Recent technological advances in neuroscience have sparked 
enormous growth in the amount of datasets—containing 
text, images, and knowledge graphs—available for analysis 

of the human brain. To take advantage of the full breadth of 
this heterogeneous, and often noisy data, a unifying frame-
work is needed. This framework should allow researchers to 
represent their theories, definitions, and perform inferences 
on them in a structured, formal way. The main hypothesis 
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of this paper is that a probabilistic language based on first-
order logic carefully extended with negation and aggregation 
is a useful tool for such tasks.

Meta-analysis tools are examples of central neuroscience 
use cases requiring the combination of the aforementioned 
datasets. This application constitutes a fertile ground to show 
how current knowledge representation advancements can com-
bine heterogeneous datasets, pushing forward neuroimaging 
research. Meta-analysis is a set of techniques used to combine 
a finite number of published articles, which often disagree, to 
infer consensus-based findings (Poldrack & Yarkoni, 2016). 
Hence, its main application is aggregating noisy knowledge 
across articles in the field. While recent advances in automated 
meta-analysis techniques are mostly centered on better repre-
senting spatial correlations (Samartsidis et al., 2017), to the 
best of our knowledge, none have formally addressed expres-
sivity limitations of query languages and the feasibility of a 
more expressive resolution.

Current standard tools for neuroimaging meta-analysis 
are Neurosynth (Yarkoni et al., 2011) and BrainMap (Laird 
et al., 2011), which harness automatically extracted as well 
as manually-curated information present across neurosci-
entific articles. Briefly, these tools interpret each article as 
an independent sample of neuroscientific knowledge, and 
then develop query systems centered on study subset selec-
tion and posterior probabilistic inference on such subsets. 
For instance, selecting all studies mentioning “fear” and 
inferring the most common areas of the brain reported as 
active—i.e., deferentially oxygenated—in such studies. In 
these tools, queries select a subset of a total of around 15k 
full-text articles reporting involvement of several brain loca-
tions each, and a brain tessellation of 300k cubes, or vox-
els, then infer commonalities across these articles through 
maximum likelihood estimations combined with spatial 
information smoothing. Such queries can express questions 
like “Where do articles reporting the term ‘emotion’ show 
activations?”, or “Which terms associated with cognitive 
processes are most likely associated with articles reporting 
activations in the amygdala?”. Finally, after the inferential 
tasks, the obtained probabilities are manipulated and aggre-
gated to frame results into the frequentist language neuro-
scientists commonly use to communicate the significance of 
their results (Yarkoni et al., 2011; Samartsidis et al., 2017). 
These meta-analyses are performed in under 30 seconds on a 
regular laptop computer—however, these tools are limited in 
terms of the expressivity of their associated query languages.

Neurosynth combines text mining, meta-analysis, and machine 
learning techniques to generate probabilistic mappings relating 
text-mined terms with activations in the human brain. While  
NeuroSynth has proven to be of great value to the neuroscience 
community, the language used to infer these relationships is  
based on propositional logic, which can limit the expressiveness 

of its query system. This limitation excludes, for instance, the use 
of existential quantifiers and negation, forbidding queries such as 
“What are the terms most probably mentioned in articles report-
ing activations in the parietal lobe and no other brain region”, 
which we dub segregation queries. Another example is Brain-
Map, which has a hand-curated dataset of great precision and an 
ontology for structuring all this knowledge and annotating the 
articles. Nonetheless, Brainmap’s query system is also based on 
propositional logic and only allows to select terms mentioned in 
articles knowing them in advance, which again cannot express 
segregation queries or harness the full information of neurosci-
ence ontologies—such as CogAt (Poldrack et al., 2011)—that  
use open knowledge.

Breaching the expressivity limitations of current approaches 
and handling heterogeneous data requires tackling several 
issues: handling noisiness in neuroimaging data and conclu-
sions reported across studies calls for a unifying formalism 
with probabilistic modeling capabilities; being able to leverage 
ontological information modeled under the open world assump-
tion; finally, performance cannot be ignored since the amount 
of information needed to model the human brain is consider-
able. In short, we need to design a logic-based language capa-
ble of: (i) performing negation and aggregation; (ii) perform-
ing probabilistic inference; (iii) dealing with open knowledge; 
(iv) post-processing inferred probabilities; and (v) dealing with 
neuroimaging databases having, at least, a similar performance 
to current meta-analytic tools.

Our main proposal in this paper is the development of a 
subset of Datalog+/–, extended with probabilistic semantics, 
aggregation, and negation, focused on meta-analytic applica-
tions. Such an approach allows us to have a language based 
on first-order logic with negation and existential (FO¬∃ ), ena-
bling more complex queries such as segregation queries or  
manipulation of information under the open-world. In all, we  
produce a language able to express the full breadth of the  
pipeline needed for meta-analytic applications: from data pre-
processing to probabilistic modeling and inference, and finally 
the post-processing of probabilistic results into images and 
reports that are easily interpretable in terms of current report-
ing used in neuroscience publications. Our main contribution 
is the introduction and evaluation of NeuroLang, a probabil-
istic language based on Datalog+/– developed to express and 
solve rich logic-based queries meeting the functional require-
ments of neuroimaging meta-analyses.

The rest of this paper is organized as follows: “Basic Proba-
bilistic Ontological Model” section introduces the probabilistic 
semantics, which is based on a classical possible world approach 
adopted in many approaches to reasoning under uncertainy; 
“NeuroLang Programs” section then formally introduces the 
NeuroLang language and the NeuroLangQA query answer-
ing algorithm; “Evaluation Based on Real-World Use Casesin 
Neuroscience Research” section presents a set of real-world use 
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cases showing how our formalism can be applied in neurosci-
entific research; finally, “Discussion and Conclusion” section 
discusses conclusions.

Basic Probabilistic Ontological Model

In this section, we recall the basics on relational databases, 
conjunctive queries, Datalog, and ontology-mediated query 
answering (including tuple-generating dependencies and 
negative constraints), all based on a probabilistic extension 
with a corresponding query answering semantics.

We assume an infinite universe of (data) constants Δ , an 
infinite set of (labeled) nulls ΔN (used as “fresh” Skolem 
terms) that are placeholders for unknown values, and an infi-
nite set of variables V . Different constants represent different 
values (i.e., unique name assumption), while different nulls 
may represent the same value. Sequences of k ≥ 0 variables, 
namely X1,… ,Xk , are denoted by �.

