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In this paper we develop an algebraic framework that allows us to extend families of

two-valued states on orthomodular lattices to Baer ∗-semigroups. We apply this general approach

to study the full class of two-valued states and the subclass of Jauch–Piron two-valued states

on Baer ∗-semigroups.
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1. Introduction
Recently, several authors have paid attention to the study of the concept of

“state” by extending it to classes of algebras more general than the σ -algebras,
as orthomodular posets [6, 26], MV-algebras [7, 15, 16, 22, 27] or effect algebras
[9, 29, 30]. In the particular case of quantum mechanics (QM), different families
of states are investigated not only because they provide different representations
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of the event structure of quantum systems [21, 32, 33] but also because of their
importance in order to understand QM [11, 12, 24, 28].

In [5], a general theoretical framework to study families of two-valued states
on orthomodular lattices is given. We shall use these ideas for a general study of
two-valued states extended to Baer ∗-semigroups. Moreover, we investigate varieties
of Baer ∗-semigroups expanded with a unary operation that allows us to capture
the notion of two-valued states in an algebraic structure.

The paper is organized as follows: Section 2 contains generalities on universal
algebra, orthomodular lattices, and Baer ∗-semigroups. In Section 3, motivations for
a natural extension of the concept of two-valued state from orthomodular lattices to
Baer ∗-semigroups are presented. In Section 4, we introduce the concept of IE∗B-
semigroup. It is presented as a Baer ∗-semigroup with a unary operation that enlarges
the language of the structure. This operation is defined by equations giving rise to
a variety denoted by IE∗B . In this way, IE∗B defines a common abstract framework
in which several families of two-valued states can be algebraically treated as unary
operations on Baer ∗-semigroups. In Section 5, we give a decidable procedure to
extend equational theories of two-valued states on orthomodular lattices to Baer
∗-semigroups determining sub-varieties of IE∗B . In Section 6 and Section 7, we apply
the results obtained in an abstract way to two important classes of two-valued states,
namely the full class of two-valued states and the subclass of Jauch–Piron two-valued
states. In Section 8, we study some problems about equational completeness related
to subvarieties of IE∗B . Finally, in Section 9, we introduce subvarieties IE∗B whose
equational theories are determined by classes of two-valued states on orthomodular
lattices.

2. Basic notions
First we recall from [4] some notions of universal algebra that will play an

important role in what follows. a variety is a class of algebras of the same type
defined by a set of equations. If A is a variety and B is a subclass of A, we
denote by V(B) the subvariety of A generated by the class B, i.e. V(B) is the
smallest subvariety of A containing B. Let A be a variety of algebras of type τ .
We denote by TermA the absolutely free algebra of type τ built from the set of
variables V = {x1, x2, . . .}. Each element of TermA is referred as a term. We denote
by Comp(t) the complexity of the term t and by t = s the equations of TermA.

For t ∈ TermA we often write t (x1, . . . xn) to indicate that the variables occurring
in t are among x1, . . . xn. Let A ∈ A. If t (x1, . . . xn) ∈ TermA and a1, . . . , an ∈ A,
by tA(a1, . . . , an) we denote the result of application of the term operation tA to
the elements a1, . . . , an. a valuation in A is a function v : V → A. Of course, any
valuation v in A can be uniquely extended to an A-homomorphism v :TermA → A in
the usual way, i.e. if t1, . . . , tn ∈ TermA then v(t (t1, . . . , tn)) = tA(v(t1), . . . , v(tn)).
Thus, valuations are identified with A-homomorphisms from the absolutely free
algebra. If t, s ∈ TermA, A |
 t = s means that for each valuation v in A,
v(t) = v(s) and A |
 t = s means that for each A ∈ A, A |
 t = s.
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For each algebra A ∈ A, we denote by Con(A) the congruence lattice of A,
the diagonal congruence is denoted by � and the largest congruence A2 is denoted
by ∇. θ is called factor congruence iff there is a congruence θ∗ on A such that,
θ ∧ θ∗ = �, θ ∨ θ∗ = ∇ and θ permutes with θ∗. If θ and θ∗ is a pair of factor
congruences on A then A ∼= A/θ × A/θ∗. A is directly indecomposable if A is
not isomorphic to a product of two nontrivial algebras or, equivalently, �,∇ are
the only factor congruences in A. We say that A is subdirect product of a family
of (Ai)i∈I of algebras if there exists an embedding f : a → ∏

i∈I Ai such that
πif : A→ Ai is a surjective homomorphism for each i ∈ I where πi is the
projector onto Ai . A is subdirectly irreducible iff A is trivial or there is a minimum
congruence in Con(A)−�. It is clear that a subdirectly irreducible algebra is directly
indecomposable. An important result due to Birkhoff is that every algebra A is
a subdirect product of subdirectly irreducible algebras. Thus, the class of subdirectly
irreducible algebras rules the valid equations in the variety A.

Now we recall from [14, 20] some notions about orthomodular lattices. a lattice
with involution [13] is an algebra 〈L,∨,∧,¬〉 such that 〈L,∨,∧〉 is a lattice and
¬ is a unary operation on L that fulfills the following conditions: ¬¬x = x and
¬(x ∨ y) = ¬x ∧ ¬y. An orthomodular lattice is an algebra 〈L,∧,∨,¬, 0, 1〉 of
type 〈2, 2, 1, 0, 0〉 that satisfies the following conditions:

1. 〈L,∧,∨,¬, 0, 1〉 is a bounded lattice with involution,
2. x ∧ ¬x = 0,
3. x ∨ (¬x ∧ (x ∨ y)) = x ∨ y.

We denote by OML the variety of orthomodular lattices. Let L be an ortho-
modular lattice. Two elements a, b in L are orthogonal (noted a⊥b) iff a ≤ ¬b.
For each a ∈ L let us consider the interval [0, a] = {x ∈ L : 0 ≤ x ≤ a } and the
unary operation in [0, a] given by ¬ax = ¬x ∧ a. As one can readily realize, the
structure La = 〈[0, a],∧,∨,¬a, 0, a 〉 is an orthomodular lattice.

Boolean algebras are orthomodular lattices satisfying the distributive law x ∧
(y ∨ z) = (x ∧ y) ∨ (x ∧ z). We denote by 2 the Boolean algebra of two elements.
Let L be an orthomodular lattice. An element c ∈ L is said to be a complement
of a iff a ∧ c = 0 and a ∨ c = 1. Given a, b, c in L, we write: (a, b, c)D iff
(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c); (a, b, c)D∗ iff (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) and
(a, b, c)T iff (a, b, c)D, (a, b, c)D∗ hold for all permutations of a, b, c. An element
z of L is called central iff for all elements a, b ∈ L we have (a, b, z)T . We denote
by Z(L) the set of all central elements of L and it is called the center of L.

PROPOSITION 2.1. Let L be an orthomodular lattice. Then we have:

1. Z(L) is a Boolean sublattice of L [20, Theorem 4.15],
2. z ∈ Z(L) iff for each a ∈ L, a = (a ∧ z) ∨ (a ∧ ¬z) [20, Lemma 29.9].

Now we recall from [1, 8, 14] some notions about Baer ∗-semigroups. a Baer
∗-semigroup [8], also called Foulis semigroup [1, 3, 14], is an algebra 〈S, ·,∗ ,′ , 0〉
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of type 〈2, 1, 1, 0〉 such that, upon defining 1 = 0′, the following conditions are
satisfied:

1. 〈S, ·〉 is a semigroup,
2. 0 · x = x · 0 = 0,
3. 1 · x = x · 1 = x,
4. (x · y)∗ = y∗ · x∗,
5. x∗∗ = x,
6. x · x ′ = 0,
7. x ′ · x ′ = x ′ = (x ′)∗,
8. x ′ · y · (x · y)′ = y · (x · y)′.
Let S be a Baer ∗-semigroup. An element e ∈ S is a projector iff e = e∗ = e · e.

The set of all projectors of S is denoted by P(S). a projector e ∈ P(S) is said to
be closed iff e′′ = e. We denote by Pc(S) the set of all closed projectors. Moreover
we can prove that

Pc(S) = {x ′ : x ∈ S}.
We can define a partial order 〈P(S),≤〉 as follows,

e ≤ f ⇐⇒ e · f = e.

