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Abstract: We reconsider some well-known tunneling processes from the point of view of Aharonov-
Bohm electrodynamics, a unique extension of Maxwell’s theory which admits charge-current sources
that are not locally conserved. In particular we are interested into tunneling phenomena having
relatively long range (otherwise the non-Maxwellian effects become irrelevant, especially at high
frequency) and involving macroscopic wavefunctions and coherent matter, for which it makes
sense to evaluate the classical e.m. field generated by the tunneling particles. For some condensed-
matter systems, admitting discontinuities in the probability current is a possible way of formulating
phenomenological models. In such cases, the Aharonov-Bohm theory offers a logically consistent
approach and allows to derive observable consequences. Typical e.m. signatures of the failure of
local conservation are at high frequency the generation of a longitudinal electric radiation field,
and at low frequency a small effect of “missing” magnetic field. Possible causes of this failure are
instant tunneling and phase slips in superconductors. For macroscopic quantum systems in which
the phase-number uncertainty relation ∆N∆ϕ ∼ 1 applies, the expectation value of the anomalous
source I = ∂tρ +∇ · j has quantum fluctuations, thus becoming a random source of weak non-
Maxwellian fields.

Keywords: extended Aharonov–Bohm electrodynamics; local conservation laws; tunnel Josephson
junctions; Ginzburg-Landau wave equation; resonant tunnelling

1. Introduction

The tunneling effect is one of the most typical features of quantum mechanics, and
a clear demonstration of the wavelike behavior of matter at a microscopic scale (at least in
the context of the standard Copenhagen interpretation). Historically, it was first observed
in the decay of nuclei [1] and in field-effect emission of electrons from metals [2]. Later
it was exploited, among many other applications, in Zener diodes [3,4] and in scanning
tunneling microscopes [5]. Tunneling processes involving macroscopic wavefunctions in
superconductors give rise to the Josephson effect [6], which has been applied to SQUIDs
(super quantum interference devices), frequency standards, quantum circuits and q-bits.
Long-range tunneling has an important role in chemistry and biology [7].

When the tunneling effect involves single particles or multiple incoherent particles,
it can be usually described by theoretical models based on a Schrödinger equation and
its exact or approximate solutions. We thus have a theory in which the wavefunction
in the barrier is known and we can evaluate in principle the probability for the tunnel-
ing particles to be located at any position in the classically forbidden region. At the
same time, we can compute the probability density ρ = |Ψ|2 and the probability cur-
rent j = (−ieh̄/2m)(Ψ∗∇Ψ−Ψ∇Ψ∗), which satisfy the continuity relation ∂tρ +∇ · j = 0
thanks to a general property of the solutions of the Schrödinger equation.

Quantum Rep. 2022, 4, 277–295. https://doi.org/10.3390/quantum4030020 https://www.mdpi.com/journal/quantumrep

https://doi.org/10.3390/quantum4030020
https://doi.org/10.3390/quantum4030020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://orcid.org/0000-0003-0577-9589
https://orcid.org/0000-0003-4302-2966
https://doi.org/10.3390/quantum4030020
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/article/10.3390/quantum4030020?type=check_update&version=1


Quantum Rep. 2022, 4 278

By inserting the source (ρ, j) into the Maxwell equations we can then compute in
principle the e.m. field generated by the tunneling current. In most cases this field is
not detectable, because the number of tunneling particles is small, and their current too.
Actually, for tunneling processes at the atomic level, e.m. emissions are more properly
evaluated with quantum perturbation theory than by solving Maxwell equations.

On the other hand, when the tunneling involves a large number of particles, it cannot
be described by a simple Schrödinger equation. This is the case of tunneling in condensed
matter, be it incoherent or coherent (for coherent matter with a macroscopic wavefunction
there are some further specifications, see below). In this case we do not know the wavefunc-
tion in the barrier and we usually cannot locate the particles in the barrier with a definite
probability as a function of space and time; we only know a tunneling probability, or more
generally a tunneling Hamiltonian operator that can be applied between initial and final
states on the two sides of the barrier.

For condensed matter systems it is generally possible to define a quantum field theory
with local interactions, which includes charge and current operators satisfying a local
conservation relation analogous to ∂tρ +∇ · j = 0. The next step, however, is often to
introduce approximations and effective models with non-local interactions. Furthermore,
even in the original local theory, quantum anomalies may occur after renormalization,
spoiling the symmetry and conservation properties of the original Hamiltonian [8–10]. In
most approaches to quantum transport there is no attempt to compute the wavefunction
of tunneling particles in the barrier. The issue of tunneling time has been lively debated,
and it is both based on experimental results and theoretical models; according to some
authors, in certain cases the tunneling time cannot be distinguished from zero [11–13].

A recent series of sophisticated numerical first-principles calculations of the local
current density in organic molecular chains and carbon wires [14–17] confirm the existence
of discontinuities in the stationary local flux, which are not eliminated by an enlargement
of the wavefunctions eigenbasis employed. Already in 2008, Wang et al. [18] had shown
that in such cases the Landauer-Büttiker formalism leads to restore conservation by the
introduction of a non-local secondary current of the form jn = ∇χ, where ∇2χ = I,
with our notation, in the stationary case. The applications treated by Wang et al. concerned
some idealized materials and graphene [19], while Gardner et al. [16,17] compute explicitly
the part of the flux that does not follow molecular bonds for specific saturated molecules.