Furthermore, we assume a relational schema R , which 
is a finite set of predicate symbols, we also allow built-in 
predicates (with finite extensions) and equality. As expected, 
a term t is a constant, null, or variable. An atomic formula (or 
atom) � has the form p(t1,… , tn) , where p is an n-ary predi-
cate, and t1,… , tn are terms. We denote with F  the set of all 
ground atoms built from R and Δ . A negated atom is of the 
form ¬a where a is an atom. We assume that R = RD ∪RP , 
with RD ∩RP = � , containing predicates that refer to deter-
ministic and probabilistic events, respectively.

A database instance D for a relational schema RD is a 
(possibly infinite) set of atoms with predicates from RD and 
arguments from Δ . On the other hand, let a probabilistic 
atom be of the form � ∶ p , where p is a real number in the 
interval [0, 1] and � is an atom with a predicate from RP . We 
do not allow negation in probabilistic atoms.

A probabilistic constraint c has the form

where k > 0 , each �i ∶ pi is a probabilistic atom, and 
∑

pi ≤ 1 . 
If the pi ’s in a probabilistic constraint do not sum to 1, then 
there exists also the possibility that none of them happen. 
The probability of this complementary event is 1 −

∑
pi . 

Given a probabilistic constraint c = �1 ∶ p1 … �k ∶ pk , we 
will make use of the notation atoms(c) = {�1,… , �k} . We 
will also denote the probability of any atom � with p(�) . We 
have that p(�i) = pi whenever �i ∶ pi belongs to a probabilistic 
constraint c.

Given a set of probabilistic constraints C, note that each 
ground atom can only appear in one constraint in C. From a 
practical point of view, this assumption restricts the number 

�1 ∶ p1 … �k ∶ pk,

of possible worlds by limiting the potential combinations. 
Vennekens et  al. (2009,  Eq.  5) propose more complex 
semantics where this assumption is relaxed. This approach 
is similar to probabilistic databases (Suciu et al., 2011) 
where each tuple comes from a general probability distribu-
tion over tuples and inexistence is one of the options. This 
allows to incorporate beliefs about the likelihood of tuples 
and cell values.

Example 1  Consider the following database instance D and a 
set of probabilistic constraints C (recall that ti atoms cannot 
appear in C).

Tuple Generating Dependencies  Given a relational schema R , 
a tuple-generating dependency (TGD) � is a first-order formula 
of the form:

where Φ(�,�) and Ψ(�,�) are conjunctions of atoms over R 
(without nulls), called the body and the head of � , denoted 
body(�) and head(�) , respectively. Such � is satisfied in a data-
base D for R if and only if, whenever there exists a homomor-
phism h that maps the atoms of Φ(�,�) to atoms of D, there 
exists an extension h′ of h that maps the atoms of Ψ(�,�) to 
atoms of D. All sets of TGDs are finite here and we assume 
without loss of generality that every TGD has a single atom in 
its head. Furthermore, we say that a TGD � is full whenever 
there are no existential variables in the head. Let’s extend our 
example further:

Example 2  Based on Example 1 we can add the following 
set of rules:

TGDs can be extended to allow negation—in this work we 
only allow stratified negation (Abiteboul et al., 1995) for full 
TGDs. Furthermore, as shown by the rule in set A in the previ-
ous example, we extend the language so aggregation functions 
can be used in the head of full TGDs (Abiteboul et al., 1995). 
As we see in the following section, we restrict the syntax of this 
type of rules so that neither negation nor recursion is allowed.

(1)

D = {t1(a), t1(c), t2(a), t2(b)}

C =

⎧⎪⎨⎪⎩

c1 = s(a, b) ∶ 0.3

c2 = s(b, c) ∶ 0.7

c3 = r(b) ∶ 0.4 � r(c) ∶ 0.1

⎫⎪⎬⎪⎭

∀�∀�Φ(�,�)→ ∃�Ψ(�,�),

Σ = {∀X t1(X) → ∃Z o(X, Z),

∀X∀Y t2(X) ∧ o(X, Y) → t(X),

∀X∀Y s(X, Y) ∧ r(Y) → w(X, Y)}

A = {∀X∀W v(X,W) → u(X, max(W))}
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Definition 1  A probabilistic ontology O= (D,C,Σ) consists 
of a database instance D, a set C of probabilistic constraints, 
and a set Σ of arbitrary TGDs.

Note that a database instance can be thought of as a set 
of probabilistic constraints with only probabilistic atoms, 
each one annotated with probability 1. Furthermore, the 
structure (D,Σ) corresponds to a knowledge base with 
existential rules as defined in Calì et al. (2012), whenever 
rules in Σ do not involve atoms that appear in probabilistic 
constraints.

Semantics  We take the notion of possible world (or interpre-
tation) of a probabilistic ontology as a subset of F  and we 
denote with Ω the set of all possible worlds. Each possible 
world � ∈ Ω satisfies the following property:

This means that � is a complete interpretation of every ele-
ment of F  . The usual semantics of a classical Datalog pro-
gram P is the least Herbrand model that contains exactly all 
ground facts in P plus every ground atom inferred from it, 
i.e. the intersection of all worlds that satisfy P.

However, in the probabilistic case, we need to consider a 
generalization of this semantics so that every ground fact has 
associated with a probability value. According to this idea, 
we are going to take the models of a set of non-probabilistic 
ontologies, induced by total choices, so that they all share 
the same TGDs but the corresponding database instances 
differ. As mentioned before, in our approach, we have two 
ways of associating probability with facts. In the first one, 
a fact corresponds to a Boolean random variable that is true 
with probability p and false with probability 1 − p . In the 
second, we interpret facts as multi-valued random variables 
instead of binary ones. We use probabilistic constraints to 
represent both and assume that the facts within the same 
constraint are mutually exclusive events, whereas facts 
in different constraints are mutually independent events. 
According to this idea, we give the following definition:

Definition 2  Given a probabilistic ontology O= (D,C,Σ) , for 
each 1 ≤ j ≤ |C| ∶ cj = �

j

1
∶ p

j

1
| … | �j

k
∶ p

j

k
 , with cj ∈ C , 

we have:

For each b = �
j

i
∈ cj , we have p(b) = p

j

i
 and p(⊥cj ) = 1

−
∑

1≤i≤k p
j

i
 . The set of total choices for O is defined as 

total_choices(C) =

∀F ∈ F ∶ 𝜔 ⊧ F if f F ∈ 𝜔; otherwise 𝜔 ⊧ ¬F

choices(cj) = {�
j

i
| 1 ≤ i ≤ k} ∪ {⊥cj}.