In [20, Theorem 37.2] it is proved that, for any e, f ∈ Pc(S), e ≤ f iff
e · S ⊆ f · S. The facts stated in the next proposition are either proved in [8] or
follow immediately from the results in [8].

PROPOSITION 2.2. Let S be a Baer ∗-semigroup. Then:

1. If x, y ∈ P(S) and x ≤ y then y ′ ≤ x ′,
2. (x · y)′′ = (x ′′ · y)′′ ≤ y ′′,
3. (x∗ · x)′′ = x ′′,
4. for each x ∈ Pc(S), 0 ≤ x ≤ 1,
5. x · y = 0 iff y = x ′ · y.

Observe that item 5 was one of the original conditions in the definition of
a Baer *-semigroup in [8]. In the presence of conditions 1 . . . 7 of the definition
of a Baer *-semigroup, the latter condition is equivalent to condition 8 (see [1,
Proposition 2]).

THEOREM 2.3. [20, Theorem 37.8] Let S be a Baer ∗-semigroup. For any
e1, e2 ∈ Pc(S), we define the following operations:

e1 ∧ e2 = e1 · (e′2 · e1)
′,

e1 ∨ e2 = (e′1 ∧ e′2)
′.

Then 〈Pc(S),∧,∨,′ , 0, 1〉 is an orthomodular lattice with respect to the order
〈P(S),≤〉.

We can build a Baer ∗-semigroup from an orthomodular lattice [8]. In the
following we briefly describe this construction.
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Let 〈A,≤, 0, 1〉 be a bounded partial ordered set. An order-preserving function
φ : a → A is called residuated function iff there is another order-preserving function
φ+ : a → A, called a residual function of φ such that φφ+(x) ≤ x ≤ φ+φ(x). It
can be proved that if φ admits a residual function φ+, it is completely determined
by φ.

REMARK 2.4. We will adopt the notation in [1, §1] in which residuated functions
are written on the right. More precisely, if φ,ψ are residuated functions, xφ indicates
the value φ(x) and ψφ is interpreted as the function xψφ = (xψ)φ.

We denote by S(A) the set of residuated functions of A. Let θ be the constant
function in A given by xθ = 0. Clearly θ is an order-preserving function and θ+ is
the constant function xθ+ = 1. Thus θ ∈ S(A) and 〈S(A), ◦, θ〉, where ψ ◦φ = ψφ,
is a semigroup.

THEOREM 2.5. [1, Proposition 2] Let L be an orthomodular lattice. For each
a ∈ L we define

xφa = (x ∨ ¬a) ∧ a (Sasaki projection).

If we define the following unary operations in S(L):

φ∗: such that xφ∗ = ¬((¬x)φ+),
φ′ := φ¬1φ

then

1. 〈S(L), ◦,∗ ,′ , θ〉 is a Baer ∗-semigroup,
2. Pc(S(L)) = {φa : a ∈ L},
3. fL : L→ Pc(S(L)) such that fL(a) = φa is an OML-isomorphism.

If L is an orthomodular lattice, the Baer ∗-semigroup 〈S(L), ◦,∗ ,′ , θ〉, or S(L)
for short, will be referred to as the Baer ∗-semigroup of the residuated functions
of L.

Let L be an orthomodular lattice. We say that a Baer ∗-semigroup S coordinatizes
L iff L is OML-isomorphic to Pc(S).

3. Two-valued states and Baer ∗-semigroups
The study of two-valued states becomes relevant in different frameworks. From

a physical point of view, two-valued states are distinguished among the set of all
classes of states because of their relation to hidden variable theories of quantum
mechanics [11]. Another motivation for the analysis of two-valued states is rooted
in the study of algebraic and topological representations of the event structures in
quantum logic. Examples of them are the characterization of Boolean orthoposets
by means of two-valued states [34] and the representation of orthomodular lattices
via clopen sets in a compact Hausdorff closure space [33], later extended to
orthomodular posets in [17]. We are interested in a theory of two-valued states on
Baer ∗-semigroups as a natural extension of two-valued states on orthomodular lattice.
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Formally, a two-valued state on an orthomodular L is a function σ : L → {0, 1}
satisfying the following:

1. σ(1) = 1,
2. if x⊥y then σ(x ∨ y) = σ(x)+ σ(y).

Let L be an orthomodular lattice and σ : L→ {0, 1} be a two-valued state. The
following properties are derived directly from the definition of two-valued state:

σ(¬x) = 1− σ(x) and if x ≤ y then σ(x) ≤ σ(y).

Based on the above mentioned two properties, in [5], Boolean pre-states are
introduced as a general theoretical framework to study families of two-valued states
on orthomodular lattices. We shall use these ideas for a general study of two-valued
states extended to Baer ∗-semigroups. Thus, we first give the definition of Boolean
pre-state.

DEFINITION 3.1. Let L be an orthomodular lattice. By a Boolean pre-state on
L we mean a function σ : L→ {0, 1} such that:

1. σ(¬x) = 1− σ(x),
2. if x ≤ y then σ(x) ≤ σ(y).

EXAMPLE 3.2. Let us consider the orthomodular lattice MO2× 2 whose Hasse
diagram has the following form:

�
�
�
�
��

�
�
�
�
�
�
��

�
�

�
�

�
�

��

�
�

�
�

�
��

�
�
�
�
�
�
��

�
�

�
�

�
�

��

�
�

�
�

��

�
�
�
�
�
��

�

� � � �

�

�

� � � �
�

1

¬a ¬b ¬c ¬d ¬e

0

a b c d e

�
�
�
�

�
�
��

�
�

��

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�
�
�
��

�
�
�
�
��

If we define the function σ : MO2× 2 → {0, 1} such that

σ(x) =
{

1, if x ∈ {1,¬a,¬b,¬c,¬d,¬e},
0, if x ∈ {0, a, b, c, d, e},

we can see that σ is a Boolean pre-state. This function fails to be a two-valued
states since b ≤ ¬c but σ(b∨ c) �= σ(b)+ σ(c). In fact, σ(b∨ c) = σ(¬a) = 1 and
σ(b)+ σ(c) = 0.

We denote by EB the category whose objects are pairs (L, σ ) such that L is
an orthomodular lattice and σ is a Boolean pre-state on L. Arrows in EB are
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(L1, σ1)
f→ (L2, σ2) such that f : L1 → L2 is an OML-homomorphism, and the

following diagram is commutative,

�

� �
�	≡

L1 {0, 1}

L2

σ1

f
σ2

These arrows are called EB-homomorphisms.

Let L be an orthomodular lattice and let σ : L→ {0, 1} be a Boolean pre-state.
Since L we can identify with Pc(S(L)), we ask whether the Boolean pre-state σ
admits a natural extension to the whole of S(L). In other words, whether there
exists some kind of function of the form σ ∗ : S(L)→ {0, 1} such that the following
diagram is commutative,

�

� �
�	≡

L {0, 1}

S(L)

σ

fL

σ ∗

where fL is the OML-isomorphism fL : L → Pc(S(L)) given in Theorem 2.5-3.
The simplest way to do this would be to associate with each element φ ∈ S(L) an
appropriate closed projection φx ∈ Pc(S(L)) and to define σ ∗(φ) = σ ∗(φx) = σ(x).
An obvious choice for φx is φ′′ = φ1φ . In virtue of this suggestion, we introduce
the following concept.

DEFINITION 3.3. Let S be a Baer ∗-semigroup. a Boolean∗ pre-state over S is
a function σ : S → {0, 1} such that

1. σ(x ′) = 1− σ(x),
2. the restriction σ/Pc(S) is a Boolean pre-state on Pc(S).

We denote by E∗B the category whose objects are pairs (S, σ ) such that S is
a Baer ∗-semigroup and σ is a Boolean pre-state on S. The arrows in E∗B are

(S1, σ1)
f→ (S2, σ2) such that f : S1 → S2 is a Baer ∗-semigroup homomorphism,

and the following diagram is commutative,

�

� �
�	≡

S1 {0, 1}

S2

σ1

f
σ2
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These arrows are called E∗B-homomorphisms. Up to now we have presented
a notion that would naturally extend the notion of Boolean pre-state to Baer ∗-
semigroups. However we have not yet proved that this extension may be formally
realized. This will be shown in Theorem 3.5. To see this, we first need the following
basic results.

