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Abstract: Insect cell-baculovirus expression vector system is one of the most established platforms to
produce biological products, and it plays a fundamental role in the context of COVID-19 emergency,
providing recombinant proteins for treatment, diagnosis, and prevention. SARS-CoV-2 infection is
mediated by the interaction of the spike glycoprotein trimer via its receptor-binding domain (RBD)
with the host’s cellular receptor. As RBD is required for many applications, in the context of pandemic
it is important to meet the challenge of producing a high amount of recombinant RBD (rRBD). For
this reason, in the present study, we developed a process based on Sf9 insect cells to improve rRBD
yield. rRBD was recovered from the supernatant of infected cells and easily purified by metal ion
affinity chromatography, with a yield of 82% and purity higher than 95%. Expressed under a novel
chimeric promoter (polh-pSeL), the yield of rRBD after purification was 21.1 ± 3.7 mg/L, which is the
highest performance described in Sf9 cell lines. Finally, rRBD was successfully used in an assay to
detect specific antibodies in COVID-19 serum samples. The efficient strategy herein described has the
potential to produce high-quality rRBD in Sf9 cell line for diagnostic purpose.

Keywords: COVID-19; SARS-CoV-2; RBD; baculovirus; insect cells; Sf9; expression

1. Introduction

In December 2019, a new coronavirus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) was identified as the etiologic agent of a new respiratory
disease called coronavirus disease 2019 (COVID-19). Since the initial outbreak in China,
COVID-19 has spread globally becoming one of the most challenging episodes in the
history of modern public health. By November 2022, SARS-CoV-2 had infected more than
600 million people and caused more than 6 million deaths worldwide as reported by the
World Health Organization [1].

The SARS-CoV-2 is an envelope virus containing a positive-strand, non-segmented
RNA genome that encodes 29 proteins, including 25 putative non-structural and acces-
sory proteins, and four structural proteins [2]. Among its structural proteins, the spike
glycoprotein (S) is the main antigenic component involved in host cell recognition and
viral entry [3]. The S protein belongs to the type I viral fusion protein and comprises two
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functional subunits, S1 and S2 [4]. In particular, S1 contains the Receptor-Binding Do-
main (RBD) in the SARS-CoV-2 S protein, which binds strongly to angiotensin-converting
enzyme 2 (ACE2) on the host cell membrane and constitutes the main target of neutral-
izing antibodies [5]. In addition to the soluble spike trimer, RBD is the clear target for
therapeutic interventions such as vaccines or monoclonal antibodies, and also for use in
serology assays [6,7]. Given that coronavirus genomes are constantly subject to genomic
rearrangement and point mutation favoring the emergence of SARS-CoV-2 variant, it is
crucial to have biotechnological platforms that can quickly adapt to the production of
recombinant RBD (rRBD) from SARS-CoV-2 variants [8]. For instance, one of the recent
variants (Omicron) possesses a large number of mutations: more than 30 in the S protein,
15 of which are contained in RBD [9].

In recent years, the insect cell-baculovirus expression vector system (IC-BEVS) has
been extensively used to produce viral structural proteins. The IC-BEVS is one of the
most established platforms to produce biological products in order to provide solutions to
emerging human disease [10,11]. Moreover, there are already numerous products on the
market produced in IC-BEVS for the treatment and prevention of human disease. The plat-
form fulfilled a fundamental role in the COVID-19 emergency. In this regard, the recently
marketed Novavax COVID-19 vaccine was produced in Sf9 cell line [12]. This system is
a more cost-effective and scalable platform to produce eukaryotic recombinant proteins
than traditional mammalian cell-based methods [13]. Moreover, it is completely safe, poses
no risk to the operator, and provides proper protein folding, post-translational modifica-
tions, and strong promoters, which renders it an attractive system [14]. The insect cell
lines traditionally used for producing recombinant proteins that are susceptible to the pro-
totype baculovirus species Autographa californica multiple nucleopolhyedrovirus (AcMNPV)
are High Five™ derived from Trichoplusia ni and Sf9 derived from Spodoptera frugiperda.
It was reported that the High Five™ cell line is considered a better host to produce re-
combinant proteins in BEVS than Sf9 insect cell lines [12]. For this reason, most scientific
reports use the High Five™ line as a host to produce rRBD, reaching a maximum yield
of 6.5 mg/L [15–17]. It was demonstrated that High Five™ produces glycoproteins with
core alfa 1,3-fucose structure with allergenic potential when used in humans, which does
not occur with the Sf9 insect cell line [18]. So far, the only study reporting on rRBD expres-
sion under the traditional polyhedrin (polh) promoter in IC-BEVS using Sf9 cell as a host
achieved poor yield (0.8 mg/L culture) [19]. The rRBD production process in Sf9 cells has
not been optimized and could be improved by using alternative promoters to the tradi-
tional ones, such us polh and p10. Recently, the development of new chimeric promoters,
such as polh-pSeL, has made it possible to significantly increase the yield achieved in Sf9
insect cells [20,21].