{[b1,… , bl] | l = |C|, 1 ≤ j ≤ |C| ∶ bj ∈ choices(cj)}

The probability of a particular total choice � ∈ total_

choices(C) is defined as p(�) =
∏[b1,...,bl]∈�

1≤j≤l
p(bj) . We use nota-

tion atoms(𝜆) = {�j ≠ ⊥cj | 1 ≤ j ≤ l ∶ [b1, ..., bl] ∈ 𝜆} and 
atoms(C) =

⋃
�∈total_choices(C) atoms(�).

Definition 3  Let � and � be a possible world and a total 
choice, respectively. Then, we will say that � satisfies � , 
denoted 𝜔 ⊧ 𝜆 , if and only if atoms(𝜆) ⊆ 𝜔 . Also, ‖�‖ will 
denote the set of possible worlds of a total choice, i.e. 
‖𝜆‖ = {𝜔 ∈ Ω � 𝜔 ⊧ 𝜆}.

Example 3  The set of all total choices for probabilistic ontol-
ogy (D,C,Σ) from Examples 1 and 2 is the following:

It is easy to see that total_choices(C) defines a partition on Ω 
by using the following equivalence relation on Ω × Ω : � ≡ �′ if 
and only if ∀𝜆 ∈ total_choices(C) ∶ 𝜔 ⊧ 𝜆 ⇔ 𝜔� ⊧ 𝜆.

We define the semantics of a probabilistic ontology based 
on the semantics of a classical ontology with existential 
rules (TGDs). Intuitively, each total choice induces a classi-
cal (i.e., non-probabilistic) ontology.

Definition 4  Let O= (D,C,Σ) , be a probabilistic ontology, 
and let � be a total choice of C. Then, the (non-probabilistic) 
ontology induced by � = [b1,… bl] is defined as O� = (D�,Σ) , 
with D� = D ∪ {b1,… bl}.

Example 4  Based on the total choices from Example 3 and 
probabilistic ontology O = (D,C,Σ, ) , each �i with 1 ≤ i ≤ 12 , 
induces a non-probabilistic ontology O�i

= (D�i
,Σ) where 

D�i
= D ∪ {b1,… , bl} with bk ∈ �i and bk ≠ ⊥cj

 for every 
cj ∈ C.

We recall the notion of models and satisfaction for clas-
sical ontologies in Calì et al. (2012).

Definition 5  Given an ontology (D,Σ) , the set of models, 
denoted mods(D,Σ) , is the set of all (possibly infinite) data-
bases B such that (i) D ⊂ B , and (ii) every � ∈Σ is satisfied in B.

𝜆1 = [s(a, b), s(b, c), r(b)] p(𝜆1) = 0.084

𝜆2 = [s(a, b), ⊥c2
, r(b)] p(𝜆2) = 0.036

𝜆3 = [⊥c1
, s(b, c), r(b)] p(𝜆3) = 0.196

𝜆4 = [⊥c1
, ⊥c2

, r(b)] p(𝜆4) = 0.084

𝜆5 = [s(a, b), s(b, c), r(c)] p(𝜆5) = 0.021

𝜆6 = [s(a, b), ⊥c2
, r(c)] p(𝜆6) = 0.009

𝜆7 = [⊥c1
, s(b, c), r(c)] p(𝜆7) = 0.049

𝜆8 = [⊥c1
, ⊥c2

, r(c)] p(𝜆8) = 0.021

𝜆9 = [s(a, b), s(b, c), ⊥c3
] p(𝜆9) = 0.105

𝜆10 = [s(a, b), ⊥c2
, ⊥c3

] p(𝜆10) = 0.045

𝜆11 = [⊥c1
, s(b, c), ⊥c3

] p(𝜆11) = 0.245

𝜆12 = [⊥c1
, ⊥c2

, ⊥c3
] p(𝜆12) = 0.105
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Note that each B in the above definition can be considered 
as a possible world under the closed world assumption, i.e. 
every tuple that does not appear in B is false. It is important 
to recall that for full TGDs (pure Datalog rules), an ontol-
ogy (D,Σ) has a unique least model (Abiteboul et al., 1995).

Definition 6  Let O be a probabilistic ontology, and Φ be a 
conjunction of ground atoms built from predicates in R . The 
probability that Φ holds in O , denoted PrO(Φ) , is the sum of 
the probabilities of all total choices � such that (D𝜆,Σ) ⊧ Φ ; 
that is, PrO(Φ) =

∑𝜆∈total_choice(C)

(D𝜆,Σ)⊧Φ
p(𝜆).

At this point, it is interesting to remark the connection 
between our approach and the one considered by Riguzzi 
(2008, 2006). The Logic Programs with Annotated Disjunc-
tions (LPADs) mentioned in their paper make an implicit 
treatment of mutually exclusive facts, whereas our approach 
does it explicitly. In fact, LPADs are more expressive than 
our language since they use non-Horn clauses. In addition, 
they use well-founded semantics in order to deal with nega-
tion as failure. Both aspects have a computational cost that 
we wish to avoid.

Semantics for Query Answering  A conjunctive query (CQ) over 
R has the form Q(�) = ∃Φ(�,�) , where Φ(�,�) is a conjunc-
tion of atoms (possibly equalities, but not inequalities) with the 
variables � and � , and possibly constants, but without nulls. 
Probabilistic answers to CQs are defined via homomorphisms, 
which are mappings � ∶ Δ ∪ ΔN ∪ V → Δ ∪ ΔN ∪ V such that 
(i) c ∈ Δ implies �(c) = c , (ii) c ∈ ΔN implies �(c) ∈ Δ ∪ ΔN , 
and (iii) � is naturally extended to atoms, sets of atoms, and 
conjunctions of atoms.