Nozaki et al. [20] point out that a precise knowledge of magnetic field patterns in
molecular devices can be important for applications to molecular magnets. This leads us
to ask a logical theoretical question (but also with possible practical implications): how
should one compute the e.m. field of a microscopic current that is not locally conserved?
A first answer can be, that since the non-local extension of the current proposed by Wang
restores conservation, the Maxwell equations can be applied to such a “completed” current.

A more complete and powerful approach, however, consists of extending Maxwell’s
theory along the lines originally proposed by Aharonov and Bohm [21] and by Ohmura [22].
This theory allows us to compute e.m. fields, compatibly with Special Relativity, even when
charge is not locally conserved, avoiding the need to impose a “taboo on teleportation”,
at least in phenomenological models. It also applies to generalized microscopic mod-
els with fractional dimensions and non-local potentials. There has been much work on
this extended theory over the last years, and many technical aspects have been clari-
fied [21,23–29]. The final recipe is unique and relatively simple, considering that some
non-local expressions involving the sources are unavoidable. In Section 2 of this work we
recall the extended equations for the e.m. fields and their far-field solution in the oscillating
dipole approximation. We also recall the relations concerning the extended Lorenz force
and energy-momentum conservation.

In Section 3 we introduce a simple model for discontinuous microscopic currents in
a metal. We show that the effective/averaged consequence of the microscopic disconti-
nuities is to generate an extra-source whose moment δP is proportional to the average
macroscopic density J: δP = γJδV. The coefficient γ is in turn proportional to the number
of discontinuities per unit volume, to their average length and average current affected.
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This method is applied to a resonating cavity with a mode TM010 and allows to compute the
anomalous longitudinal electric field EL in the far-field region along the axis of the cavity.

In Section 4 we introduce a 1-D model for resonant tunneling in a metal based on the
Kronig-Penney 1-D model of a crystal lattice consisting in square potential barriers. This
simple model can be solved exactly and allows to interpret at least part of the conduction
current as due to long-range resonant tunneling of valence electrons, with transmission
coefficient T = 1.

Sections 5 and 6 are devoted to macroscopic quantum systems described by a collective
wavefunction. In Section 5 we consider the effect of quantum fluctuations in a Joseph-
son junction oscillating at its plasma frequency. Due to the uncertainty on the product
∆ϕ∆N, the expectation value of the anomaly I cannot be exactly zero and in a semiclas-
sical approximation this generates in general a random longitudinal electric field in the
radiation region.

In Section 6 we consider solutions of the Ginzburg-Landau equation describing a su-
perconducting weak link and we check the claim, often found in the literature, that such
solutions can contain points at which ψ = 0 and the quantum phase can “slip” freely. We
conclude that this is not possible if the local conservation of charge holds exactly.

2. Extended Field Equations and Energy-Momentum Relations

In the Aharonov-Bohm theory of extended electrodynamics the gauge invariance
of the four-potentials is reduced to transformations of the form Aµ → Aµ + ∂µχ, where
�χ = 0. (Here we define Aµ = (φ/c,−A), being φ the electric potential and A the vector
potential. The metric has signature (+,−,−,−), with coordinates xµ = (x0, x1, x2, x3) and
x0 = ct.)

The four-divergence of Aµ is promoted to a dynamical field S (S = ∂µ Aµ), obeying
the equation

�S = µ0 I (1)

where
I(x, t) = ∂tρ(x, t) +∇ · j(x, t) (2)

often called “extra-current” or “extra-source”, is zero in standard classical situations where
charge is locally conserved but can be different from zero in more general settings, for ex-
ample in fractional quantum mechanics or in the presence of non-local potentials in the
Schrödinger equation.

The extended first and fourth Maxwell equations are in SI units

∇ · E =
ρ

ε0
− ∂S

∂t
(3)

∇× B = µ0j + ε0µ0
∂E
∂t

+∇S (4)

where one recognizes additional sources −ε0∂S/∂t and µ0∇S which, due to Equation (1),
can be spread out in space, far away from the physical sources ρ and j.

The second and third Maxwell equations remain valid in their familiar form, and also
the wave equations for E and B retain their usual form

�E = −µ0

(
∂j
∂t

+ c2∇ρ

)
(5)

�B = µ0∇× j (6)

Nevertheless, due to the appearance of S in Equations (3) and (4) the wave solutions
of (5) and (6) can contain a longitudinal electric field which for a spherical wave in the
dipole approximation has the expression
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EL =
µ0

4πr
Ṗ
(

t− r
c

)
· r

r
(7)

being P is the dipole moment of the extra-current I:

P(t) =
∫

d3x′ x′ I(x′, t) (8)

If we apply Equation (6) to a stationary current with some interruptions (due to
“instant tunneling” or other failures of local conservation of charge), the Biot-Savart law
predicts an effect of “missing B” from the regions with j = 0; the prediction is confirmed by
full integration of (6). An experiment proposed for the detection of this effect is described
in [30], while in Section 3 of this work we discuss the case of high-frequency currents
circulating in the walls of a resonant cavity.