In this report, we describe a novel process to produce a high amount of rRBD in Sf9
insect cell line using BEVS. This high-quality and pure recombinant antigen is useful for
the development of COVID-19 reagents.

2. Materials and Methods
2.1. Construction of pFBD-polh-pSeL-X Baculovirus Shuttle Vector

The polh promoter from pFastBac™ Dual (Thermo Fisher Scientific, Waltham, MA,
USA) vector was replaced with the chimera promoter polh-pSeL developed by the
Dr. Salvador Herrero’s laboratory at Universitat de València [20,21]. For this purpose,
the polh-pSel promoter fragment was obtained from the polh-pSeL-GFP plasmid by digestion
with BstZ17I and EcoRI enzymes. The fragment was then inserted into the BstZ17I and
EcoRI sites of the pFastBac™ Dual (Thermo Fisher Scientific), generating the pFBD-polh-
pSeL-X vector. In addition, the enhanced green fluorescent protein (EGFP) cDNA was
cloned into SmaI and NcoI sites under the p10 promoter, as previously described [21].



Viruses 2022, 14, 2794 3 of 14

2.2. RBD cDNA Sequence and Cloning into pFBD-polh-pSeL-X Baculovirus Shuttle Vector

The detailed procedure for constructing the baculovirus is shown in Supplementary
Figure S1. The full-length spike cDNA sequence from SARS-CoV-2 was previously syn-
thetized and codon optimized for insect cell expression by GenScript (Piscataway, NJ, USA).
The sequence was cloned into pFastBac™ Dual vector (Thermo Fisher Scientific) and codi-
fied for spike protein Wuhan-Hu-1 isolated (GenBank accession no. QHD43416.1) [7]. Using
this vector as a template, the RBD cDNA sequence—composed of 955 bp to 1623 pb corre-
sponding to amino acid residues 319–541 of the S protein—was amplified by PCR using
two specific primers. These primers added BamHI and EcoRI restriction sites and six histi-
dine residues (His-tag): 5′-CGCGGATCCAGGGTGCAGCCTACCGAATC-3′ (primer sense;
BamHI site underlined) and 5′-CCGGAATTCTTAGTGGTGGTGGTGATGATGGAAGTT-
CACGCACTTGTTCTTG-3′ (primer antisense, EcoRI site underlined and His-tag codon
in bold). The PCR conditions (50 µL final volume) were as follows: 200 nM of each
primer, 1 × PFU buffer, 0.3 mM of each dNTP, and 2.5 U PFU polymerase (Promega,
Madison, WI, USA). The PCR program was 95 ◦C for 6 min, 95 ◦C for 30 s, 56 ◦C for 30 s,
and 72 ◦C for 1 min/kb × 30 cycles. An additional extension step of 72 ◦C for 5 min
was then applied. After the reaction, the PCR product was purified by using the PCR
WizardTM SV gel and PCR Clean-up System (Promega). The rRBD sequence fused to the
His-tag sequence was then cloned using the BamHI and EcoRI sites of the pAcGP67-B vector
(BD Biosciences, San Diego, CA, USA) to construct pAcGP67-rRBD, which contained the
nucleotide sequence that encodes the baculoviral glycoprotein 64 leader peptides (GP64;
syn.: GP67). Using pAcGP67-rRBD as a template, the rRBD sequence fused with the GP64
signal peptide (gprRBD) and His-tag was amplified following the protocol described above.
This was done by PCR using two specific primers, which added the EcoRI restriction sites:
5′-CCGGAATTCATGCTACTAGTAAATCAGTCAC-3′ (primer sense, EcoRI site underlined)
and 5′-CCGGAATTCTTAGTGGTGGTGGTGATGATGGAAGTTCACGCACTTGTTC-
TTG-3′ (primers antisense, EcoRI site underlined). Finally, the gprRBD cassette was
cloned into the pFBD-polh-pSeL-X vector under the polh-pSeL promoter using the EcoRI
site to construct the pFBD-polh-pSeL-gprRBD. All the DNA constructs were verified by
Sanger sequencing.