Definition 7  The set of all probabilistic answers to a CQ 
Q(�) = ∃�Φ(�,�) over a probabilistic ontology O= (D,C,Σ) , 
denoted with ans(Q,D,C,Σ) , or ans(Q,O) , is a set of pairs (t, pt) 
with t a tuple over Δ such that there exists a homomorphism 
� ∶ �∪�→Δ ∪ ΔN with �(X) = t and (D𝜆,Σ) ⊧ 𝜇(Φ(�,�)) 
for all � ∈ total_choice(C) . The probability of each tuple t is 
then pt =

∑𝜆∈total_choice(C)

(D𝜆,Σ)⊧𝜇(Φ(�,�))
p(𝜆).

Observations  If a probabilistic ontology O= (D,C,Σ) is such 
that C is empty, then the semantics for (B)CQs as defined 
above coincides with that for classical ontologies (Calì et al., 
2012).

Note that query answering under general TGDs for non-
probabilistic ontologies is undecidable  (Beeri & Vardi, 
1981), even when the schema and TGDs are fixed (Calì et al., 
2008). The two problems of CQ and BCQ evaluation under 
TGDs are log-space-equi-valent (Fagin et al., 2005a; Deutsch 
et al., 2008). As mentioned above, in the non-probabilistic 
case, for arbitrary full TGDs there exists exactly one minimal 

model (Abiteboul et al., 1995) over which Q is evaluated. 
Furthermore, it has been shown that for full TGDs CQ evalu-
ation can be done in polynomial time in data complexity (i.e., 
assuming � and Q fixed) (Dantsin et al., 2001).

NeuroLang Programs

In addition to our model, we assume the existence of a sepa-
rate schema T  , the target schema, that defines the language 
by means of which users of NeuroLang can query about the 
probability of certain events. Predicates in T  have a dis-
tinguished term in the n-th position (for n-ary predicates) 
reserved exclusively for real numbers in the interval [0, 1]; 
i.e., for any predicate p ∈ T  , atoms of the form p(a1,… , an) 
are such that a1,… , an−1 are variables or constants from Δ , 
while an is a variable or a constant from [0, 1]. Below we 
show an example of how this language is used.

A NeuroLang program N  is comprised of the following 
components:

•	 D, Σ : where D is a set of ground atoms from RD , and Σ is 
a set of full TGDs that only use atoms from RD and can 
have recursion and stratified negation.

•	 (D1,Σ1) : a classical ontology, where D1 is a set of ground 
atoms from RD , Σ1 is a set of TGDs that belong to the 
Sticky fragment (Cali et al., 2012), and the bodies and 
heads are atoms built from predicates in RD.

•	 C: a set of probabilistic constraints only involving atoms 
from RP.

•	 � : a set of full TGDs, whose bodies and heads may con-
tain atoms from RD ∪RP . Neither negation nor recursion 
is allowed in this set of rules.

•	 Π : a set of probability encoding rules (PERs) with the 
following form: 

where Φ is a conjunction of atoms from RD ∪RP , � is 
an atom in T  and �X is the distinguished term that in this 
case must be a variable (ranging over the reals in [0, 1]).

•	 A: a set of rules of the form 

where Φ is a conjunction of atoms in RD ∪ T  and agg 
is an aggregation function (e.g., sum, count, avg, etc.). 
Neither negation nor recursion is allowed in these rules.

Informally, the above sets together provide the following 
functionalities: 

	 (i)	 Σ , Σ1 , C , and � are used by the probabilistic infer-
ence mechanism, which applies ontological rules and 
ultimately associates probabilities to atoms (follow-

�∗ ∶ ∀�∀�(Φ(�,�)) → �(�, �X)

(2)∀�∀�(Φ(�,�,�) → �(�, agg(�))
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ing the semantics described in “Basic Probabilistic 
Ontological Model” section);

	 (ii)	 Π incorporates probabilities as values inside atoms; 
and

	 (iii)	 rules in A manipulate these probabilities via aggre-
gation functions to present them as requested by 
the user.

Note that PERs are full TGDs that will be used to trans-
late from a source schema to a target one, in the same spirit 
as source-to-target TGDs for data exchange (Fagin et al., 
2005b). Effectively, they reify the probability of an atom, 
given by the semantics, as a term in a new atom that can 
be further manipulated by other rules. For instance, a set of 
probabilistic constraints C = {s(a, b) ∶ 0.3} will be reified by 
the PER ∀X∀Ys(X, Y) → t(X, Y , �X) as {t(a, b, 0.3)} . On the 
other hand, for rules in A we incorporate functional symbols 

agg to the distinguished term in � to indicate that its value 
takes the result of applying the function agg to all �X that 
satisfy the body of the rule. Note that users here can define 
arbitrary rules that manipulate probabilities by means of 
aggregation functions. It’s defined as a post-processing step 
that builds a view as defined by the user issuing the query. 

Therefore, it’s the user’s responsibility that the handling of 
the probabilities obtained in the previous steps complies with 
the laws of probability. For more information, we refer the 
reader to Appendix. We extend notation body and head used 
for TGDs to all types of rules defined in this section. The fol-
lowing is a simple example of query answering using PERs.

Example 5  Consider the following NeuroLang program N  . 
We add a set of PERs and rules with aggregations.
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Now, the partition of possible worlds used to compute que-
ries Q1 and Q2 is the following (excluding atoms from D and 
(D1,Σ1) for clarity, and including probabilities):

Answering Q1 , Q2 leads to the target schema solution {v(a, 0.141),  
v(b, 0.154),   u(0.154)} . Hence, the resulting answer set is 
{Q1(a, 0.141),Q2(b, 0.154)}.

Query Answering in NeuroLang

A NeuroLang query Q is any conjunction of atoms in RD ∪ T  , 
such that atoms in T  have as distinguished term a variable; 
these variables will be instantiated with the probability of cer-
tain events as computed by the inference mechanism. Algo-
rithm 1 describes the pseudocode for answering queries in the 
NeuroLang framework—Fig. 1 provides a high-level view of 
the main steps involved in this process, where inputs are as 
defined above.

There are two steps in which NeuroLangQA makes exter-
nal calls. First, in Step 1 the rewriting of Σ w.r.t. Σ1 is done 
by means of the XRewrite algorithm developed in Gottlob 
et al. (2014) for rewriting queries with respect to the Sticky 
fragment of existential rules (also known as Datalog+/–). 