A complex calculation [31] shows that the energy-momentum tensor of the e.m. field in
Aharonov-Bohm theory is given by the usual Maxwell tensor TM

µν plus a term depending on S:

TAB
µν = TM

µν + TS
µν (9)

TM
µν = − 1

µ0

(
FµρFρ

ν −
1
4

FρσFρσηµν

)
(10)

TS
µν =

1
µ0

[
Aµ∂νS + Aν∂µS−

(
1
2

S2 + Aρ∂ρS
)

ηµν

]
(11)

By imposing the conservation of the total energy-momentum of field and matter, namely

∂µ
(

TAB
µν + Tmatter

µν

)
= 0 (12)

one obtains equations for the power w exerted by the field on matter, and for the force f per
unit volume on matter (extended Lorenz force):

w = j · E− Iφ, (13)

f = ρE + j× B− IA. (14)

We thus see that the potentials have a direct effect on matter where I 6= 0. Since
gauge invariance is strongly reduced, under suitable boundary conditions at infinity for
the potentials, w and f can be in principle computed without any ambiguities.

3. A Simple Model for Discontinuous Currents in a Conductor

In this section we give a first example of a possible application of the Aharonov-Bohm
extended electrodynamics in a phenomenological model of condensed matter physics.

We start with the assumption that when current circulates in a conductor part of it
is due to resonant tunneling of bound electrons close to the Fermi level, and that this
tunneling can be interpreted as a discontinuous transport of those electrons across the
classically forbidden zones.

If there is an electron current of value in that discontinuously crosses from the point
xn to the point xn + dn, the corresponding extra source is

In = in[δ(x− xn − dn)− δ(x− xn)]. (15)

This can be easily seen if one considers the integral over an arbitrary volume V∫
V

IdV =
∫

V

(
∂ρ

∂t
+∇ · j

)
dV =

∮
S(V)

jD · dS, (16)

where jD represents the discontinuous component of the current density. By choosing V to
include either xn, or xn + dn, expression (15) is then established.
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In this way, if one considers a small volume δV, in which a number of these extra
sources exist, the corresponding moment is

δP =
∫

δV

(
∑

n⊆δV
In

)
xd3x = ∑

n⊆δV
indn. (17)

Following the previous ideas, we consider that the in’s amount to a fraction of the
current circulating in δV, that is j · δS, while the dn’s amount to a fraction of the distance δL
traversed by the current j in δV. Since δV = |δS|δL, a simple model reflecting these ideas
is given by

δP = ∑
n⊆δV

indn = γ
∫

δV
jd3x = γJδV. (18)

In this expression γ < 1 models the fractions previously considered, and J is the
macroscopic current in the material.

Considering that it is expected that γ � 1, one can determine J using Maxwell
equations, and then evaluate the anomalous effects due to the dipolar moments of the extra
sources by adding up the effect of each elementary dipole, given by [31]

δS(x, t) =
µ0

4πc|x− x′|2
∂

∂t′
δP
(
x′, t′

)
·
(
x− x′

)
,

EL(x, t) =
µ0

4π|x− x′|
∂

∂t′
δP
(
x′, t′

)
,

with t′ = t− |x− x′|/c . We have in this way

S(x, t) =
µ0γ

4πc

∫
∂J(x′, t′)/∂t′

|x− x′|2
·
(
x− x′

)
d3x′, (19a)

EL(x, t) =
µ0γ

4π

∫
∂J(x′, t′)/∂t′

|x− x′| d3x′. (19b)

For the expressions of the Fourier transforms in time we have

S(x, ω) = −iω
µ0γ

4πc

∫ J(x′, ω)

|x− x′|2
·
(
x− x′

)
ei ω

c |x−x′ |d3x′,

EL(x, ω) = −iω
µ0γ

4π

∫ J(x′, ω)

|x− x′| e
i ω

c |x−x′ |d3x′.

As an important case, let us consider the anomalous effects predicted by this model in
the case of resonant EM cavities. Once the EM fields in the cavity had been determined
from Maxwell equations, the current circulating in the cavity walls are determined from
the condition

K =
n× B

µ0
, (20)

evaluated at the wall, with n the (external) unit vector normal to the wall surface con-
sidered. In this expression K is the surface current density, so that, correspondingly,
in expressions (19) one makes the replacement

J
(
x′, ω

)
d3x′ → K

(
x′, ω

)
dS′, (21)

and extends the integral to the internal surface of the cavity.
As a relatively simple example let us consider the EL generated by the TM010 mode of

a cylindrical cavity of radius a and height d. The corresponding frequency is ω = 2.405c/a,
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and the magnetic field, in cylindrical coordinates (r, ϕ, z), is given in terms of the Bessel
function of the first kind as

B(x, ω) = −i
E0

c
J1

(
2.405r

a

)
e−iωteϕ, (22)

where E0 is the electric field on the axis of the cavity.
The expression of EL is then given by

EL(x, ω) =
ωE0γa

4πc
J1(2.405)