2.3. Insect Cell Culture

The S. frugiperda (Sf9) insect cell line (Thermo Fisher Scientific) was maintained in
suspension cultures in a sterile Erlenmeyer flask and grown in Sf-900™ III SFM medium
(Thermo Fisher Scientific) supplemented with 1% (v/v) antibiotic-antimycotic solution
(Thermo Fisher Scientific) at 27 ◦C under continuous shaking at 100 rpm. Additionally, the
suspension volume did not exceed 10% of the total volume of the Erlenmeyer flask.

2.4. Virus Production

The recombinant baculoviruses were obtained by using the Bac-to-Bac® baculovirus
expression system (Thermo Fisher Scientific), following the manufacturer´s instructions.
The pFBD-polh-pSeL-gprRBD vector was transformed into chemically competent E. coli
DH10Bac™ strain (Thermo Fisher Scientific) by heat shock to generate the recombinant
bacmid by transposition. The bacmids were then purified and used to transfect one million
Sf9 cells by using Cellfectin II Reagent (Thermo Fisher Scientific). After 4-day incubation
at 27 ◦C, the cell culture supernatant was collected and centrifuged at 500× g for 10 min.
The transfection efficiency was determined by measuring EGFP expression by fluores-
cence under UV light. Following three amplification steps, the virus titer was determined
by a plaque assay [22]. The amplified virus stock was used for producing the rRBD in
further experiments.

2.5. Insect Cell Infection

For the rRBD expression assay, independent Sf9 (serial passage 30) suspension cultures
in log-phase at a cell density of 4 × 107 cells in 20 mL (2 × 106 cell/mL) were infected with
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Acpolh-pSeL-gprRBD multiplicity of infection (MOI) of 1 [21]. The infected suspension cul-
ture was incubated in an orbital shaker at 100 rpm in the dark at 27 ◦C for 4 days. To study
the expression at different days post-infection (dpi), samples of 1 mL were collected each
day. The culture supernatant was separated from the cell by centrifugation at 500× g for
10 min. The pellet and the supernatant were stored at −20 ◦C until further experiments. An
Sf9 suspension culture infected with baculovirus AcMNPVHRPC—previously constructed
in our laboratory—was also included as a control [23].

2.6. Total Protein Measurement

Total protein concentration was determined by following the Bradford micro-assay
protocol [24] with bovine serum albumin (BSA) as the standard, using the Quick Start™
Bradford reagent (BioRad, Hercules, CA, USA).

2.7. Electrophoretic Analysis

The protein samples were resolved by SDS-PAGE on 12.5% or 15% polyacrylamide
gels. The samples were heated at 100 ◦C for 5 min in sample buffer [125 mM Tris/HCl,
pH 6.8, 4% (w/v) SDS, 20% (w/v) glycerol, 0.01% (w/v) bromophenol blue, 10% (v/v)
2-mercaptoethanol]. Samples were also prepared under non-reducing conditions by not
incorporating 2-mercaptoethanol into the sample buffer. The resulting gels were stained
with Coomassie Blue R-250. For western blot analysis, the gels were transferred onto a
nitrocellulose membrane (GE Healthcare, Chicago, CA, USA), and rRBD was detected
using a mouse anti-His antibody (Thermo Fisher Scientific) in a 1/3000 dilution as the
primary antibody and a goat anti-mouse immunoglobulin conjugated with Horseradish
Peroxidase (HRP) as the secondary antibody (Jackson ImmunoResearch Laboratories Inc,
West Grove, PA, USA). Alternatively, rRBD was detected using an equine polyclonal anti-S
antibody serum, previously produced [25] in a 1/5000 dilution as the primary antibody,
and a mouse anti-equine immunoglobulin conjugated with HRP as the secondary antibody
(Sigma-Aldrich, St. Louis, MO, USA). Protein bands were detected using an enhanced
chemiluminescent substrate (ECL; Thermo Fisher Scientific) and a C-Digit blot scanner
(LI-COR, Bad Homburg, Germany). For image processing, the SDS-PAGE gels and western
blot were scanned and then analyzed with the ImageJ version 1.51k software (National
Institute of Health, Bethesda, MD, USA). The amount and purity of rRBD were assessed
by densitometric analysis of the band intensities from the SDS-PAGE and Bradford assay
using BSA as the standard. The results were expressed as the mean ± standard deviation
of at least three determinations.