D1 = {t1(a), t1(c)},

Σ1 = {∀Xt1(X) → ∃Z o(X, Z)},

D = {t2(a), t2(b)},

Σ = {∀X∀Y t2(X) ∧ o(X, Y) → t(X)},

C =

⎧
⎪⎨⎪⎩

s(a, b) ∶ 0.3

s(b, c) ∶ 0.7

r(b) ∶ 0.4 � r(c) ∶ 0.1

⎫
⎪⎬⎪⎭
,

� = {∀X∀Y s(X, Y) ∧ r(Y) → w(X, Y)}},

Π = {∀X∀Y w(X, Y) → v(X, �X)},

A = {∀X∀W v(X,W) → u(max(W))},

Q1(X,P) = v(X,P), t(X),

Q2(X,P) = v(X,P), u(P).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{s(a, b) s(b, c) w(a, b) r(b) t(a)} ∶ 0.084

{s(a, b) w(a, b) r(b) t(a)} ∶ 0.036

{ s(b, c) r(b) t(a)} ∶ 0.196

{ r(b) t(a)} ∶ 0.084

{s(a, b) s(b, c) w(b, c) r(c) t(a)} ∶ 0.021

{s(a, b) r(c) t(a)} ∶ 0.009

{ s(b, c) w(b, c) r(c) t(a)} ∶ 0.049

{ r(c) t(a)} ∶ 0.021

{s(a, b) s(b, c) t(a)} ∶ 0.105

{s(a, b) t(a)} ∶ 0.045

{ s(b, c) t(a)} ∶ 0.245

{ t(a)} ∶ 0.105

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Note that here the algorithm is used to rewrite every appear-
ance of heads of rules in Σ1 in the bodies of rules in Σ , yield-
ing a potentially larger set of full TGDs (rules without exis-
tentials in the head).

Then, Step 3 derives the probabilities associated with atoms. 
This is done by dynamically choosing the best algorithm for 
the job: if � is liftable according to Dalvi and Suciu (2012), 
then lifted query answering is applied; otherwise, the query 
is compiled to an SDD representation and model counting is 
applied (Vlasselaer et al., 2014). Both cases are implemented 
in relational algebra with provenance (Senellart, 2017). Note 
also that up to Step 3 we can guarantee the correctness of the 
semantics of NeuroLangQA, i.e., the probabilities associated 
with atoms in set B correspond to the probability with which 
they are entailed in the probabilistic ontology. However, since 
after this step users can manipulate the probabilities of atoms 
through aggregation functions provided in A, it cannot be guar-
anteed that this relationship holds in the next steps, so users 
have the responsibility of making a sound use of such values. 
This manipulation is intentionally incorporated to increase the 
expressive power of the languages; similar additions occur in 
other languages, like Prolog. This feature is useful in our appli-
cation case allowing, for instance, to aggregate probabilistic 
values into voxel overlays (cf. “Forward Inference” section), 
or select the 95th percentile top probabilities of a result set 
(cf. “Reverse Inference Over a Region of the Destrieux Atlas 
Leveraging the CogAt Ontology” section).

The final step of the algorithm returns the answers to query 
Q as the set of all tuples t built from Δ such that there exists a 
homomorphism � where �(�) = t and �(Φ(�,�)) ∈ M�.

Correctness of NeuroLangQA  We now discuss the correctness 
of NeuroLangQA algorithm with respect to the probabilis-
tic semantics described in “Basic Probabilistic Ontological 

Fig. 1   Overview of the NeuroLangQA algorithm. Step numbers refer 
to those described in Algorithm 1
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Model” section. Without loss of generality, we assume a query 
of the form

where Φ(�) is a conjunction of atoms in RD and �i(�, ��) 
is an atom in T .

The result of Step 1 in NeuroLangQA is a special case 
of a probabilistic ontology (D�,Σ�) , where Σ� is a set of full 
TGDs that may contain stratified negation and recursion. 
Furthermore, Step 2a removes from Σ� all rules that depend 
on C ∪ � ∪ Φ (Baget et al., 2011). Therefore, M computed in 
Step 2b is unique as neither probabilistic atoms, nor existen-
tial rules are involved. Step 3 now considers the probabilistic 
ontology defined by O = (M,C ∪ C�,�) . Note that atoms in 
M materialize ontology (D�,Aux) and they will hold in every 
possible world for probabilistic ontology O.

Recall that the purpose of PERs is to incorporate the 
probability of an atom as an additional term—Step 3 does 
precisely that: for each PER � , it computes the probability 
of all ground instantiations of body(�) that are entailed by O . 
For each such instantiation t, set B contains the instantiation 
itself ( Q�(t) ) and the head of � instantiated by values in t and 
an extra position with value PrO(body(�)(t)).

Finally, Step 4 considers a deterministic ontology com-
prised by B (a set of ground atoms) and the set of full TGDs 
(Σ� − Aux) ∪ A ; M′ contains all ground atoms that are entailed 
by such ontology. As in the case of M, M′ is unique since 
neither existential rules nor probabilistic atoms are involved.

Therefore, we can conclude that—by construction—the 
results computed by the NeuroLangQA algorithm are correct 
with respect to the probabilistic semantics defined in “Basic 
Probabilistic Ontological Model” section up to Step 3. This 
means that the probabilities associated with atoms in B cor-
respond to the probability with which they are entailed by the 
probabilistic ontology. The final two steps simply follow the 
user-specified rules for establishing personalized views, which 
may manipulate probability values in an arbitrary fashion. 
With the framework in place, in the following we show how it 
can be applied in practice.

Evaluation Based on Real‑World Use Cases 
in Neuroscience Research

In this section, we illustrate via concrete examples several 
use cases that appear in real-world tasks carried out by neu-
roscience researchers. Since all of our analyses are based on 
meta-analytic components, we first give a brief description 
of the Neurosynth database we use in our examples. Where 
extra data is used, it will be clarified in each particular case. 
The Neurosynth database is composed of 3.228 × 103 terms, 
1.4370 × 104 studies (SelectedStudy), and 3.3593 × 104 

Q(�, �
�
) = Φ(�) ∧ �i(�, ��),

voxels; but this information would not be useful without 
associations, so we also have 1.049299 × 106 terms reported 
as present in studies (TermInStudy) and 5.07891 × 105 voxels 
reported as active (FocusReported), also with their respective 
study. Finally, there are 112 brain regions from Destrieux’s 
atlas (Destrieux et al., 2010) associated with brain coordi-
nates through the VoxelByRegionDestrieux relation. These 
data give rise to the following extensional databases:

where FocusCoactivates represents spatial uncertainty in 
foci reporting, as they encode that the probability that two 
foci co-activate is mediated by their distance as measured 
by a 3D Gaussian law with standard deviation 2 mm. This 
dataset has approximately 5 million atoms. Furthermore, 
the CogAt ontology (Poldrack et al., 2011) is composed of 
5.6807 × 104 rules. In the following, examples are written 
in extended Datalog syntax, as in our implemented tool1. 
We base our examples on versions 1.4.0 of IOBC, 0.3.1 of 
CogAt, and the Destrieux 2009 atlas (Destrieux et al., 2009) 
provided by Nilearn software package v0.7.0 (Fischl et al., 
2004). In addition, both the software code and other exam-
ples can be found on the official NeuroLang repository1.