∫ d

0
dz′

∫ 2π

0
dϕ′

ei ω
c |x−x′ |

|x− x′| ez, (23)

with ∣∣x− x′
∣∣ = √r2 + (z− z′)2 + a2 − 2ar cos ϕ′. (24)

In particular, along the z axis

EL(r = 0, z, ω) =
ωE0γa

2c
J1(2.405)

∫ d

0
dz′

ei ω
c

√
(z−z′)2+a2√

(z− z′)2 + a2
ez, (25)

that for z� a, d can be approximated by

EL(r = 0, z, ω) ' −i
E0γa

2z

(
1− e−i ω

c d
)

J1(2.405)ei ω
c zez. (26)

The advantage of considering a closed cavity is that usual transverse electromagnetic
radiation is confined to the inside of the cavity. On the other hand, the longitudinal
component, that according to the proposed model would be generated inside the cavity
walls, is transmitted without decay inside the conductor (see Appendix A in [28]), so that
it could in principle be detected outside the cavity, and its characteristics, as predicted
by Equation (26), tested. For instance the z−1 decay, the 1− cos

(
ω
c d
)

dependence of the
intensity, etc. Additionally, if a high-Q cavity is employed, intense values of E0 can be
obtained, so as to facilitate detection of EL for small values of γ.

4. Kronig-Penney 1-D Model and Resonant Tunneling

In order to qualitatively justify the assumption of long range tunneling in a metal, we
consider the Kronig-Penney 1-D model of a crystal lattice consisting in square barriers of
height V0, width b and separation a as shown in Figure 1. This potential is not meant to
represent that of the bare ion lattice, but the effective, Hartree-Fock potential valid for the
electrons in the highest energy levels, that includes the screening of the ion lattice potential
by the lowest energy electrons.

abn(a+b)

V0

x

Yn+1Yn Yn’

Figure 1. Basic structure of the 1-D potential.
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Given the barrier at x = n(a + b), the wavefunction at its left, corresponding to the
energy E, is

ψn(x) = Aneikx + Bne−ikx,

the one inside the barrier
ψ′n(x) = A′neiqx + B′ne−iqx,

and that at its immediate right is

ψn+1(x) = An+1eikx + Bn+1e−ikx,

where,

k =

√
2mE
h̄

,

q =

√
2m(E−V0)

h̄
= k

√
1− β

(ka)2 ,

with

β =
2mV0a2

h̄2 .

The boundary conditions at each side of the barrier are[
ψ′n(x)− ψn(x)

]
x=n(a+b) = 0, (27a)[

dψ′n
dx
− dψn

dx

]
x=n(a+b)

= 0, (27b)[
ψn+1(x)− ψ′n(x)

]
x=n(a+b)+b = 0, (27c)[

dψn+1

dx
− dψ′n

dx

]
x=n(a+b)+b

= 0. (27d)

Solving these boundary conditions for An+1 and Bn+1 in terms of An and Bn results in(
An+1
Bn+1

)
= Mn

(
An
Bn

)
, (28)

with a matrix Mn whose explicit expression can be readily computed. Considering now
Bloch theorem:

ψ(x + a + b) = ψ(x)eip(a+b),

with p the quasi-momentum, one has for a generic barrier at x = n(a + b) that the wave-
functions at its left and right must be related by

ψn+1(x) = ψn(x− a− b)eip(a+b),

that, together with the general relation (28) results in a linear, homogeneous system of
equations for the coefficients An, An+1, Bn, and Bn+1, the zero of whose determinant
determines the allowed values, or bands, of k, and the value of p corresponding to each
allowed k.

Alternatively, one can study the related problem of the transmission across a finite
number of barriers. For this, one considers that for x < 0 there is an “incident” wave
given by

ψ0(x) = A0eikx + B0e−ikx,

while for x > (N − 1)(a + b) + b (after N barriers) there is an “emerging” wave

ψN(x) = CNeikx + DNe−ikx.
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Using the relations (28) we can write(
CN
DN

)
= M

(
A0
B0

)
,

with (M0 at the farthest right)

M =
n=0

∏
n=N−1

Mn.

In this way, to obtain the reflection (R) and transmission (T) coefficients across the N
barriers, we put A0 = 1, B0 = r, CN = t, DN = 0, to have

r = −M21

M22
,

t = M11 −
M12M21

M22
,

and

R = |r|,
T = |t|,

so that one has a resonant tunneling with perfect transmission across the N barriers when
R = 0.

As one can reasonably expect, the energy levels with zero transmission (R = 1), are
found inside the forbidden bands as determined by Bloch theorem. However, the relevant
point is that when solving the condition for perfect transmission across N barriers one
obtains N − 1 solutions distributed all across each allowed band. This means that bound
electrons (E < V0) with the appropriate energy could in principle tunnel freely across
a large number of barriers. Of course, the exclusion principle forbids this unless there is
an available state with the same energy to tunnel to.

Moreover, in a metal the conduction electrons belong in general to an allowed band
that includes energy levels with E < V0 and E > V0, that fill the levels up to the Fermi
energy EF. A sketch of the obtained solution for five barriers is shown in Figure 2, in which
the Fermi level, allowed bands and energy levels with perfect transmission across the
whole lattice are shown.

x

E
F

Figure 2. Schematic representation of a solution with five barriers. The allowed bands determined by
Bloch theorem are marked in gray, inside which are indicated the discrete energy levels with perfect
transmission R = 0.