2.8. rRBD Purification by Immobilized Metal Ion Affinity Chromatography (IMAC)

The sample from insect cell culture was clarified by centrifugation (5000× g, 10 min,
4 ◦C) and buffer exchanged by tangential flow filtration (TFF) using a MasterFlex peristaltic
pump (Cole-Parmer, Vernon Hills, IL, USA), and an ultrafiltration module Pellicon XL with
Biomax 10 kDa Membrane (Merck, Darmstadt, Germany). Briefly, the clarified supernatant
was concentrated 2× and diafiltered with 5 vol of equilibration buffer (20 mM phosphate
buffer, pH 8.0, 300 mM NaCl, 20 mM imidazole). The samples were then loaded in a
column (11 mm internal diameter) packed with 3 mL Nuvia IMAC Ni-NTA Resin (BioRad)
connected to an AKTA Purifier chromatography system (Cytiva, Marloroughm, MA, USA).
Following a washing step with 80 mM imidazole, an elution step was performed by
increasing the imidazole concentration to 500 mM. The linear flow rate was 2.1 cm/min.
Protein separation was monitored by absorbance at 280 nm. All fractions were collected
and analyzed by SDS-PAGE and western blot.

2.9. MALDI-TOF Mass Spectrometry

MALDI-TOF MS spectra were recorded on a 4700 Proteomics Analyzer Instrument
(Applied Biosystems, Foster City, CA, USA). Samples of IMAC-purified rRBD were loaded
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with sinapinic acid as the matrix in 30% (v/v) acetonitrile (ACN) and 0.1% (v/v) trifluo-
roacetic acid (TFA) in H2O onto a stainless-steel target.

2.10. Glycosylation Assay

The purified rRBD was subjected to N-glycosidase F (Roche, Mannheim, Germany)
digestion. For this purpose, 20 µg of protein was mixed with denaturing buffer 10× (2.5%
SDS, 0.4 M DTT) and H2O to a final volume of 10 µL. After sample heating at 100 ◦C for
10 min, the reaction buffer 10× [0.5 M sodium phosphate buffer, pH 7.5, 10% (v/v) NP-40],
inhibitor cocktail protease, 3 U N-glycosidase F, and H2O were added to a final volume of
20 µL. As a control, 20 µg of denatured protein was incubated in the reaction buffer without
the enzyme. After incubation at 37 ◦C for 16 h, the sample was analyzed by SDS-PAGE and
western blot, as described above.

2.11. Reverse-Phase-High Performance Liquid Chromatography (RP-HPLC)

Eluted fraction from IMAC was centrifuged for 10 min at 12,000× g and injected into
RP-HPLC (Shimadzu, Japan) to evaluate the purity level of rRBD using a Bio-Basic C4
column (Thermo Fisher Scientific). The chromatographic run was monitored at 220 nm and
280 nm and the flow used was 1 mL/min. Mobile phase A was 0.1% (v/v) TFA in H2O and
mobile phase B was 0.1% (v/v) TFA in ACN. The chromatogram gradient was performed
as 0 to 2.5 min holding 20% B, 2.5 to 25 min from 20% to 65% B, 25 to 30 min holding 65% B,
30 to 31 min from 65% to 20% B, and 31 to 40 min holding 20% B.

