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Abstract The present study deals with the effect of trace
metals on the endangered limpet Cymbula nigra. The
Bay of Algeciras (Strait of Gibraltar) was used as the
study site. Important industrial activity takes place in the
area, including frequent oil spills. However, it is home to
important populations of C. nigra. The objective of this
work was to determine if these animals were being af-
fected at a subcellular level by the pollutants present in
their environment and to analyze the trace metal

concentrations in the animal’s soft tissues. To determine
the effects of water quality on the antioxidant activity and
concentrations through field experimentation, a total of
six sites were selected in Algeciras Bay, three located in
the inner areas (environmentally degraded sites with
higher levels of pollutants) and three in the outermost
areas of the Bay. Stress associated to reactive oxygen
species formation was assessed on digestive glands and
gills as the enzymatic antioxidant activity of catalase
(CAT), superoxide dismutase (SOD), and glutathione S-
transferase (GST) and as the concentrations of lipid-
soluble (α-tocopherol and β-carotene) and the water-
soluble antioxidants (reduced and oxidized glutathione
(GSH and GSSG)). Gills and digestive glands of those
animals located in the inner areas of Algeciras Bay
showed higher CAT activity values than those located
in the outer areas. As a general pattern, we observed
higher antioxidant activities and concentrations in diges-
tive glands that in gills, suggesting the possibility that
pollutants are mainly being incorporated by limpets
through the food. As a general rule, larger animals
showed greater concentrations of these compounds.
Iron, zinc, and manganese, in this order, were present in
the tissues at the highest concentrations. Chromium and
manganese were found in significantly higher concentra-
tions in those animals collected from the inner areas of
the Bay. Through the present study, we provide the first
data regarding the antioxidant defense levels and metal
accumulation capacity of this species, and we reinforce
the idea that this endangered species may be, in fact,
relatively tolerant to degraded environments.
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1 Introduction

Trace metals are naturally present in the marine environ-
ment although their concentrations have considerably
increased due to technological development. Industrial
by-products are often released to watermasses, and some
metals species may have negative consequences on the
ecological balance of the recipient environment (e.g.,
Farombi et al. 2007) or even cause reduction or elimina-
tion of intolerant species and, thereby, produce altera-
tions of the habitat’s biodiversity (Peterson 1986). Trace
metals may be found dissolved or suspended in the water
column and may usually end up concentrating in sedi-
ments. Exposure to these compounds often produces
alterations in the organisms’ fitness (e.g., Hansen et al.
2002; Vosyliene et al. 2003; Harada et al. 2007). One
good example of this is how, for certain gastropods
species, exposition to metals such as copper can cause
sterility through the phenomenon of “imposex” (devel-
opment of male characters on the female) (e.g., Nias et
al. 1993; Miller and Pondick 1984). Furthermore, trace
metals can also be uptaken by organisms by direct con-
tact with polluted water through permeable areas of their
body and through polluted food (see review byDepledge
and Rainbow 1990), and may lead to concentrations
several orders of magnitude higher than those of the
surrounding water (Casas et al. 2008), involving a grow-
ing risk for wildlife. Consequently, measuring chemical
and physical variables may not always be adequate
procedures for assessing pollution. Aquatic organisms
(especially benthic, which cannot escape the negative
effects of these compounds) have been frequently used
to study and develop models of how pollutants affect the
oxidative metabolism of the biological systems (see Di
Giulio et al. 1989; Winston and Di Giulio 1991;
Livingstone et al. 1994; Cavaletto et al. 2002).
Moreover, there has been an increasing interest for using
this knowledge, and how organisms may accumulate
trace metals, as a biomonitoring tool to determine envi-
ronmental quality (Stegeman et al. 1992). The organisms
selected for this task have usually been aquatic filter
feeders such as mussels, clams and oysters (Boening
1999). However, other nonfiltering organisms such as
limpets are also considered as good sentinel organisms
(Navrot et al. 1974). Limpets are intertidal organisms

which forage on rocky substrates feeding from the algal
biofilm that develops on these surfaces. Limpets are,
moreover, present around the globe, making them good
candidates for the assessment of water pollution. So it is
that these organisms have also been used as indicators of
impacts such as trace metal pollution (e.g., Navrot et al.
1974; Nakhlé et al. 2006).