Since the conduction band is not completely filled, a small energy perturbation, as pro-
duced by an applied electric field, can promote electrons with energy close to EF to higher
levels. The assumption is that this effect can work on a small number of electrons in bound
energy levels (close to EF) so as to free levels for other bound electrons to resonantly tunnel
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to, resulting in a fraction of the electric current to be due to electrons that tunnel across a
considerable distance.

5. Josephson Junctions as Random Sources of a Longitudinal Electric Field

In our work [31] we have shown that in macroscopic quantum systems for which the
phase-number uncertainty relation ∆N∆ϕ ∼ 1 holds, one can derive from it an uncertainty
relation between charge and current in a given state:

∆jx
jx

∆ρ

ρ
∼ 1

N
(29)

We have proven this formula for a Josephson junction, re-obtaining the same relation
given by Devoret [32,33] and by Chen et al. [34] for Josephson junctions and more generally
for quantum circuits. Then we have applied it to the quantity I = ∂tρ +∇ · j = ∂tρ + ∂x jx
(in 1D) that we call “anomaly” because classically it is always zero. (I is also called “extra-
current” in the jargon of extended electrodynamics and fractional quantum mechanics.)
Focusing on a simple 1D case with time dependence ρ ∼ eiωt and a dependence of jx on
space as jx ∼ eikx, we have written the operator Î as a linear combination of the operators ρ̂
and ĵx. Considering that these operators do not have common eigenstates and satisfy (29),
we have derived an estimate of the uncertainty ∆I.

The conclusion is that 〈 Î〉Ψ displays quantum fluctuations for any state Ψ and the
classical conservation relation I = 0 cannot be exactly satisfied everywhere at the quantum
level. We have evaluated the magnitude order of the fluctuations for the case of a specific
Josephson junction operating at a resonant frequency ω ' 42 GHz with a current of the
order of 10−4 A [35]. It turns out that ∆I ' 1016 A/m3.

The high frequency emission of Josephson junctions is well known; usually the emitted
power does not exceed a few µW, but there have been several attempts to improve it by
building arrays of synchronized junctions [36,37]. Now we hypothesize that besides the
standard emission of the oscillating super-current, an anomalous emission described by
extended electrodynamics could be present, namely we regard Ω(x, t) = 〈 Î〉Ψ as the
stochastic source of a field S which is itself stochastic and can have a role in the extended
Maxwell equations, in particular giving rise to a fluctuating longitudinal electric radiation
field EL.

In order to estimate the magnitude order of this field we recall the Equation (7) for
the anomalous dipole emission. This formula is exact for a classical mono-chromatic
field proportional to eiωt, but we can use it as an approximation for a stochastic field.
We know that the quantum noise of an harmonic oscillator has a spectrum peaked at its
frequency [38,39]. Admitting that there can be some spread in frequency and a random
superposition of modes with frequency ∼ ω, we still can assume the time derivative of P
to be of the order of ω · P. P itself is of order V · ∆I · d, where V is the effective volume of
one electrode, d is the distance between the electrodes (thickness of the junction) and ∆I is
the magnitude order of the fluctuations of I on each electrode, as given above.

Actually we suppose that when there is a random unbalance ∆I in one electrode
(i.e., an unbalance between ∂tρ and ∂x jx, implying failure of local conservation), this will be
compensated by an opposite variation on the other electrode, in such a way that the total
charge on the junction is constant and not fluctuating (see Figure 3).

V is the effective volume of the electrodes in the sense that it is the volume occupied
by the oscillating charge. For the example above V can be estimated at ∼10−23 m3, being
the oscillating charge ∼10−14 C and its density ∼109 C/m3. The thickness d of the oxide
layer is of the order of 10 nm. In conclusion, the anomalous longitudinal random field
strength at distance r will be quite small, of order EL ∼ 10−11/r V/m. It could increase if
the distance between the electrodes is increased, like for instance in configurations with
more junctions or superconducting islands [40].
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Figure 3. Tunneling Josephson junction of the SNS or SIS type, with an insulating layer of thickness d
between two superconducting electrodes S1 and S2. ρ1 and j1 denote respectively the charge and
current density on Electrode 1, and similarly for ρ2 and j2. Due to the phase-number uncertainty
principle, the classical local conservation relation I = ∂tρ + ∂x jx = 0 cannot be exactly satisfied
and there will be fluctuations ∆I1 and ∆I2 on the two electrodes, especially when the current in the
junction is oscillating at high frequency. We suppose that the fluctuations are opposite in sign, so that
the total charge is not fluctuating.

6. Tunneling Solutions of the Ginzburg-Landau Equation in a Long
Superconducting Bridge

In this Section we consider quantum phase slip points in weak superconducting links
and we prove that they cannot be exactly described by solutions of a (current-conserving)
Ginzburg-Landau equation.