2.12. Size Exclusion Chromatography (SEC)

The oligomerization state of the rRBD protein was evaluated by SEC. Elution fractions
from IMAC containing purified rRBD were collected and concentrated, and the buffer was
exchanged and loaded on a Superdex 200 increase 10/300 (Cytiva) equilibrated in 100 mM
sodium phosphate buffer pH 7.4 and 150 mM NaCl. The elution peaks were collected, and
the rRBD was developed by SDS-PAGE and western blot, as described previously.

2.13. Assessment of rRBD Immunoreactivity
2.13.1. Serum Collection

Control serum/plasma (n = 28) was obtained from healthy individuals before the
outbreak of SARS-CoV-2. COVID-19 patient serum/plasma samples were collected from
a total of 30 COVID-19 cases confirmed to be infected with SARS-CoV-2 by real-time
reverse transcription-polymerase chain reaction (rRT-PCR) on samples from the respiratory
tract. These patient samples were IgG-positive for SARS-CoV-2 by COVIDAR IgG ELISA
test (Laboratorio Lemos S.R.L., Buenos Aires, Argentina). The samples were provided
by the Biobank of Infectious Diseases (BBEI, for its acronym in Spanish) of the Institute
for Biomedical Research on Retroviruses and AIDS (INBIRS, for its acronym in Spanish).
Sample collection and protocols were approved by the Ethics Committee of BBEI-INBIRS
and the Ethics Committee on Clinical Research of the School of Pharmacy and Biochemistry,
University of Buenos Aires. All subjects were informed about the purpose of the study, and
they signed consent for study participation.

2.13.2. Bridge Enzyme-Linked Immunosorbent Assay (b-ELISA) Using rRBD
as Coating Antigen

The rRBD immunoreactivity was evaluated using a bridge enzyme-linked immunosor-
bent assay previously developed by Trabucchi et al. [25] using purified rRBD instead of S
as coating antigen. Briefly, polystyrene microplates (Maxisorp, NUNC, Roskilde, Denmark)
were coated overnight at 4 ◦C with 0.5 µg/mL of purified rRBD per well, washed three
times with PBS (1.5 mM KH2PO4, 8.1 mM Na2HPO4, 140 mM NaCl, 2.7 mM KCl, pH 7.4),
blocked for 1 h with 200 µL of blocking buffer [3% (w/v) skim milk in PBS], and washed six
times with PBS-T (PBS-0.05% Tween 20). Serum/plasma samples were added in duplicate
to the coated microplates and incubated for 20 min. Plates were then washed with PBS-T six
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times, and 50 ng of S protein-biotin per well was added. After another 20 min of incubation,
plates were washed with PBS-T six times and bound S protein-biotin was detected by the
addition of Streptavidin-HRP (Jackson ImmunoResearch Laboratories Inc.) diluted 1/300.
After 20 min of incubation at 37 ◦C, microplates were washed with PBS-T five times plus
one final washing step with 200 µL of PBS; 3,3′,5,5′-tetramethyl-benzidine/H2O2 (Single
Component TMB Peroxidase EIA Substrate Kit, BioRad) was added, and plates were incu-
bated for 15 min in the dark. The color reaction was stopped with 4 N H2SO4. The oxidized
substrate was measured at 450 nm with an ELISA plate reader MultiskanFC (Thermo Fisher
Scientific). The blank control was made by replacing serum/plasma samples with PBS-MT
[3% (w/v) skim milk, in PBS-T]. The positive control of the assay was the hyperimmune
equine serum anti-S protein. Results were calculated as specific absorbance (A = the mean
of each sample minus the mean of the blank control) and expressed as Standard Deviation
score (SDs). SDs = (A − Ac)/SDc, where Ac is the mean specific absorbance from pre-
pandemic control samples (approximately 20 normal control sera in each assay), and SDc is
the corresponding standard deviation between measurements for those control samples.
The cut-off value of the assay was set at SDs = 5.0. Statistical significance was evaluated
using unpaired-samples Student t-test with Welch correction. Calculations were performed
using GraphPad Prism software version 6.01 (San Diego, CA, USA). A p value < 0.001 was
considered statistically significant.