Open World Assumption

We now show how we can make use of NeuroLang to solve que-
ries that require taking into account the open world assumption. 
For that purpose, we use the terms present in the Neurosynth 
database to associate the studies analyzed with the cognitive 
processes proposed by CogAt. For this, we make use of a special 
term included by our ontologies parser, Entity(t, s), that will 
allow us to associate external data with the internal entities of 
the ontology. 

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

TermInStudy(}}emotionε, s1),

⋮

TermInStudy(}}painε, s120),

FocusReported(5,−5, 3, s1),

⋮

FocusReported(−10, 5, 1, s25),

VoxelByRegionDestrieux(15, 47, 16,
�l_g_and_s_frontomargin�),

⋮

VoxelByRegionDestrieux(16, 46, 15,
�l_g_and_s_frontomargin�),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

SelectedStudy(si) ∶
1

#studies

FocusCoactivates( 5,−5, 3, 5,−5, 3) ∶ 1

⋮

FocusCoactivates( 5,−5, 3, −10, 5, 1) ∶

(2�2)−3∕2 exp
�
−

1

2

‖(5,−5,3)−(−10,5,1)‖2
22

�

⎫⎪⎪⎪⎬⎪⎪⎪⎭

1  https://​neuro​lang.​github.​io/

https://neurolang.github.io/
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Each entity that is parsed creates this specific rule, that 
we can later overload with external information, creating an 
association between entities and external data. An example 
of this overloading process can be seen in the first line of 
Listing 2 where we associate the studies of the Neurosynth 
database with the entities of the ontology, allowing us to per-
form queries that return these studies, but under the universe 
modeled by the ontology. All within the same semantics of 
the NeuroLang program.

As we can see in the first line of Listing 2, we then asso-
ciate these entities with the Neurosynth studies within the 
same program. This will allow us to combine both datasets, 
so that we can use the information structured in the CogAt 
ontology to ask questions that result in Neurosynth’s studies. 

We focus on solving queries based on some of the 
ontology’s constraints defining open-world knowledge. 
In particular, we aim at relating the visual awareness 
cognitive process from the CogAt ontology with brain 
areas reported activate during this process. This can not 
be done directly through Neurosynth, as the cognitive 
process is not reported. Therefore, we need a way to 

associate studies related to this term that do not mention 
visual awareness explicitly. CogAt helps in solving this 
problem: there is TGD specifying that spatial attention is 
a sub-process of visual awareness. Which, expressed as a 
Datalog+/- rule in CogAt’s TGD set, is:

which has an existentially-quantified variable in the head, 
hence representing open-world knowledge.

We seamlessly harness this open knowledge to analyse 
activations related to visual awareness using to NeuroLang’s 

(3)

∀XSpatialAttention(X) →

∃YPartOf(X, Y) ∧ VisualAwareness(Y)
∈ Σ

CogAt

1
,

Fig. 2   Resulting thresholded 
brain image from the Neu-
roLang use case showing the 
activations related to spatial 
attention obtained through the 
resolution of a query under the 
open world assumption

built-in capabilities: we write a program (see Listing 2) to 
obtain all studies that, while not mentioning visual aware-
ness, mention terms which, according to CogAt, imply that 
the cognitive process is involved. Importantly, we achieve 
this by combining an automatically-produced literature data-
base with a expert-produced ontology. The resulting activa-
tions can be seen in Fig. 2.
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Forward Inference

In this task, we wish to assess the probability of a voxel 
being reported as active in a study given that the word “emo-
tion” is present in the specific study. 

Note that in order to represent this knowledge we only need 
the expressive power of full TGDs (no existential rules are 
needed). In Fig. 3 we see that the most important reported 
activations are concentrated in the amygdala, the region 
most related to emotions, as generally accepted in the 
neuroscience field.

Reverse Inference Over a Region of the Destrieux 
Atlas Leveraging the CogAt Ontology

For this use case, we will use reverse inference techniques to 
obtain the terms most likely to be associated with the short 

insular gyrus of the Destrieux atlas. Atlases are parcellations 
of the brain into distinct areas based on histological, physi-
ological, or other characteristics. In addition, we will also 
use the information stored in the CogAt ontology to filter the 
terms from the reverse inference in order to obtain cleaner 
results, all in the same query. Terms included in the CogAt 

Fig. 3   Resulting thresholded 
brain image from the Neu-
roLang use case showing that 
foci in the amygdala are most 
probably reported if a study 
includes the word “emotion”. 
As expected, the main area 
shown corresponds to the amyg-
dala (Mesulam, 1998)
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ontology are characterized by the “label” relation, which 
we load into our system under the CogAtLabel symbol. The 
CogAt ontology rewriting adds 4.577 × 103 formulas to our 
database. The code of this program is presented in Listing 4.

We can see in Table 1 (right) how, by using the knowl-
edge stored in the CogAt ontology, we can filter out those 
terms that, being present in most neuroimaging studies, 
only add noise to the results. Therefore, we obtain a list 
of much more relevant results that are also more closely 
related to the general knowledge of the field of neurosci-
ence. Solving this query takes approximately 6 seconds. 

For another use case leveraging ontological knowledge, 
please refer to “Retrieving Information From Related 
Terms Via thehierarchical Structure of the Ontology” 
section. 

Retrieving Information From Related Terms Via 
the Hierarchical Structure of the Ontology

We now show how we can leverage the ontological knowl-
edge provided by the International Organization for Bio-
logical Control (IOBC) to perform an analysis that includes 
terms related to our main term (noxious and nociceptive 
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related to pain, in this example) without knowing them 
beforehand, enriching our analysis automatically. The IOBC 
ontology rewriting adds 11,102 formulas to our database.