Mathematically, the Ginzburg-Landau (GL) equation can be seen as an extension of
the Schrödinger equation through a non-linear term. It is widely used to compute the
collective wavefunction of pairs in a superconductor. It can be derived by minimizing
the free energy of a general phenomenological model able to describe not only low-Tc
superconductors with Cooper pairs bound by virtual phonons, but also e.g. ceramic high-Tc
materials in which the microscopic mechanism behind superconductivity is still unclear.
Improving upon London’s theory, the GL equation allows to model cases in which the
absolute value of the wavefunction is space-dependent, like border effects and magnetic
vortexes. A time-dependent version also exists, but here we shall consider the stationary
equation, applied to a “weak link”, namely a narrow superconducting bridge connecting
two bulk superconductors. In such links, as well as in superconducting nanowires, a 1D
version of the GL equation can be applied. It takes the form [41]

ξ2 f ′′ + f − f | f |2 = 0 (30)

where f (x) = ψ(x)/ψ0, ψ(x) is the macroscopic wavefunction, ψ0 is a constant that we
take equal to the amplitude of the wavefunction in the bulk and ξ is the coherence length
of the superconductor (for example ξ ' 10−7 m in a Type-I superconductor like Pb). We
solve the equation in an interval (0, L) where L can range from a fraction of ξ (short links)
to a multiple of L (long links).

According to some phenomenological models, weak links can exhibit the phenomenon
of quantum phase slips [42]: these are points where the absolute value |ψ| of the macro-
scopic wavefunction vanishes and thus the phase becomes indefinite and can jump by
multiples of 2π. As a consequence, in the presence of slip points the phase/current relation
becomes multi-valued, deviating from the usual Josephson relation. This can be observed
experimentally [43,44].

Phase slips can occur due to thermal fluctuations which make |ψ| vanish locally, but in
the absence of relevant thermal fluctuations they have been traditionally explained based
on particular solutions of the GL equation. In these solutions |ψ| takes equal values at
the extremes of the weak link, but there is a phase shift ∆ϕ across the link (like in any
Josephson junction). At one or more points in the link one can reportedly have |ψ| = 0 and
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thus a phase slip point. The calculation is particularly simple in the Aslamazov-Larkin
model, in which the GL equation is linearized (this is valid only for very narrow links, such
that L� ξ [45]). However, according to Likharev and Yacobson [43,46] phase slips can also
occur for long links. In that case the complete non-linear GL equation must be considered
and formal solutions are obtained through series expansions, or numerical integration can
be performed.

What we found in our accurate numerical solutions (see details in Appendices A and B)
is the following: the absolute value |ψ| may approach zero at certain points, but due to
local conservation of charge it never becomes exactly zero, therefore the quantum phase ϕ
is always well-defined and one can conclude that the 1D GL equation does not predict any
phase slip in weak links.

It is possible to prove this property in general in analytical form. Let us write the
wavefunction as f (x) = a(x) + ib(x). The current density is given, in the absence of
magnetic field, by the familiar expression

J =
eh̄
2m

Im(ψ∗ψ′) =
eh̄ρ0

2m
(ab′ − a′b) (31)

with ρ0 = |ψ0|2. In order to transform the GL equation into a system of equations of the
first order, we write

a′(x) = u(x), b′(x) = v(x) (32)

The equation then becomes

ξ2(u′ + iv′) + (a + ib)− (a + ib)(a2 + b2) = 0 (33)

We split the real and imaginary parts and call a2 + b2 = ρ; the resulting system is

a′ = u (34)

b′ = v (35)

u′ = − 1
ξ2 a(1− ρ) (36)

v′ = − 1
ξ2 b(1− ρ) (37)

The x-dependent part of the current density can be written as (av − ub) and the
derivative is

J′ =
eh̄
2m

(a′v + av′ − u′b− ub′) =
eh̄
2m

(av′ − u′b) (38)

By replacing it into Equations (36) and (37) one immediately finds the conservation
property J′ = 0.

Now, suppose that a(x0) = b(x0) = 0 at some point x0. If J must stay finite and non-
zero when x → x0, we must have from (31) that at least one among the first derivatives u
and v must diverge as x → x0. But from the GL Equation (30) we also have that f ′′(x0) = 0,
which is inconsistent with such a behavior of the first derivatives.

Intuitively, we can also notice that when the density ρ of the superfluid tends to zero at
some point, its velocity v (proportional to the gradient of ϕ) should tend to infinity in order
to keep constant the current density j ' ρv. In a non-relativistic theory this is possible in
principle, but requires a huge acceleration in a very short space, which looks unphysical.

In conclusion, if a phase slip is actually present at some point, this means that the GL
equation is not exactly satisfied at that point, and therefore we cannot guarantee the exact
local conservation of the current. In fact, we are not aware of any other wave equation with
locally conserved current which has stationary solutions such that |ψ| = 0 at some point.
It might well exist, but the belief that the GL equation can describe phase slips is in our
opinion unjustified.
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Clearly, being the GL theory an effective theory, it is not supposed to hold in general
at the microscopic level. In that case the same applies to the associated local conservation
of current.

7. Conclusions

In this work we have further explored the idea that the extended electrodynamics
by Aharonov and Bohm can give a consistent description of the e.m. emission of sys-
tems in which the local conservation of charge is not exactly satisfied but displays small
quantum anomalies.