3. Results and Discussion
3.1. Generation of the Recombinant Baculovirus Acpolh-pSeL-gprRBD

The RBD sequence fused to the GP64 viral signal peptide, and a His-tag (gprRBD)
was cloned under the control of the polh-pSeL promoter to obtain the pFBD-polh-pSeL-
gprRBD. The GP64 signal peptide ensures post-translational modification and targets
the recombinant protein for secretion, whereas the addition of a C-terminal His-tag fa-
cilitates the purification step of the rRBD by IMAC. The polh-pSeL promoter developed
by Martinez-Solís [20] is a strong chimera promoter that combines the polh traditional
promoter with a fragment of 120 pb belonging to the promoter of Spodoptera exigua multiple
polyhedrovirus (pSeL). All these promoters naturally drive the expression of structural
protein, and their combination generally results in an additive effect on the expression
level [18,20]. Recently, we demonstrated the power of this promoter to enhance the pro-
duction of structural viral proteins in the baculovirus-Sf9 insect cell system [21]. Based on
these results, the promoter polh-pSeL was used for rRBD production. Another characteristic
of the expression vector employed in this study is the EGFP sequence cloned under the p10
promoter used as a reporter gene to allow us to visualize the viral infection. Plasmids were
used to produce the corresponding bacmid. Transfection of the bacmids and amplification
in Sf9 cells allowed us to obtain the Acpolh-pSeL-gprRBD virus (Figure 1).
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3.2. rRBD Expression in Sf9 Insect Cells

To determine rRBD expression, suspension culture of Sf9 cells were infected with
Acpolh-pSeL-gprRBD at MOI 1. The expression in cell culture supernatant was evaluated
by western blot at 4 dpi in order to avoid cell protein contamination in the purification
step (Figure 2). The soluble protein was expressed and secreted into the culture medium,
evidencing the functionality of the GP64 signal peptide. The rRBD migrated as a single
band of about 30 kDa (theoretical mass without considering post-translational modification,
26.266 kDa) as judged by reducing SDS-PAGE (Figure 2A), and western blot developed
with specific anti-His (Figure 2B) and anti-S antibodies (Figure 2C), demonstrating the
identity of the protein. Under the non-reducing electrophoretic condition, two bands of
rRBD appear showing the formation of disulfide-bound dimers (Figure 2D). The dimers are
reversible upon the addition of a reductant in the SDS-PAGE sample buffer. Densitometry
analysis showed that the presence of dimers is constant while monomer concentration
increases gradually, achieving a maximal expression level at 4 dpi, where the dimer rep-
resents only 17.9% of the total rRBD expressed. Finally, rRBD was harvested at 4 dpi and
its concentration in the cell culture, estimated by Bradford and gel densitometry assay
(Supplementary Figure S2), was 25.6 ± 3.0 mg/L (5% of total protein).
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Figure 2. Analysis of rRBD in supernatants by SDS-PAGE under reducing (A–C) and non-reducing
(D) conditions followed by western blot developed with anti-His (α-His) and anti-S (α-S) antibodies.
Sf9 cells were infected with Acpolh-pSeL-gprRBD. At different days post-infection, the culture medium
was harvested and analyzed. Lanes: 1–4, culture supernatant from 1–4 days post-infection; M, protein
marker; D (%): ratio of dimer to total rRBD expressed as determined by densitometry analysis.
M (%): ratio of monomer to total rRBD expressed as determined by densitometry analysis.

3.3. Purification of rRBD from Sf9 Cell Line

IMAC was performed to purify the rRBD from supernatant Sf9 cells. The cell-culture
medium contained low fetal bovine serum (1% v/v), facilitating the purification step, and
reducing the burden contaminants in the crude sample. The sample was conditioned
by diafiltration with a recovery yield of 88% and loaded into the column. rRBD was
adsorbed on the matrix with high affinity, confirmed previously by western blot. Most
contaminating proteins, including EGFP, appeared in the flow-through (i.e., not adsorbed),
and the addition of 20 mM imidazole to the equilibration buffer enhanced the purity
level of rRBD. A washing step with 80 mM imidazole increased the final product purity
as judged by the absorbance at 280 nm (Supplementary Figure S3). Finally, rRBD was
desorbed only in the elution fraction containing 500 mM imidazole. Figure 3 shows the