In Fig. 4, we provide a view of the results obtained from 
this example (see Listing 5). In this case, the activations of 
Noxious and Nociceptive were also automatically included in 

Table 1   Results from “Reverse Inference Over a Region of the Destrieux 
Atlas Leveraging the CogAt Ontology” section. Unfiltered results: Results 
(10 of 161 most relevant terms in the top 0.5% most probable terms) of 
applying reverse inference on region short insular gyri of the Destrieux 

atlas using Neurosynth term association. Results include irrelevant results 
in terms of cognitive tasks such as “magnetic resonance”. Filtered results: 
Same approach, but filtering of terms based on those present in the CogAt 
ontology (Nieuwenhuys, 2012)

Unfiltered results

Term Prob

task 0.47
magnetic 0.47
resonance 0.47
magnetic resonance 0.47
functional magnetic 0.43
using 0.38
frontal 0.37
anterior 0.35
network 0.34
prefrontal 0.33

Filtered results

Term Prob

memory 0.20
attention 0.14
working memory 0.09
perception 0.09
learning 0.08
language 0.08
emotion 0.07
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the result, solving one of the current problems of Neurosynth 
(the need to know all the terms you want to use beforehand). 
Solving this query takes approximately 55 seconds.

Segregation Reverse Inference Query

This final use case shows how we can use negation and exis-
tentials to express specificity. We pick the terms present in 
the CogAt ontology that are mentioned in studies reporting 
activations within the short insural gyri.

Processing took 42.45 seconds. Results are shown in 
Table 2.

Variance in Primary Neuroimaging Data

In this example, we demonstrate how it’s possible, by imple-
menting techniques developed and validated by the scientific 
community, to account for variance in primary neuroimaging 
data. In particular, our example focuses on one of the most com-
mon algorithms for coordinate-based meta-analyses: activation 
likelihood estimation, ALE (Turkeltaub et al., 2002; Laird et al., 
2005). We will perform a meta-analysis using the modified 

version of ALE proposed by Eickhoff et al. (2009). This mod-
ification is based on the idea of using between-subjects and 
between-templates variance to estimate the size of the modeled 
Gaussian from which to compute the corresponding FWHM.

For this purpose, we will use the BrainMap database (Laird 
et al., 2011), composed of 3,112 publications totaling 15,256 
experiments, which provides us with information on the num-
ber of subjects present in each experiment. Our program will 
use three different atoms from this database: StimMod, which 
relates each experiment to its stimulus modality, StimType, 

which does the same with the type of stimulus, and finally 
BrainMap, composed of the list of publications and experi-
ments included in the database, the number of participants, 
and the reported activations. Based on empirical measurements 
made in 2009 by the BrainMap team, we can calculate the 
FWHM that includes variation between-subjects and between-
templates with the following formula. Given N, the number of 
subjects in the experiment, the formula is defined as

(4)FWHM (N) ∶

√
� ln(2)

(
5.72 +

11.62

N

)

Fig. 4   Resulting thresholded brain image from the NeuroLang use case 
showing the activations related to pain and its related terms derived 
from the IOBC ontology (noxious and nociceptive). Dorsal anterior cin-

gulate cortex (x = 0) and parietal regions are be active in articles men-
tioning pain and related words. agreeing with current knowledge in pain 
location (Lieberman & Eisenberger, 2015)
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The calculation includes the square root of the inverse of the 
user-specified number of subjects. For our example, we used 142 
studies related to an auditory stimulus modality among one of the 
following types: “Vocal Sounds”, “Nonvocal Sounds”, “Sounds 
(Environmental)”, or “Nonverbal Vocal Sounds”. Listing 7 
presents the program used to calculate the modified ALE. The 
rule defining the Activation atom uses syntactic sugar to define 

an expression that assigns probabilities to each of the possible 
values based on the formula for a three-dimensional Gaussian 
distribution defined in Laird et al. (2005). Based on Algorithm 1, 
this rule adds a new probabilistic relation Activation to C where 
the probability is computed according to an expression that can 
only contain elements of the rule body belonging to D or Σ , or 
constants. The variable ‘d’ is the Euclidean distance between 
both points (i, j, k) and (i1, j1, k1). Function sigmaGivenSubjects 
calculates, given the number of subjects who participated in the 
experiments reported by BrainMap, the formula defined in Eq. 4. 
Finally, ‘resolution’ is a constant that defines the resolution of the 
brain image used in the experiment. At the same time, we will 
present results using the classical ALE variant as a reference, 
with an FWHM value manually selected of 9. The code for this 
program can be found at Listing 8.

Table 2   Terms, within the 95th percentile, mentioned in our segregation 
query in “Segregation Reverse Inference Query” section. Shows that 
studies presenting activations only related to the short insula gyrus tend 
to be associated with anxiety

term prob

anxiety 0.097819
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Figure 5 presents a comparison of the results of both 
algorithms. The ALE scores for each voxel in the reference 
space were calculated and filtered using the 95th percentile 
of the modified ALE as the threshold for comparison.

Figure 5a shows a more accurate selection of voxels 
than Fig. 5b concerning the expected results for an auditory 
stimulus modality. This is because the modified version of 
ALE allows us to weigh each voxel according to the num-
ber of subjects that participated in the experiment. Though 
Fig. 5b tends to show expected results, it is unable to cap-
ture the variance and relies on each experiment present in 
the BrainMap database with the same “weight”, leading to 
noisier results.

Discussion and Conclusion

In this paper, we presented a fragment of probabilistic 
Datalog+/– enriched with negation and aggregation, along 
with a scalable query resolution algorithm. The main goal 
of our specific approach is meta-analysis of neuroimag-
ing data. Several different approaches to probabilistic 
Datalog+/– semantics and query resolution exist (Gottlob 

et al., 2013; Ceylan et al., 2021). Nonetheless, these do not 
incorporate aggregation, and the possibility of manipulating 
the probabilistic query results within the same language. 
These two features, as shown by our use-case analysis in 
“ Evaluation Based on Real-World Use Casesin Neurosci-
ence Research” section, are fundamental traits required 
to provide a probabilistic logic programming language 
that can encode neuroimaging meta-analysis applications 
end-to-end.