PROPOSITION 3.4. Let S be a Baer ∗-semigroup and σ be a Boolean∗ pre-state
on S. Then

1. σ(x ′′) = σ(x),
2. If x, y ∈ P(S) and x ≤ y then, σ(y ′) ≤ σ(x ′) and σ(x) ≤ σ(y),
3. σ(x · y) = σ(x ′′ · y) ≤ σ(y),
4. σ(x∗ · x) = σ(x).

Proof : 1) Is immediate. 2) Suppose that x, y ∈ P(S) and x ≤ y. By Proposition
2.2-1, y ′ ≤ x ′ and taking into account that x ′, y ′ ∈ Pc(S), σ(y ′) ≤ σ(x ′). By
Proposition 2.2-1 again and since y ′ ≤ x ′ we have that x ′′ ≤ y ′′. Hence, by item 1,
σ(x) = σ(x ′′) ≤ σ(y ′′) = σ(y). 3) By Proposition 2.2-2, (x ·y)′′ = (x ′′ ·y)′′ ≤ y ′′. By
item 1, σ(x · y) = σ((x · y)′′) = σ((x ′′ · y)′′) = σ(x ′′ · y). Since (x ′′ · y)′′ and y ′′ are
closed projections, by item 1, we have that σ(x ′′ · y) = σ((x ′′ · y)′′) ≤ σ(y ′′) = σ(y).
4) By Proposition 2.2-3 (x∗ · x)′′ = x ′′. Then, by item 1, σ(x∗ · x) = σ((x∗ · x)′′) =
σ(x ′′) = σ(x). �

THEOREM 3.5. Let S be a Baer ∗-semigroup and σ a Boolean pre-state on
Pc(S). Then σS defined as

σS(x) = σ(x ′′)
is the unique Boolean∗ pre-state on S such that σS/Pc(S) = σ .

Proof : If x ∈ S then x ′′ ∈ Pc(S) and σ(x ′′) is defined. Then σS is well defined
as a function. Note that if x ∈ Pc(S) then σS(x) = σ(x ′′) = σ(x) since ′ is an
orthocomplementation on the orthomodular lattice Pc(S). Thus σS/Pc(S) = σ . Let
x ∈ S. Then σS(x

′) = σ(x ′′′) = 1−σ(x ′′) = 1−σS(x). Thus σS is a Boolean∗ pre-state
on S. Let σ1 be a Boolean∗ pre-state on S such that σ1/Pc(S) = σ . Let x ∈ S. Since
x ′′ ∈ Pc(S), by Proposition 3.4-2, σ1(x) = σ1(x

′′) = σ(x ′′) = σS(x). Hence σ1 = σS

and σS is the unique Boolean∗ pre-state on S such that σS/Pc(S) = σ . �

4. An algebraic approach to two-valued states on Baer ∗-semigroups
In this section we study a variety of Baer ∗-semigroups enriched with a unary

operation that allows us to capture the concept of two-valued states on Baer ∗-
semigroups in an equational theory. We begin this section showing a way to deal
with families of Boolean pre-states on orthomodular lattices as varieties in which
the concept of Boolean pre-states is captured by adding a unary operation to the
orthomodular lattice structure.

Let L be an orthomodular lattice and σ : L → {0, 1} be a Boolean pre-state.
If we define the function s : L → Z(L) such that s(x) = 0L if σ(x) = 0 and
s(x) = 1L if σ(x) = 1. Then s has properties s1,. . . ,s5 in the following definition.
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DEFINITION 4.1. An orthomodular lattice with internal Boolean pre-state, IEB-
lattice for short, is an algebra 〈L,∧,∨,¬, s, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such that
〈L,∧,∨,¬, 0, 1〉 is an orthomodular lattice and s satisfies the following equations
for each x, y ∈ L:

s1. s(1) = 1,
s2. s(¬x) = ¬s(x),
s3. s(x ∨ s(y)) = s(x) ∨ s(y),
s4. y = (y ∧ s(x)) ∨ (y ∧ ¬s(x)),
s5. s(x ∧ y) ≤ s(x) ∧ s(y).

Thus, the class of IEB-lattices is a variety that we call IEB . The following
proposition provides the main properties of IEB-lattices.

PROPOSITION 4.2. [5, Proposition 3.5] Let L be an IEB-lattice. Then we have:

1. 〈s(L),∨,∧,¬, 0, 1〉 is a Boolean sublattice of Z(L),
2. If x ≤ y then s(x) ≤ s(y),
3. s(x) ∨ s(y) ≤ s(x ∨ y),
4. s(s(x)) = s(x),
5. x ∈ s(L) iff s(x) = x,
6. s(x ∧ s(y)) = s(x) ∧ s(y).

A crucial question that must be answered is under which conditions a class of
two-valued states over an orthomodular lattice can be characterized by a subvariety
of IEB . To do this, we first need the following two basic results.

PROPOSITION 4.3. [5, Theorem 4.4] Let L be an IEB-lattice. Then there exists
a Boolean pre-state σ : L→ {0, 1} such that σ(x) = 1 iff σ(s(x)) = 1.

Observe that the Boolean pre-state in the last proposition is not necessarily
unique. When we have an IEB-lattice and a Boolean pre-state σ : L→ {0, 1} such
that σ(x) = 1 iff σ(s(x)) = 1, we say that s, σ are coherent. On the other hand,
we can build IEB-lattices from objects in the category EB as shown the following
proposition.

PROPOSITION 4.4. [5, Theorem 4.10] Let L be an orthomodular lattice and σ
be a Boolean pre-state on L. If we define I(L) = 〈L,∧,∨,¬, sσ , 0, 1〉, where

sσ (x) =
{

1L, if σ(x) = 1,
0L, if σ(x) = 0,

then:

1. I(L) is an IEB-lattice and sσ is coherent with σ ,

2. If (L1, σ1)
f→ (L2, σ2) is an EB-homomorphism then f : I(L1)→ I(L2) is an

IEB-homomorphism.
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Note that I in the above proposition defines a functor of the form I : EB → IEB .
Now it is very important to characterize the class {I(L) : L ∈ IEB}. To do this,
directly indecomposable algebras in IEB play an important role and the following
proposition provides this result.

PROPOSITION 4.5. [5, Proposition 5.6] Let L be an IEB-lattice, then

1. L is directly indecomposable in IEB iff s(L) = 2,
2. If L is directly indecomposable in IEB then the function

σs(x) =
{

1, if s(x) = 1L,
0, if s(x) = 0L,

is the unique Boolean pre-state coherent with s.

Thus, an immediate consequence of Proposition 4.4 and Proposition 4.5 is the
following proposition.

PROPOSITION 4.6. Let D(IEB) be the class of directly indecomposable algebras
in IEB . Then D(IEB) = {I(L) : L ∈ IEB}
and I : EB → D(IEB) is a categorical equivalence when we consider D(IEB) as
a category whose arrows are IEB-homomorphisms.

Since D(IEB) contains the subdirectly irreducible algebras of IEB , we have that

IEB |
 t = s iff D(IEB) |
 t = s.

Hence, the class of orthomodular lattices admitting Boolean pre-states can be identified
with the directly indecomposable algebras in IEB that determine the variety IEB .
We can use these ideas to give a general criterium to characterize families of
two-valued states over orthomodular lattices by a subvariety of IEB .

Let AI be a subvariety of IEB . We denote by D(AI ) the class of directly
indecomposable algebras in AI .

DEFINITION 4.7. Let A be a subclass of EB and let AI be a subvariety of IEB .
Then we say that AI equationally characterizes A iff the following two conditions
are satisfied,

I: for each (L, σ ) ∈ A, 〈I(L),∧,∨,¬, sσ , 0, 1〉 belong to D(AI ) where

sσ (x) =
{

1L, if σ(x) = 1,
0L, if σ(x) = 0,

E: for each L ∈ D(AI ), (L, σs) ∈ A where σs , the unique Boolean pre-state

coherent with s, is given by σs(x) =
{

1, if s(x) = 1L,
0, if s(x) = 0L.