Viruses 2022, 14, 2794 8 of 14

SDS-PAGE (Figure 3A) and western blot pattern (Figure 3B) of the purification fractions.
Using the BEVS in Sf9 insect cell, combined with a novel chimeric promoter polh-pSeL
in only one chromatographic step, it was possible to obtain 21.1 ± 3.7 mg/L culture of
purified rRBD with a yield of 82%, which is the highest performance reported to date for
Sf9 and High Five™ cells infected with recombinant baculovirus. The purity of the protein
was higher than 95% as determined by RP-HPLC eluting in a single peak, indicating that it
is a homogeneous sample (Figure 4).
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Figure 3. IMAC purification of rRBD. (A) SDS-PAGE analysis in the reducing condition of fraction
collected during the purification process. (B) Western blot analysis of fraction collected during
the purification process using anti-S antibody. Lanes: M, protein marker; 1, Sf9 cell expression
supernatant; 2, diafiltrated sample (Input); 3, flow-through; 4, washing step (equilibration buffer with
80 mM imidazole); 5, IMAC fraction eluted by 500 mM imidazole.
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3.4. Characterization of the Purified RBD from Sf9 Insect Cell Culture

The experimental mass (28.89 kDa) of rRBD was determined by the MALDI-TOF MS
analysis (Figure 5). It has been reported that the SARS-CoV-2 RBD has two N-glycosylation
sites (N331 and N343) that are fully glycosylated when expressed in heterologous expres-
sion systems [26]. To characterize the glycosylation status, the purified rRBD was treated
with N-glycosidase F, an amidase that removes N-linked oligosaccharides from glycopro-
tein. After cleavage, we found a decrease in the molecular weight of the rRBD to about
26.0 kDa (Figure 6A). Thus, this evidence suggests that the N-glycosylation is responsible
for the differential size between the treated and non-treated rRBD. Depending on the plat-
form expression selected, the rRBD glycosylation degree varies, and this fact can strongly
impact its ability to interact with its receptor ACE2 and specific human IgG [12]. In general,
proteins expressed in insect cells exhibit paucimannose N-glycans, a less complex pro-
cessed glycan than those produced in mammalian cells. Despite these differences, binding
studies have shown that rRBD obtained from different mammalian and insect expression
systems have comparable binding affinities to IgG against SARS-CoV-2 S, revealing, under
certain conditions, a little higher binding ability of insect-derived rRBD [15,16]. It has
been reported that the low molecular size of the insect type N-glycosylation produces a
lower steric effect as compared to mammalian cells, constituting an economic and suit-
able platform to generate rRBD samples for basic studies, such as measuring the affinity
with ligands or neutralizing antibodies [12,15]. Although the insect cell lines, in general,
produce N-glycan, it should be noted that there is considerable difference between the
N-glycan synthesized by High Five™ and that synthesized by Sf9 cells. High Five™ cells
produce glycoproteins with core 1,3-linked fucose, which are highly immunogenic and
make recombinant glycoprotein unacceptable for human use [27]. To address this problem,
it is possible to use an alternative insect cell line such as Sf9 that produces 1,6-fucosylated
N-glycan, similar to the glycan structure observed [28]. In this sense, the recombinant rRBD
derived from infected Sf9 cells produced in the present study would be an appropriate
antigen to be used for therapeutic purposes.
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Figure 6. Characterization of purified rRBD. (A) rRBD glycosylation analysis. N-glycosidase F-
mediated in-vitro deglycosylation of purified rRBD. Western blot in reducing condition developed
with anti-S antibody. (B) Analysis of purified rRBD by SDS-PAGE in non-reducing condition.
Lanes: M, protein marker; rRBD, purified rRBD; rRBD + PNGase. F, purified rRBD treated with
N-glycosidase F.