After a general introduction to the issue of charge anomalies and a summary of the
current status of the Aharonov-Bohm theory (field equations plus novel energy-momentum
conservation relations), we have discussed three different but interrelated topics:

1. Possible situations in which a local violation can arise and therefore an anomalous
extra-charge will be generated (phase slip points, plasma resonance fluctuations in
Josephson junctions).

2. How to explain part of the electric current in a periodic potential as a resonant
long-range tunneling. This process involves wavefunctions which are solutions of
the Schrödinger equation with local potentials, and thus have a locally conserved
probability; nevertheless, anomalies may occur if the potential is not exactly local or if
the physical current does not coincide with the probability current.

3. Computation of the effects of charge conservation anomalies on the e.m. field in
general, and more specifically in the case of a resonating cavity. This can suggest
techniques for detection of the microscopic anomalies based on their emitted field.

In conclusion, although in all the cases considered the local conservation violations
and their effects are predicted to be small, such anomalies are quite interesting. On the
conceptual side they allow to relax some restrictions on the theory (and this is always
potentially useful in theoretical models). On the side of possible technological applications,
since the predicted anomalous e.m. fields are quite peculiar, they can be of interest even
if weak.
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Appendix A. Symmetrical Solutions of the GL Equation in a Weak Link

We consider the following GL equation:

ξ2 d2 f
dx2 + f − | f |2 f = 0,

in the region x = [0, L], with boundary conditions:

f (0) = 1,

f (L) = ei4ϕ.
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To begin, we measure the coordinate x in units of the parameter ξ, so that (using the
same symbol for both x′s) the considered equation is

d2 f
dx2 + f − | f |2 f = 0, (A1)

and now L corresponds to the original L/ξ.
By writing the complex variable f (x) in terms of the real functions h(x) and ϕ(x) as

f (x) = exp[h(x) + iϕ(x)],

Equation (A1) is written as the set of real equations (primes denote x derivatives)

h′′ + h′2 − ϕ′2 + 1− e2h = 0, (A2a)

ϕ′′ + 2h′ϕ′ = 0, (A2b)

with boundary conditions

h(0) = h(L) = 0,

ϕ(0) = 0,

ϕ(L) = 4ϕ.

The system (A2) is invariant if ϕ → −ϕ, so that a solution [h(x), ϕ(x)] with a given
4ϕ gives also the solution for −4ϕ as simply [h(x),−ϕ(x)].

Also, given the symmetry of the physical device, a solution with a given4ϕ should
be equivalent to that obtained using, instead of the conditions ϕ(0) = 0, ϕ(L) = 4ϕ,
the conditions ϕ(0) = −4ϕ, ϕ(L) = 0. This solution is simply obtained by reflection
across the (y, z) plane at x = L/2 of the solution [h(x),−ϕ(x)].

Note however that if h(x) were not symmetric relative to that plane, a physical
observable like | f |2 would be different for both equivalent solutions.

On the other hand, for a symmetric h(x), and decomposing ϕ(x) in its symmetric and
anti-symmetric parts: ϕ(x) = ϕS(x) + ϕA(x), the system (A2), split in its symmetric and
anti-symmetric parts, gives

h′′ + h′2 − ϕ′2S − ϕ′2A + 1− e2h = 0, (A3a)

−2ϕ′S ϕ′A = 0, (A3b)

ϕ′′S + 2h′ϕ′S = 0, (A3c)

ϕ′′A + 2h′ϕ′A = 0. (A3d)

The second equation of this system indicates that either ϕS = const, or ϕA = 0. Since
ϕA = 0 implies that 4ϕ = 0, we must take instead ϕS = const, which accounts for the
freedom of choosing the reference value of the phase ϕ, and conclude that ϕ(x), modulo
a constant shift, is in general anti-symmetric,for arbitrarily imposed4ϕ.

The second equation of (A2) admits a first integration to give

ϕ′(x) = Ke−2h(x), (A4)

so that (A2) can be replaced by

h′′ + h′2 − K2e−4h + 1− e2h = 0,

ϕ′ = Ke−2h.

Given the boundary condition h(0) = 0, K is simply ϕ′(0), which, together with h′(0),
must be chosen so as to satisfy the boundary conditions h(L) = 0 and ϕ(L) = 4ϕ, in
a shooting approach to the numerical solution.
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Using (A4) one has

4ϕ = K
∫ L

0
e−2h(x)dx = K

∫ L

0
| f (x)|−2dx.

Also, the current density is (the overbar indicates complex conjugation, and m∗ is the
effective mass of the Cooper pair, of charge 2e)

J =
eh̄

im∗ξ
|ψ∞|2

(
f

d f
dx
− f

d f
dx

)

=
2eh̄
m∗ξ
|ψ∞|2 ϕ′e2h =

2eh̄
m∗ξ
|ψ∞|2K.