Since D(AI ) contains the subdirectly irreducible algebras of AI , we have that

D(AI ) |
 t = s iff AI |
 t = s,

where t, s are terms in the language of AI .



TWO-VALUED STATES ON BAER ∗-SEMIGROUPS 297

Thus, when we say that a subclass A of EB is equationally characterizable by
a subvariety AI of IEB , this means that the objects of A are identifiable with
the directly indecomposable algebras of AI according to the items I and E in
Definition 4.7.

Taking into account the concept of IEB-lattice we introduce a way to study the
notion of Boolean∗ pre-state given in Definition 3.3 via a unary operation added
to the Baer ∗-semigroups structure.

In fact, let S be a Baer ∗-semigroup. a unary operation s on S that allows us to
capture the notion of Boolean∗ pre-state would have to satisfy the following basic
conditions:

a. s(x ′) = s(x)′,
b. The restriction s/Pc(S) defines a unary operation in Pc(S) such that 〈Pc(S),∨,∧,′, s/Pc(S), 0, 1〉 is an IEB-lattice,
c. s should satisfy a version of Theorem 3.5, i.e. s should be always obtainable

as the unique extension of s/Pc(S).

These ideas motivate the following general definition.

DEFINITION 4.8. An IE∗B-semigroup is an algebra 〈S, ·,∗ ,′ , s, 0〉 of type
〈2, 1, 1, 1, 0〉 such that 〈S, ·,∗ ,′ , 0〉 is a Baer ∗-semigroup and s satisfies the
following equations for each x, y ∈ S:

bs1. s(1) = 1,
bs2. s(x ′) = s(x)′,
bs3. s(x)′′ = s(x),
bs4. s(x ′ ∨ s(y ′)) = s(x ′) ∨ s(y ′),
bs5. y ′ = (y ′ ∧ s(x)) ∨ (y ′ ∧ s(x)′),
bs6. s(x ′ ∧ y ′) ≤ s(x ′) ∧ s(y ′).

Thus, the class of IE∗B-semigroups is a variety that we call IE∗B .

PROPOSITION 4.9. Let S be an IE∗B-semigroup. Then:

1. s(x) ∈ Z(Pc(S)),
2. 〈Pc(S),∨,∧,′ , s/Pc(S), 0, 1〉 is an IEB-lattice and 〈s(S),∨,∧,′ , 0, 1〉 is a

Boolean subalgebra of Z(Pc(S)),
3. s(x ′′) = s(x),
4. If x, y ∈ P(S) and x ≤ y then, s(y ′) ≤ s(x ′) and s(x) ≤ s(y),
5. s(x · y) = s(x ′′ · y) ≤ s(y),
6. s(x∗ · x) = s(x).

Proof : 1) and 2). By bs3, for each x ∈ S, s(x) ∈ Pc(S). Then, by Proposition
2.1-2 and bs5, s(x) ∈ Z(Pc(S)). Since the image of ′ is Pc(S), from the rest of
the axioms, 〈Pc(S),∨,∧,′ , s/Pc(S), 0, 1〉 is an IEB-lattice and 〈s(S),∨,∧,′ , 0, 1〉 is
a Boolean subalgebra of Z(Pc(S)). 3, 4, 5, 6) Follow from similar arguments used
in the proof of Proposition 3.4. �
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THEOREM 4.10. Let S be a Baer ∗-semigroup and 〈Pc(S),∨,∧,′ , s, 0, 1〉 be an
IEB-lattice. Then the operation sS : S → S such that

sS(x) = s(x ′′)

defines the unique IE∗B-semigroup structure on S such that sS/Pc(S) = s.

Proof : If x ∈ S then x ′′ ∈ Pc(S) and s(x ′′) is defined. Then sS is well defined
as a function. Since x ∈ Pc(S) iff x = x ′′, sS(x) = s(x ′′) = s(x) for each x ∈ Pc(S).
Thus sS/Pc(S) = s. Now we prove the validity of the axioms bs1, . . . , bs6.

bs1) Is immediate. bs2) sS(x
′) = s(x ′′′) = s(x ′′)′ = sS(x)

′. bs3) sS(x)
′′ =

s(x ′′)′′ = s(x ′′) since s(x) ∈ Pc(S) and ′ is an orthocomplementation on Pc(S).
Hence sS(x)

′′ = sS(x). bs4, bs5 and bs6, follow from the fact that sS/Pc(S) = s
and 〈Pc(S),∨,∧,′ , s, 0, 1〉 is an IEB-lattice. Hence sS defines an IE∗B-semigroup
structure on S such that sS/Pc(S) = s.

Suppose that 〈S, ·,∗ ,′ , s1, 0〉 is an IE∗B-semigroup such that s1/Pc(S) = s. Let
x ∈ S. Since x ′′ ∈ Pc(S), by Proposition 4.9-3, s1(x) = s1(x

′′) = s(x ′′) = sS(x).
Hence s1 = sS and sS defines the unique IE∗B-semigroup structure on S such that
sS/Pc(S) = s. �

By Proposition 4.9 and Theorem 4.10 we can see that the definition of IE∗B-
semigroup pre-state satisfies the conditions required by the items a, b, c.

COROLLARY 4.11. Let 〈L,∨,∧,¬, s, 0, 1〉 be an IEB-lattice and S(L) be the
Baer ∗-semigroup of residuated functions of L. If for each Sasaki projection φa we
define s̄(φa) = φs(a), then

1. 〈Pc(S(L)),∨,∧,′ , s̄, 0, 1〉 is an IEB-lattice and f : L→ Pc(S(L)) such that
f (a) = φa is an IEB-isomorphism,

2. the operation s̄S(ϕ) = φs(ϕ(1)) defines the unique IE∗B-semigroup structure on
S(L) such that L is IEB-isomorphic to Pc(S(L)).

Proof : 1) By Theorem 2.5, there exists an OML-isomorphism f : L→ Pc(S(L)).
It is not very hard to see that the composition s̄ = f sf −1 satisfies bs1,. . . ,bs6 and
f (s(x)) = (f sf −1)f (x) = s̄f (x), i.e. f preserves s̄. Then L is IEB-isomorphic to
Pc(S(L)).

2) Let ϕ ∈ S(L). Then s̄S(ϕ) = φs(ϕ(1)) = s̄(φϕ(1)) = s̄(φ¬¬ϕ(1)) = s(ϕ′′). Therefore
s̄S is the extension of s̄ given in Theorem 4.10. Hence the operation s̄S defines
the unique IE∗B-semigroup structure on S(L) such that L is IEB-isomorphic to
Pc(S(L)). �

COROLLARY 4.12. Let 〈S, ·,∗ ,′ , s, 0〉 be an IE∗B-semigroup. Suppose that S1 is
a sub Baer ∗-semigroup of S and Pc(S1) is a sub IEB-lattice of Pc(S). Then the
restriction s/S1

defines the unique IE∗B-semigroup structure on S1. In this way, S1

is also a sub IE∗B-semigroup of S.

Proof : Let S1 be a sub Baer ∗-semigroup of S such that Pc(S1) is a sub
IEB-lattice of Pc(S). If for each x ∈ S1 we define sS1

(x) = s/Pc(S1)
(x ′′) = s(x ′′)
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then sS1
= s/S1

and, by Theorem 4.10, it defines the unique IE∗B-semigroup structure
on S1 that coincides with s/Pc(S1)

in Pc(S1). In this way S1 also results as a sub
IE∗B-semigroup of S. �

PROPOSITION 4.13. Suppose that (Si)i∈I is a family of IE∗B-semigroups. Then,∏
i∈I Pc(Si) is IEB-lattice isomorphic to Pc(

∏
i∈I Si).