Furthermore, RBD has a total of 9 cysteine residues, eight of which form four pairs of
disulfide bonds and unpaired residue (Cys538) close to the C-terminus responsible for the
formation of oligomeric aggregate [15,29]. In addition, several hydrophobic patches have
been identified on the surface of RBD that could promote noncovalent multimerization [30].
The analysis of purified rRBD by SDS-PAGE (Figure 6B) in the non-reducing condition
showed the formation of a constant fraction of dimeric species, confirming what we had
previously detected in the expression supernatant (Figure 2D). In addition, we evaluated
the purified rRBD oligomeric state produced in our process by SEC (Figure 7A). The rRBD
eluted as the main peak with an elution volume close to 33.3 mL and a minor one at
30.6 mL. The sample is homogeneous and mainly monomeric containing a low proportion
(17%) of the dimer form, confirming what we had previously observed in the expression
supernatant (Figure 2D). The purity of the monomeric RBD, after the SEC step, was over
98%, as judged by SDS-PAGE. The presence of rRBD in the two peaks was confirmed by
SDS-PAGE (Figure 7B) and western blot (Figure 7C). The rRBD dimer formation has been
reported in all expression systems used to date. Similar rRBD dimer levels to those found in
insect cells were obtained in Chinese hamster ovary cells (16–23%) and Human embryonic
kidney cells (12%). Additionally, in plant-based platforms, such as Nicotiana benthamiana,
the presence of dimer is pronounced (75%) [15]. It has been reported that dimer content
would not affect the immunochemical ability of rRBD to detect antibodies. However,
dimer presence could affect the sample stability after long storage periods [31]. Although
RBD dimer formation is a natural condition, through genetic engineering it is possible to
increase the yield of the RBD monomeric form by removing or replacing unpaired Cys
residue or certain amino acids located in the hydrophobic region to reduce the propensity
to aggregate [15,30]. Alternatively, the multimeric protein can be separated by preparative
SEC in order to obtain an even more homogeneous entity. Despite this, RBD dimer has
been used to develop SARS-CoV-2 vaccine candidates because it is more immunogenic
than the monomer [32,33].
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Figure 7. Size exclusion chromatography analysis of rRBD purified by IMAC. Chromatogram
showing the elution profile of rRBD (A). The number indicates the peak containing rRBD dimer (1)
and monomer (2). The peaks were analyzed by reducing SDS-PAGE (B) and western blot developed
with specific anti-S antibody (C). Lanes: M, protein marker; 1, peak 1; 2, peak 2.

3.5. Use of the RBD to Detect Anti-SARS-CoV-2 IgG in Serum Samples from COVID-19-
Positive Patients

Finally, we studied the immunochemical behavior of rRBD by evaluating its ability
to detect antibodies in samples from COVID-19 patients by b-ELISA. To coat 96-well
plates, 0.05 µg of purified rRBD per well was used. Figure 8 shows the distribution
of signal obtained from 28 normal control sera and 30 IgG-positive COVID-19 patients.
Median SDs for true negative samples were −0.09 (range: −1.98 to 2.73) and median
SDs for true positive samples were 26.34 (range: 6.39 to 118.65). Results obtained from
pre-pandemic control individuals differed significantly from those obtained from COVID-
19-positive patients (p < 0.0001). An anti-S hyperimmune equine serum was also included
as a positive control (SDs = 56.63). Previously, we had assayed the same ELISA design but
using the full-length S protein expressed in Rachiplusia nu larvae as a coating antigen [25].
As expected, the median SDs obtained from COVID-19 patients were higher because the S
complete version displayed a greater number of immunoreactive epitopes. Despite them,
the rRBD derived from Sf9 cells was able to correctly discriminate between infected and
uninfected individuals. This suggests that rRBD was immunoreactive to detect antibodies
in serum samples. In addition, the kind of glycan structure typical of insects and the dimer
proportion did not affect its immunochemical behavior and its ability to detect antibodies
in patient samples. Moreover, the only purification step by IMAC was adequate to develop
the assay. Therefore, the produced rRBD (17% dimeric form) is an appropriate standard
for the development of diagnostic assays and 1 L of cell culture was enough to produce
around 4400 plates of 96 wells.
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4. Conclusions

In the present work, we developed for the first time a complete process for producing
large amounts of the rRBD in Sf9 cells using the novel chimeric promoter polh-pSeL. We
were able to achieve 21.1 ± 3.7 mg/L of purified RBD protein, which, to the best of our
knowledge, is the highest yield reached using IC-BEVS. The results allow us to conclude
that the platform is an interesting alternative engineering approach to produce rRBD as an
antigen for the future test development for COVID-19 diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14122794/s1, Figure S1: Construction design of the pFBD-
polh-pSeL-gprRBD vector; Figure S2: SDS-PAGE analysis and quantification of rRBD; Figure S3:
Chromatogram of rRBD purification by IMAC.
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