A numerical example of solutions with L = 3, and different values of 4ϕ shows
how the change in phase becomes more concentrated and step-like as4ϕ approaches π
(Figures A1–A6).
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Figure A1. Plot of ln |ψ| in a symmetric solution with ∆ϕ ' 2.9, L = 3.
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Figure A2. Plot of ϕ in a symmetric solution with ∆ϕ ' 2.9, L = 3.
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Figure A3. Plot of ln |ψ| in a symmetric solution with ∆ϕ ' 3.1, L = 3.
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Figure A4. Plot of ϕ in a symmetric solution with ∆ϕ ' 3.1, L = 3.
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Figure A5. Plot of ln |ψ| in a symmetric solution with ∆ϕ ' 3.14, L = 3.
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Figure A6. Plot of ϕ in a symmetric solution with ∆ϕ ' 3.14, L = 3.

Appendix B. A Straightforward Numerical Solution Technique

This section describes an alternative approach to the numerical solution, using directly
the real and imaginary parts a and b of the wavefunction. This choice is mathematically
less powerful but has some advantages. The magnitude order of some physical parameters
is also considered and an integration code is explicitly given.

Let us start from the first order system (34)–(37) and impose in x = 0 the continuity
with a plane wave ψ = ψ0eik0x, implying a(0) = 1, b(0) = 0. The wave vector k0 can
be chosen to be very small, so that the phase is practically constant in the bulk. We are
also assuming for simplicity that the phase in the bulk on the left is zero, but this can be
modified without consequences; only the phase difference ∆ϕ over the bridge matters.

We further assume that in the bridge, just to the right of x = 0, the wavefunction is
ψ = ψ0eikx, where k/k0 = s0/s, being and s and s0 the cross sections. Then, as x is increased,
the wavefunction changes its form, and the squared amplitude ρ = a2 + a2, which initially
is 1, decreases; see numerical solution.

Let us give a reasonable estimate of J in the bulk and in the bridge. With a density
ρ0 = 1028 m−3 (Pb) we obtain Jbulk ' 105k. The critical current in Pb is about 1010 A/m2.
Suppose that in the bridge the current density has this value and that the cross section
of the link is, for instance, 1/100 of the section of the bulk: then Jbulk ' 108 A/m2, so
k0 ' 103 m−1. The wave vector k in the bridge must be 100 times larger, i.e., k ' 105 m−1.
In the following we set the length unit 10−6 m.

All this gives an initial condition on b′, because from (31) we obtain

Jbridge =
eh̄ρ0

2m
a(0)b′(0) =

eh̄ρ0k
2m

(A5)

whence, since a(0) = 1, we have b′(0) = k = 0.1 in our units. The initial condition for a′(0)
remains free (with our choice of phase zero in the left bulk; one can check that this can be
generalized without any substantial consequences).

We use for the numerical solutions the Runge-Kutta code in Python attached below.
A typical result is shown in Figure A7. The real and imaginary parts a and b of the wavefunc-
tion do not vanish at the same point, and therefore the absolute value ρ = |ψ|2 = a2 + b2

is never exactly zero and the phase is always well-defined. This is consistent with the
symmetrical solutions of Appendix A, where h at the minimum is finite. Compared to
the technique of Appendix A, here it is very difficult to find initial conditions such that ρ
returns exactly to 1 after the minimum.
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Figure A7. Typical result of a numerical solution with boundary conditions chosen on the left of
the bridge (u(0) = −0.05, v(0) = 0.5). Range L = 1. The real and imaginary parts a and b of the
wavefunction do not vanish at the same point, and therefore the absolute value ρ = |ψ|2 = a2 + b2

is never exactly zero and the phase ϕ is always well-defined. This is a consequence of current
conservation and implies that the GL equation does not predict any phase slips.

## Runge-Kutta code for 1D Ginzburg-Landau~equation

from numpy import arctan, zeros
import matplotlib.pyplot as~plt

n=1000; L=1; dt=L/n; xi=0.1; xi2=1/xi**2; h=dt; h2=h/2; h6=h/6

a=1
b=0
u=-0.05 # initial conditions on u and v to be adjusted
v=0.5

Z=zeros(n,float); X=zeros(n,float); Y=zeros(n,float)

for i in range(0,n):

rho=a**2+b**2
P=a+h2*u
Q=b+h2*v
H=u+h2*xi2*a*(rho-1)
K=v+h2*xi2*b*(rho-1)
F=xi2*P*(P**2+Q**2-1)
G=xi2*Q*(P**2+Q**2-1)
M=a+h2*H
N=b+h2*K
R=xi2*M*(M**2+N**2-1)
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S=xi2*N*(M**2+N**2-1)
U=a+h*(u+h2*F)
V=b+h*(v+h2*G)

#J=a*v-u*b For checking current~conservation

phi=arctan(b/a) # possibly + pi if the phase exceeds pi/2

Z[i]=rho
X[i]=i
Y[i]=phi

a=a+h6*(u+2*H+2*(u+h2*F)+(u+h*R))
b=b+h6*(v+2*K+2*(v+h2*G)+(v+h*S))
u=u+h6*(xi2*a*(rho-1)+2*F+2*R+A*U*(U**2+V**2-1))
v=v+h6*(xi2*b*(rho-1)+2*G+2*S+A*V*(U**2+V**2-1))

line1, = plt.plot(X,Z)
line2, = plt.plot(X,Y)
plt.show()
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