Proof : Since the operations in
∏

i∈I Si are defined pointwise, for each (xi)i∈I ∈∏
i∈I Si , (xi)

′
i∈I = (x ′i)i∈I . Then it is straightforward to prove that f ((xi)

′
i∈I ) = (x ′i)i∈I

defines an OML-isomorphism f : Pc(
∏

i∈I Si) → ∏
i∈I Pc(Si). We have to prove

that this function preserves s. In fact f (s((xi)
′
i∈I )) = f ((s(xi))

′
i∈I ) = (s(xi)

′)i∈I =
(s(x ′i))i∈I = s((x ′i)i∈I ) = s(f ((xi)

′
i∈I )). Hence f is an IEB-lattice isomorphism. �

In what follow we study the relation between Boolean∗ pre-states and IE∗B-
semigroups.

PROPOSITION 4.14. Let 〈S, ·,∗ ,′ , s, 0〉 be an IE∗B-semigroup. Then there exists
a Boolean∗ pre-state σ : S → {0, 1} such that s/Pc(S) is coherent with σ/Pc(S).

Proof : By Proposition 4.3 there exists a Boolean pre-state σ0 : Pc(S) → {0, 1}
such that s/Pc(S) is coherent with σ0. By Theorem 3.5, there exists a unique Boolean∗
pre-state σ : S → {0, 1} such that σ0 = σ/Pc(S). Hence s/Pc(S) is coherent with
σ/Pc(S) = σ0. �

The following result gives a kind of converse of the last proposition.

PROPOSITION 4.15. Let S be a Baer ∗-semigroup and σ : S → {0, 1} be
a Boolean∗ pre-state. If we define

sσ (x) =
{

1Pc(S), if σ(x) = 1,
0Pc(S), if σ(x) = 0,

then 〈S, ·,∗ ,′ , sσ , 0〉 is an IE∗B-semigroup and sσ /Pc(S) is coherent with σ/Pc(S).

Proof : By Proposition 4.4, 〈Pc(S),∧,∨,′ , sσ /Pc(S), 0, 1〉 is an IEB-lattice and
sσ /Pc(S) is coherent with σ/Pc(S). Since σ(x) = σ(x ′′) then sσ (x) = sσ (x

′′) =
sσ /Pc(S)(x

′′). Hence, by Theorem 4.10, sσ defines the unique IE∗B-semigroup structure
on S1 that extends sσ /Pc(S). �

5. Varieties of IEB-lattices determining varieties of IE∗B-semigroups
When a family of two-valued states over an orthomodular lattice is equationally

characterizable by a variety of IEB-lattices in the sense of Definition 4.7, the
problem about the existence of a variety of IE∗B-semigroups that somehow may be
able to equationally characterize the mentioned family of two-valued states may be
posed. The following definition provides a “natural candidate” for such a class of
IE∗B-semigroups.
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DEFINITION 5.1. Let AI be a subvariety of IEI . Then we define the subclass
A∗

I of IE∗I as
A∗

I = {S ∈ IE∗B : Pc(S) ∈ AI }.
Before proceeding, we have to make sure that A∗

I is a nonempty subclass of
IE∗I .

PROPOSITION 5.2. If AI is a nonempty subvariety of IEI then A∗
I is a nonempty

subclass of IE∗B .

Proof : Suppose that 〈L,∧,∨,¬, s, 0, 1〉 belong to AI . By Theorem 2.5 we can
consider the Baer ∗-semigroup S(L) of residuated functions in L in which L is
OML-isomorphic to Pc(S(L)). Identifying L with Pc(S(L)), by Theorem 4.10, there
exists an operation sS(L) on S(L) that defines the unique IE∗B-semigroup structure
on S(L) such that sS(L)/Pc(S(L)) = s. Hence S(L) ∈ A∗

I and A∗
I is a nonempty

subclass of IE∗B . �
In what follows we shall demonstrate not only that A∗

I is a variety but also we
shall give a decidable method to find an equational system that defines A∗

I from
an equational system that defines AI . In order to study this we first introduce the
following concept.

DEFINITION 5.3. We define the ∗-translation τ : TermIEB
→ TermIE∗

B
as follows:

τ(0) = 0 and τ(1) = 1,
τ(x) = x ′ for each variable x,
τ(¬t) = τ(t)′,
τ(t ∧ s) = (τ (t)′ · τ(s))′ · τ(s),
τ(t ∨ s) = τ(¬(¬t ∧ ¬s)),
τ(s(t)) = s(τ (t)).

PROPOSITION 5.4. Let S be an IE∗B-semigroup, v : TermIE∗
B
→ S be a valuation

and τ be the ∗-translation. Then

1. for each t ∈ TermIEB
, v(τ(t)) ∈ Pc(S),

2. there exists a valuation vc : TermIEB
→ Pc(S) such that for each t ∈

TermIEB
, vc(t) = v(τ(t)).

Proof : 1) Let t ∈ TermIEB
. If t is the form ¬r then v(τ(r)) = v(τ(¬r)) =

v(τ(r)′) = v(τ(r))′ ∈ Pc(S). If t is the form s(r) then v(τ(s(r))) = v(s(τ (r))) =
s(v(τ (r))) ∈ Z(Pc(S)) ⊆ Pc(S). For the other case we use induction on the complexity
of terms in TermIEB

. If Comp(t) = 0 then t is 0, 1, or a variable x. In these

cases v(τ(1)) = v(1) = 1S , v(τ(0)) = v(0) = 0S and v(τ(x)) = v(x ′) = v(x)′. Thus
v(τ(t)) ∈ Pc(S). Assume that v(τ(t)) ∈ Pc(S) whenever Comp(t) < n. Suppose that
Comp(t) = n. We have to consider the case in which t is the form p ∧ r . Then
v(τ(t)) = v(τ(p ∧ r)) = v((τ (p)′ · τ(r))′ · τ(r)) = (v(τ (p))′ · v(τ(r)))′ · v(τ(r)) =
v(τ(r))∧v(τ(p)) because v(τ(r)) ∈ Pc(S) and v(τ(p)) ∈ Pc(S). Thus v(τ(t)) ∈ Pc(S).
This proves that for each t ∈ TermIEB

, v(τ(t)) ∈ Pc(S).
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2) Consider the valuation vc : TermIEB
→ Pc(S) such that for each variable

x, vc(x) = v(x ′). Now we proceed by induction on the complexity of terms in
TermIEB

. If Comp(t) = 0 then t is 0, 1, or a variable x. Then, vc(1) = 1S =
v(1) = v(τ(1)), vc(0) = 0S = v(0) = v(τ(0)) and vc(x) = v(x ′) = v(τ(x)). Assume
that vc(t) = v(τ(t)) whenever Comp(t) < n. Suppose that Comp(t) = n. We have
to consider three possible cases:

t is the form ¬r . Then vc(t) = vc(¬r) = vc(r)
′ = v(τ(r))′ = v(τ(r)′) =

v(τ(¬r)) = v(τ(t)),
t is the form p ∧ r . vc(t) = vc(p ∧ r) = vc(p) ∧ vc(r) = v(τ(p)) ∧ v(τ(r)) =

(v(τ (p))′ · v(τ(r)))′ · v(τ(r)) = v((τ (p)′ · τ(r))′ · τ(r)) = v(τ(p ∧ r)) = v(τ(t)),
t is the form s(r). Then vc(t) = vc(s(r)) = s(vc(r)) = s(v(τ (r))) = v(s(τ (r))) =

v(τ(s(r))) = v(τ(t)).
This proves that for each t ∈ TermIEB

, vc(t) = v(τ(t)). �
PROPOSITION 5.5. Let S be an IE∗B-semigroup and v : TermIEB

→ Pc(S) be
a valuation. Then there exists a valuation v∗ : TermIE∗

B
→ S such that t ∈ TermIEB

,
v∗(τ (t)) = v(t).