The possibility of manipulating probabilities within the 
language comes at a great expense. After our PERs are com-
puted, in Step 4 of Algorithm 1, our language allows han-
dling probabilities as a standard float column. While this 
allows for analyses required by our target applications, it 
calls for disciplined programming from the user such that 
the manipulation of probabilities remains sound. Nonethe-
less, this gives our language great power; for instance, we 
can build probabilistic brain images, through aggregation, 
as shown in “Forward Inference”–“Reverse Inference Over 
a Region of the Destrieux Atlas Leveraging the CogAt 
Ontology” section; and compute the probability differences 
between two events, which we show in “Segregation Reverse 
Inference Query” section.

Fig. 5   Comparison of results 
between ALE (Turkeltaub et al., 
2002; Laird et al., 2005) and 
Modified ALE (Eickhoff et al., 
2009) a shows a more accurate 
selection of voxels than b con-
cerning the expected results for 
an auditory stimulus modality. 
This is because the modified 
version of ALE allows us to 
weigh each voxel according 
to the number of subjects that 
participated in the experiment. 
b is unable to capture the vari-
ance and relies on each experi-
ment present in the BrainMap 
database with the same weight, 
leading to noisier results

(a) Modified ALE, accounting for between-subjects and between-templates variance

(b) Classic ALE, with FWHM = 9
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All these features allow us to go beyond current tools in  
meta analyses whose queries are based in propositional 
logic (Yarkoni et al., 2011; Laird et al., 2011) and harness 
the full power of the FO¬∃ fragment, as well as open-world  
semantics, to express meta-analysis tasks in a sound,  
disciplined, and declarative manner. Furthermore, by using, 
as in Ceylan et al. (2021), a lifted query processing approach 
when possible (see Algorithm 1, Step 3), we are able to process  
current meta-analytic datasets enriched with ontologies that 
are of considerable size, as described at the beginning of 
“Evaluation Based on Real-World Use Casesin Neuroscience  
Research” section. While it is true that there are other works  
that make possible the resolution of Datalog+/– queries (Ceylan  
et  al. (2021); Jha and Suciu (2012a)), the definition of  
the problem we wish to solve makes it necessary to have a 
framework capable of solving probabilistic choice and handling  
deterministic open-world knowledge. Moreover, we are not 
aware of any practical implementation of the mentioned 
works, beyond the provided theory. It’s important to highlight  
that NeuroLang limits the representation of probabilistic atoms  
as mutually exclusive events or mutually independent events. 
We are aware of this limitation and of several advances in the 
field that overcome this limitation, such as MarkoViews (Jha 
& Suciu, 2012b).

Finally, Neurolang is open-source software, so any mem-
ber of the community can propose improvements, exten-
sions, or modules. One use case of particular interest is the 
possibility for researchers/laboratories creating datasets to 
code their own “connectors” with NeuroLang, making the 
loading of these data trivial for the end-user of the tool. As 
for the core of Neurolang, all contributions are welcome, 
but it will be the core developers of the project who will be 
in charge of approving/rejecting modifications, in the spirit 
of maintaining a reliable tool that guarantees harmonious 
results among users, as in other popular open-source tools.

To conclude, we have shown that neuroimaging meta-
analytic applications are an excellent real-world applica-
tion for a language such as probabilistic Datalog+/–. By 
using probabilistic semantics that have recently converged 
from different probabilistic logic and open-world language 
approaches (Riguzzi, 2008; Ceylan et al., 2021; Vennekens 
et al., 2009), with open-world semantics (Calì et al., 2012; 
Gottlob et al., 2014; Ceylan et al., 2021), and query resolu-
tion approaches (Dalvi & Suciu, 2012; Ceylan et al., 2021; 
Vlasselaer et al., 2016), we have produced a language that is 
ready to be used in neuroimaging applications.

Information Sharing Statement

All the datasets and software used in this article are openly 
available at the following web sites:

•	 Neurolang: https://​neuro​lang.​github.​io/
•	 Nilearn, version 0.7.0: https://​nilea​rn.​github.​io/
•	 NeuroSynth database: https://​github.​com/​neuro​synth/​
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Appendix

Probability Manipulation

NeuroLang is in charge of complying with the constraints 
imposed by the laws of probability, as long as the data are 
handled in this context. Once the rules are translated into 
PERs (with the use of PROB in the head of the rule), the 
calculated probabilities are exposed to the user. From this 
moment, it’s the responsibility of the users to manipulate 
this data in the appropriate way, which may vary according 
to the interpretation required. We provide two NeuroLang 
programs demonstrating the correct and incorrect uses of 
this requirement to illustrate both cases.

Let’s say that we are interested in computing a forward 
inference experiment using Meta-analytic data. For example, 
we could be interested in the probability of a set of voxels 
being activated given that the terms pain or noxious are pre-
sent in the studies. We saw in “Retrieving Information From 
Related Terms Via Thehierarchical Structure of the Ontol-
ogy” section that these two terms are synonyms and can be 
derived from the IOBC ontology, but let’s do it manually this 
time, to simplify the program.

Based on the code presented in Listing 3, we could calcu-
late the probability of each voxel for both terms, transform 
these atoms into a PER and then sum them to obtain our 
final answer; the code of this program is presented in List-
ing 9. Of course, this is wrong, since it is easy to see that if 
the probability of one voxel is higher than 0.5 between both 
terms, our final answer will sum to more than one. The same 
will occur if we continue adding more terms to the program.

https://neurolang.github.io/
https://nilearn.github.io/
https://github.com/neurosynth/neurosynth
https://github.com/neurosynth/neurosynth
https://bioportal.bioontology.org/ontologies/COGAT
https://bioportal.bioontology.org/ontologies/COGAT
https://bioportal.bioontology.org/ontologies/IOBC
https://bioportal.bioontology.org/ontologies/IOBC


423Neuroinformatics (2023) 21:407–425	

1 3

However, this program is correct in the sense that Neu-
roLang is not able to stop the user from misusing the 
probabilities. After being converted to PERs, the proba-
bilities column is exposed to the user and it’s their respon-
sibility to use it correctly. Alternatively, we could do the 
same calculations before converting the atoms with the 

guarantee that the calculations have been done correctly. 
Ultimately, it’s just a matter of using PERs to extract the 
results as the final step and use them to build the set of 
answers (as we saw in the NeuroLang algorithm, proba-
bilistic atoms cannot appear as answers). Listing 10 pre-
sents this program. 
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