Proof : Consider the valuation v∗ : TermIE∗
B
→ S such that for each variable

v∗(x) = v(¬x). Let t ∈ TermIEB
. We use induction on the complexity of terms

in TermIEB
. If Comp(t) = 0 then t is 0, 1, or a variable x. Then, v∗(τ (1)) =

v∗(1) = 1S = v(1), v∗(τ (0)) = v∗(0) = 0S = v(0) and v∗(τ (x)) = v∗(x ′) = v∗(x)′ =
v(¬x)′ = v(x)′′ = v(x) since v(x) ∈ Pc(S). Assume that v∗(τ (t)) = v(t) whenever
Comp(t) < n. Suppose that Comp(t) = n. We have to consider three possible cases:

t is the form ¬r . Then v∗(τ (t)) = v∗(τ (¬r)) = v∗(τ (r)′) = v∗(τ (r))′ = v(r)′ =
v(¬r) = v(t),

t is the form p ∧ r . Then v∗(τ (t)) = v∗(τ (p ∧ r)) = v∗((τ (p)′ · τ(r))′ · τ(r)) =
(v∗(τ (p))′ ·v∗(τ (r)))′ ·v∗(τ (r)) = (v(p)′ ·v(r))′ ·v(r) = v(p)∧v(r) = v(p∧ r) = v(t),

t is the form s(r). Then v∗(τ (t)) = v∗(τ (s(r))) = v∗(s(τ (r))) = s(v∗(τ (r))) =
s(v(r)) = v(s(r)) = v(t).

This proves that for each t ∈ TermIEB
, v∗(τ (t)) = v(t). �

THEOREM 5.6. Let AI be a subvariety of IEI and assume that {ti = si}i∈I is
a set of equations in the language of IEI that defines AI . Then

A∗
I = {S ∈ IE∗B : ∀i ∈ I, S |
 τ(ti) = τ(si)}.

Proof : On the one hand, assume that S ∈ A∗
I , i.e. Pc(S) |
 ti = si for each

i ∈ I . Suppose that there exists i0 ∈ I such that S �|
 τ(ti0) = τ(si0). Then there
exists a valuation v : TermIBB

→ S such that v(τ(ti0)) �= v(τ(si0)). By Proposition
5.4 there exists a valuation vc : TermIEB

→ Pc(S) such that for each t ∈ TermIEB
,

vc(t) = v(τ(t)). Then vc(ti0) = v(τ(ti0)) �= v(τ(si0)) = vc(si0) and Pc(S) �|
 ti0 = si0
which is a contradiction. Hence S |
 τ(ti) = τ(si) for each i ∈ I .

On the other hand, assume that S ∈ IE∗B and S |
 τ(ti) = τ(si) for each
i ∈ I . Suppose that there exists i0 ∈ I such that Pc(S) �|
 ti0 = si0 . Then there
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exists a valuation v : TermIEB
→ Pc(S) such that v(ti0) �= v(si0). By Proposition

5.5, there exists a valuation v∗ : TermIE∗
B
→ S such that for each t ∈ TermIEB

,

v∗(τ (t)) = v(t). Then v∗(τ (ti0)) = v(ti0) �= v(si0) = v∗(τ (si0)) and S �|
 τ(ti0) = τ(si0)
which is a contradiction. Hence, for each i ∈ I , we have Pc(S) |
 ti = si . �

6. Baer ∗-semigroups and the full class of two-valued states
The category of orthomodular lattices admitting a two-valued state, noted by

T EB , is the full sub-category of EB whose objects are EB-lattices (L, σ ) satisfying
the following condition,

x⊥y 
⇒ σ(x ∨ y) = σ(x)+ σ(y).

In [5, Theorem 6.3] it is proved that the variety

IT EB = IEB + {s(x ∨ (y ∧ ¬x)) = s(x) ∨ s(y ∧ ¬x)}.
equationally characterizes T EB in the sense of Definition 4.7. Thus, the objects
of T EB are identifiable to the directly indecomposable algebras of IT EB . By
Theorem 5.6 we can give an equational theory in the frame of Baer ∗-semigroups
that captures the concept of two-valued state. In fact this is done through the variety

IT E∗B = IE∗B + {s(x ′ ∨ (y ′ ∧ x ′′)) = s(x ′) ∨ s(y ′ ∧ x ′′)}

7. Baer ∗-semigroups and Jauch–Piron two-valued states
The category of orthomodular lattices admiting a Jauch–Piron two-valued state

[31], noted by JPEB , is the full sub-category of T EB whose objects are EB-lattices
(L, σ ) in T EB also satisfying the condition

σ(x) = σ(y) = 1 
⇒ σ(x ∧ y) = 1.

In [5, Theorem 7.3] it is proved that the variety

IJPEB = IT EB + {s(x) ∧ s(¬x ∨ y) = s(x ∧ y)}
equationally characterizes JPEB in the sense of Definition 4.7. Thus the objects
of JPEB are identifiable to the directly indecomposable algebras of IJPEB . By
Theorem 5.6 we can give an equational theory in the frame of Baer ∗-semigroups
that captures the concept of two-valued state. In fact this is done through the variety

IJPE∗B = IT E∗B + {s(x ′) ∧ s(x ′′ ∨ y ′) = s(x ′ ∧ y ′)}.

8. The problem of equational completeness in A∗
I

Let A be a family of EB-lattices. Suppose that the subvariety AI of IEI

equationally characterizes A in the sense of Definition 4.7. Then, through a functor
I , A is identifiable to the directly indecomposable algebras of the variety AI . In
this way, we can state that A determines the equational theory of AI . With the
natural extension of Boolean pre-states to Baer ∗-semigroups, encoded in A∗

I , this
kind of characterization may be lost. More precisely, the class A may “not rule”
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the equational theory of A∗
I in the way A does with AI . The following example

shows such a situation.

EXAMPLE 8.1. Let B̃ be the subclass of EB formed by the pairs (B, σ ) such

that B is a Boolean algebra and σ is a Boolean pre-state. B̃ is a nonempty class
since Boolean homomorphisms of the form B → 2 always exist for each Boolean
algebra B and they are examples of Boolean pre-states. It is clear that the class

B̃I = IEB + {x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)}
equationally characterizes the class B̃ in the sense of Definition 4.7. Note that B̃I

may be seen as a sub-variety B̃∗I since, each algebra B in B̃I in the signature
〈∧, ∗,¬, s, 0〉, where ∗ is the identity, is an IE∗B-semigroup. Then the equational

theory of B̃I , as variety of IE∗B-semigroups, is determined by the algebras of B̃.

Note that algebras of B̃I are commutative Baer ∗-semigroups and then we have

B̃I |
 x · y = y · x.
What we want to point out is the following: B̃I captures (although in some sense
a trivial one) the concept of Boolean pre-states over Boolean algebras in a variety.

Moreover B̃ also determines the equational theory of B̃I when B̃I is seen as
a variety of IE∗B-semigroup.

Let us now compare the last result with Definition 5.3 and Theorem 5.6. The

variety B̃∗I given by

B̃∗I = IE∗B + {τ(x ∧ (y ∨ z)) = τ((x ∧ y) ∨ (x ∧ z))}
= IE∗B + {x ′ ∧ (y ′ ∨ z′) = (x ′ ∧ y ′) ∨ (x ′ ∧ z′)}

is the biggest subvariety of IE∗B whose algebras have a lattice of closed projections

with Boolean structure and then B̃I ⊆ B̃∗I . We shall prove that B̃I �= B̃∗I , i.e.
the inclusion, is proper. In fact, let B4 be the Boolean algebra of four elements
{0, a,¬a, 1} endowed with the operation s(x) = x, i.e. the identity on B4. In

this case B4 ∈ B̃I . According to Theorem 2.5, we consider the Baer ∗-semigroup
S(B4) of residuated functions of B4. Since we can identify B4 with Pc(S(B4)),
by Proposition 4.10 we can extend s to S(B4). Therefore S(B4) may be seen as

an algebra of B̃∗I . Consider the function φ : B4 → B4 such that 0φ = φ(0) = 0,
1φ = φ(1) = 1, aφ = φ(a) = ¬a and (¬a)φ = φ(¬a) = a. Note that φ is an order
preserving function and the composition φφ = 1B4

. Hence φ is the residual function
of itself and then φ ∈ S(B4). Let φa be the Sasaki projection associated to a. Then
xφa = (x ∨ ¬a) ∧ a = x ∧ a. Note that a(φφa) = (aφ) ∧ a = ¬a ∧ a = 0 and
a(φaφ) = (aφa)φ = aφ = ¬a.

This proves that φφa �= φaφ and then S(B4) �∈ B̃I because B̃I is a variety of

commutative Baer ∗-semigroups. Thus B̃I �= B̃∗I and the inclusion is proper.

Hence, the directly indecomposable algebras of B̃I considered as IE∗B-semigroups

do not determine the equational theory of B̃∗I . Consequently B̃ does not significatively

add to the equational theory of B̃∗I .
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Taking into account Example 8.1, the following problem may be posed.

Let A be a class of EB-lattices and suppose that the subvariety AI of IEI

equationally characterizes A in the sense of Definition 4.7. Give a subvariety
G∗ of A∗

I in which we can determine the equational theory of G∗ from the
class A.

We conclude this section defining the meaning of the statement that the class
A of EB-lattices determines the equational theory of a subvariety of A∗

I .

DEFINITION 8.2. Let A be a class of EB-lattices. Suppose that the variety AI

of IEB-lattices equationally characterizes the class A and I : A → D(AI ) is the
functor that provides the categorical equivalence between A and the category D(AI )
of directly indecomposable algebras of AI . We say that A determines the equational
theory of a subvariety G∗ of A∗

I iff there exists a class operator

G : AI → A∗
I

such that:

1. for each L ∈ A, GI(L) is a directly indecomposable algebra in A∗
I ,

2. G∗ = V({GI(L) : L ∈ A}).
In the next section, we will study a class operator, denoted by S0, that will

allow us to define a subvariety of A∗
I whose equational theory is determinated by

A in the sense of Definition 8.2.

9. The class operator S0

Let 〈L,∧,∨,¬, s, 0, 1〉 be an IEB-lattice. By Corollary 4.11, we consider the
IE∗B-semigroup S(L) of residuated functions of L. By abuse of notation, we also
denote by s the operation sS(L) on S(L) where sS(L)(x) = s(x ′′). Let S0(L) be the
sub Baer ∗-semigroup of S(L) generated by the Sasaki projections on L. In the
literature, S0(L) is refereed to as the small Baer ∗-semigroup of products of Sasaki
projections on L [1, 8]. By Corollary 4.12, S0(L) with the restriction s/S0(L) is
a sub IE∗B-semigroup of S(L). This IE∗B-semigroup will be denoted by S0(L).

Since Pc(S0(L)) is IEB-isomorphic to L, if AI is a subvariety of IEI and
L ∈ AI then S0(L) ∈ A∗

I . These results allow us to define the following class
operator,

S0 : AI → A∗
I s.t. L �→ S0(L)

PROPOSITION 9.1. Let L1, L2 be two IEB-lattices and f : L1 → L2 be an
IEB-homomorphism.

1. If φa1
. . . φan are Sasaki projections in L1, then for each x ∈ L1 we have

f (xφa1
. . . φan) = f (x)φf (a1)

. . . φf (an).
2. If f is a surjective function then there exists a unique IE∗B-homomorphism

g : S0(L1) → S0(L2) such that, identifying L1 with Pc(S0(L1)), g/L1
= f .

Moreover, g is a surjective function.
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3. If f is bijective, then S0(L1) and S0(L2) are IE∗B-isomorphic.

Proof : 1) We use induction on n. Suppose that n = 2. Then

f (xφa1
φa2

)= f ((((x ∨ ¬a1) ∧ a1) ∨ ¬a2) ∧ a2)

= (((f (x) ∨ ¬f (a1)) ∧ f (a1)) ∨ ¬f (a2)) ∧ f (a2)

= f (x)φf (a1)
φf (a2)

.

Suppose that the result holds for m < n. Then

f (xφa1
. . . φan)= f ((xφa1

. . . φan−1
∨ ¬an) ∧ an)

= (f (x)φf (a1)
. . . φf (an−1)

∨ ¬f (an)) ∧ f (an)

= f (x)φf (a1)
. . . φf (an).

2) Suppose that f : L1 → L2 is a surjective IEB-homomorphism. If φ ∈ S0(L1),
then φ = φa1

. . . φan where φai are Sasaki projections on L1. We define the function
g : S0(L1)→ S0(L2) such that

g(φ) = g(φa1
. . . φan) = φf (a1)

. . . φf (an).

We first prove that g is well defined. Suppose that φ = φa1
. . . φan = φc1

. . . φcm .
Let b ∈ L2. Since f is a surjective function then there exists a ∈ L1 such that
f (a) = b. Then, by the item 1,

bφf (c1)
. . . φf (cm)= f (a)φf (c1)

. . . φf (cm)

= f (aφc1
. . . φcm)

= f (aφa1
. . . φan)

= f (a)φf (a1)
. . . φf (an)

= bφf (a1)
. . . φf (an).

Thus g(φa1
. . . φan) = g(φc1

. . . φcm) and g is well defined. Note that for each
a ∈ L1, g(φa) = φf (a), and then g/L1

= f identifying L1 with Pc(S0(L1)). The
surjectivity of g follows immediately from the surjectivity of f . By definition of g,
it is immediate that g is a 〈◦,∗ , 0〉-homomorphism where ψ ◦ φ = ψφ. We prove
that g preserves the operation ′. Suppose that φ = φa1

. . . φan . By Theorem 2.5,
φ′ = φ¬1φ = φ¬1φa1

...φan
. By the item 1 we have that

g(φ′)= g(φ¬1φa1
...φan

)

= φf (¬1φa1
...φan

)

= φ¬f (1)φf (a1)
...φf (an)

= φ¬1g(φ)

= g(φ)′.

Thus, g preserves the operation ′. Now we prove that g preserves s. By Proposition
4.9–3, s(φ) = s(φ′′). Then there exists a ∈ L1 such that φ′′ = φa . By Corollary
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4.11, g(s(φ)) = g(s(φa)) = g(φs(a)) = φf (s(a)) = φs(f (a)) = s(φf (a)) = s(g(φa)) =
s(g(φ′′)) = s(g(φ)′′) = s(g(φ)) and g preserves the operation s. Hence g is
a surjective IE∗B-homomorphism such that, identifying L1 with Pc(S0(L1)), g/L1

= f .
We have to prove that g is unique. Suppose that there exists an IE∗B-homomorphism
h : S0(L1) → S0(L2) such that h/L1

= f . Let φ = φa1
. . . φan ∈ S0(L1). Then

h(φ) = h(φa1
. . . φan) = h(φa1

) . . . (φan) = f (φa1
) . . . f (φan) = g(φa1

. . . φan) = g(φ).
Thus, h = g and this proves thet of g is unique.

3) To prove this item, we assume that f is bijective and use the function g
of item 2. Then we have to prove that g is injective. Suppose that g(φ) = g(ψ)
where ϕ,ψ ∈ S0(L1). Suppose that φ = φa1

. . . φan and ψ = φc1
. . . φcm . By 1, for

each x ∈ L1 we have that

f (xφa1
. . . φan)= f (x)φf (a1)

. . . φf (an)

= f (x)g(φa1
. . . φan)

= f (x)g(φ)

= f (x)g(ψ)

= f (x)φf (c1)
. . . φf (cm)

= f (xφc1
. . . φcm).

Since f is bijective, φa1
. . . φan(x) = φc1

. . . φcm(x) and then φ = ψ . Thus g is
bijective. �

PROPOSITION 9.2. Let A be a sub IEB-lattice of L. Then there exists a sub
IE∗B-semigroup SA of S0(L) such that A is IEB-isomorphic to Pc(SA).

Proof : Consider the set

SA =
⋃
n∈N
{φa1

φa2
. . . φan : ai ∈ a },

where φai are Sasaki projections on L. Note that, in general, SA �= S0(A) since
the domain of Sasaki projections φai is L (and not A). In [1, Proposition 10] it is
proved that SA is a sub Baer ∗-semigroup of S0(L) in which A is OML-isomorphic
to Pc(SA) and then A is IEB-isomorphic to Pc(SA). Thus, by Corollary 4.12, SA

is a sub IE∗B-semigroup of S0(L). �
PROPOSITION 9.3. Let S be an IE∗B-semigroup and for each a ∈ S we define

the function ψa : Pc(S)→ Pc(S) such that ψa(x) = (xa)′′. Then

1. if a ∈ Pc(S) then ψa = φa ,
2. f : S → S(Pc(S)) such that f (a) = ψa is an IE∗B-homomorphism,
3. let S0 be the sub IE∗B-semigroup of S generated by Pc(S). If we consider

the restriction f/S0
then Imag(f/S0

)= S0(Pc(S)).

Proof : 1) Suppose that a ∈ Pc(S). By [20, Lemma 37.10 ], ψa(x) = (xa)′′ =
(x ∨ ¬a) ∧ a = xφa . Hence ψa = φa .
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2) In [1, Proposition 7] is proved that f preserves the operations 〈·,∗ ,′ , 0〉. Then
we have to prove that f preserves the operation s. Note that, by item 1, f/Pc(S)

is the IEB-isomorphism a �→ φa . Then, by Corollary 4.11, f (s(a)) = s(f (a))
for each a ∈ Pc(S). Taking into account that for each a ∈ S, s(a) = s(a′′), we
have that f (s(a)) = f (s(a′′)) = s(f (a′′)) = s(f (a)′′) = s(f (a)). Thus f is an
IE∗B-homomorphism.

3) Suppose that ϕ ∈ S0(Pc(S)). Then ϕ = φa1
. . . φan for some a1, . . . , an in Pc(S).

If we consider the element a = a1a2 . . . an then a ∈ S0 and, since f is an IE∗B-
homomorphism, f (a) = f (a1a2 . . . an) = f (a1)f (a2) . . . f (an) = φa1

φa2
. . . φan = ϕ.

Imag(f/S0
)= S0(Pc(S)). �

PROPOSITION 9.4. Let (Li)i∈I be a family of IEB-lattices. Then

1. if �a = (ai)i∈I ∈ ∏
i∈I Li , then the Sasaki projection φ�a : ∏

i∈I Li → ∏
i∈I Li

satisfies that for each �x = (xi)i∈I , �xφ�a = (xiφai )i∈I ,
2. if �a = (ai)i∈I and �b = (bi)i∈I are elements in

∏
i∈I Li , then for each

�x = (xi)i∈I , �xφ�aφ�b = (xiφaiφbi )i∈I ,
3. S0(

∏
i∈I Li) is IE∗B-isomorphic to

∏
i∈I S0(Li).

Proof : 1) Let �a = (ai)i∈I ∈ ∏
i∈I Li . Then

�xφ�a = ((xi)i∈I ∨ ¬(ai)i∈I ) ∧ (ai)i∈I
= ((xi ∨ ¬ai) ∧ ai)i∈I
= (xiφai )i∈I .

2) Let �a = (ai)i∈I and �b = (bi)i∈I be two elements in
∏

i∈I Li and �x = (xi)i∈I .
Then, by item 1, we have that

�xφ�aφ�b = (�xφ�a)φ�b
= ((xiφai )i∈I )φ�b
= (xiφaiφbi )i∈I .

3) Follows from 2. �

PROPOSITION 9.5. Let L be an IEB-lattice. Then L is directly indecomposable
iff S0(L) is directly indecomposable.

Proof : Suppose that S0(L) admits a nontrivial decomposition in direct products
of IE∗B-semigroups, i.e. S0(L) = ∏

i∈I Si . Then, by Proposition 4.13, we can see that
L ≈IEB

Pc(S0(L)) ≈IEB
Pc(

∏
i∈I Si) ≈IEB

∏
i∈I Pc(Si). Thus L admits a nontrivial

decomposition in direct products of IEB-lattices.

Suppose that L admits a nontrivial decomposition in direct products of IEB-
lattices, i.e. L = ∏

i∈I Li . Then, by Proposition 9.4-3, S0(L) = S0(
∏

i∈I Li) ≈IE∗
B∏

i∈I S0(Li). Thus S0(L) admits a nontrivial decomposition in direct products of
IE∗B-semigroups. �
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Let AI be a variety of IEB-lattices. We denote by G∗(AI ) the sub variety of
A∗

I generated by the class {S0(L) : L ∈ AI }. More precisely,

G∗(AI ) = V({S0(L) : L ∈ AI })
We also introduce the following subclass of G∗(AI ),

G∗D(AI ) = {S0(L) : L ∈ D(AI )},
where D(AI ) is the class of the direct indecomposable algebras of AI . By Proposition
9.5, we can see that G∗D(AI ) is a subclass of the direct indecomposable algebras
of A∗

I .

THEOREM 9.6. Let AI be a variety of IEB-lattices. Then

G∗(AI ) |
 t = r iff G∗D(AI ) |
 t = r.

Proof : As regards to the nontrivial direction assume that

G∗D(AI ) |
 t (x1, . . . , xn) = r(x1, . . . , xn).

Let S0(L) ∈ G∗(AI ). By the subdirect representation theorem, there exists an IEB-
lattice embedding ι : L ↪→ ∏

i∈I Li where (Li)i∈I is a family of subdirectly irreducible
algebras in AI . Therefore, Li ∈ D(AI ) and S0(Li) ∈ G∗D(AI ) for each i ∈ I . By
Proposition 9.2, there exists an IE∗B-semigroup embedding ιF : F ↪→ S0(

∏
i∈I Li)

where L is IEB-isomorphic to Pc(F ). By Proposition 9.4, we can assume that the
IE∗B-semigroup embedding ιF is of the form ιF : F ↪→ ∏

i∈I S0(Li). By Proposition
9.3, if we consider the sub IE∗B-semigroup F0 of F generated by Pc(F ) then there
exists a surjective IE∗B-homomorphisms f : F0 → S0(L). The following diagram
provides some intuition

�

F0 ↪→ F
ιF
↪→ ∏

i∈I S0(Li)

S0(L)

f

Since F0 can be embedded into a direct product
∏

i∈I S0(Li), where S0(Li) ∈
G∗D(AI ) for each i ∈ I , by hypothesis, we have that

F0 |
 t (x1, . . . , xn) = r(x1, . . . , xn).

Let �a = (a1 . . . an) be a sequence in S0(L). Since f is surjective, there exists
a sequence �m = (m1, . . . , mn) in F0 such that f ( �m) = (f (m1), . . . , f (mn)) = �a.
Since tF0( �m) = rF0( �m), then tS0(L)(�a) = f (tF0( �m)) = f (rF0( �m)) = tS0(L)(�a). Hence,
S0(L) |
 t (x1, . . . , xn) = r(x1, . . . , xn) and the equation holds in G∗(AI ). �

Even though the study of equations in Exp(AI ) is quite treatable from the result
obtained in Theorem 9.6, we do not have, in general, a full description of the
equational system that defines the variety Exp(AI ). The following corollary provides
an interesting property of Exp(AI ).
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COROLLARY 9.7. Let AI be a variety of IEB-lattices. Then

G∗(AI ) |
 s(x) · y = y · s(x).
Proof : Let S be an algebra in G∗D(AI ). Then for each x ∈ S, s(x) ∈ {0, 1} and

s(x) · y = y · s(x). Hence, by Theorem 9.6, G∗(AI ) |
 s(x) · y = y · s(x). �
Let AI be a variety of IEB-lattices. Note that the assignment L �→ S0(L) defines

a class operator of the form

S0 : AI → G∗(AI ) ⊆ A∗
I .

Taking into account Definition 8.2, by Proposition 9.5 and Theorem 9.6 we can
establish the following result.

THEOREM 9.8. Let A be a class of EB-lattices. Suppose that the variety AI of
IEB-lattices equationally characterizes the class A. Then the class A determines
the equational theory of G∗(AI ).

This last theorem provides a solution to the problem posed in Section 8.1.

10. Final remarks
We have developed an algebraic framework that allows us to extend families

of two-valued states on orthomodular lattices to Baer ∗-semigroups. To do so,
we have explicitly enriched this variety with a unary operation that captures the
concept of two-valued states on Baer ∗-semigroups as an equational theory. Moreover,
a decidable method to find the equational system is given. We have also applied
this general approach to study the full class of two-valued states and the subclass
of Jauch–Piron two-valued states on Baer ∗-semigroups.
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