There is a wide variety of biomarkers that can be used
in order to determine environmental quality, mainly
based on different levels of biological organization. At
the subcellular level, the oxidant/antioxidant balance is
crucial for cellular homeostasis (Livingstone 2001;
Valavanidis et al. 2006), but exposure to certain types
of pollutants can enhance reactive oxygen species (ROS)
formation and create an imbalance between oxidants and
antioxidants in favor of the former, producing the so-
called oxidative stress (Cadenas and Sies 1985; Sies
1991). A good example of this is the oxidative damage
produced by accumulation of transition metals in soft
tissues (Viarengo 1989), since many metal species, such
as iron (Fe) and copper (Cu), are active catalysts of the
formation of ROS, mainly hydroxyl radicals, through
both the Fenton-type (Fenton 1894) and the Haber-
Weiss reactions (Haber and Weiss 1932) in the presence
of H2O2 and O2•

−. In consequence, biomarkers of oxida-
tive stress, such as antioxidant enzyme activities, are
frequently used, as they may be altered when exposure
to pollutants occur (e.g., Regoli and Principato 1995) and
many studies have previously approached the relation-
ship between the antioxidant activity/contents and expo-
sure to pollution in the aquatic environment (Cajaraville
et al. 2000; Ansaldo et al. 2005; Alves de Almeida et al.
2007; Weihe et al. 2010; Fernández et al. 2010), through
field (e.g., Niyogi et al. 2001; Lionetto et al. 2003; Alves
de Almeida et al. 2007) and laboratory experimentation
(Doyotte et al. 1997; Ansaldo et al. 2005).

The aim of the present study was to evaluate, through
the analysis of antioxidant activities and concentrations, if
Cymbula nigra (da Costa, 1771) (Gastropoda: Patellidae)
is affected at a subcellular level by the pollutants present
in their environment.C. nigra is the largest patellid limpet
species of the Mediterranean Sea, reaching up to 13.3 cm
of shell length (Rivera-Ingraham et al. 2011). The species
has been cataloged as “endangered” and “vulnerable” at
European and Spanish levels, respectively. Although the
species is commonly found in the Strait of Gibraltar, it is
quite surprising that very little is known about the biology
of the species. Most of studies are related to its reproduc-
tion biology (e.g., Renault and Moueza 1971; Frenkiel
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1975; Rivera-Ingraham 2010), its phylogenetic status
within the Patellidae family (Ridgway et al. 1998;
Koufopanou et al. 1999; Sá-Pinto et al. 2005), and pop-
ulation genetics (Espinosa et al. 2011). However, only
more recently the species has received more attention,
and new works approaching some of its ecological and
biological aspects have been published (e.g., Espinosa et
al. 2007; Rivera-Ingraham 2010; Rivera-Ingraham et al.
2011). The effects of oxidative stress were analyzed at a
cellular level by testing the antioxidant enzymatic activ-
ities of catalase (CAT), Glutathione S-transferase (GST),
and superoxide dismutase (SOD). SOD catalyzes the
dismutation of O2•

− into H2O2, while CAT catalyzes the
decomposition of the latter into water and oxygen. GST,
on the other hand, is involved in the biotransformation of
many xenobiotics (Eaton and Bammler 1999) and some
endogenous compounds such as the end-products of lipid
peroxidation (Leaver and George 1998), and more re-
cently, it has been suggested that it may also play a role in
metal homeostasis or detoxification (Yoshinaga et al.
2007). Nonenzymatic lipid-soluble (α-tocopherol and
β-carotene) and water-soluble antioxidants (reduced and
oxidized glutathione) (GSH and GSSG, respectively)
concentrations were also analyzed, being the
GSH/GSSG ratio an indication of the redox capacity in
the cellular cytosol, since under oxidative stress condi-
tions GSH (reducing power) is decreased and GSSG is
increased. Additionally, and because exposition or inges-
tion of trace metals during grazing can increase oxidative
stress, this study attended the arsenic (As), chromium
(Cr), copper (Cu), cadmium (Cd), iron (Fe), mercury
(Hg), manganese (Mn), nickel (Ni), lead (Pb), vanadium
(V), and zinc (Zn) concentrations in limpet soft tissues.
The trace metal bioaccumulation capacity of the species
was tested, and among the question that were addressed
were if trace metal concentrations in the limpets’ soft
tissues are size-/age-dependent. Finally, and taking into
account that trace metal bioavailability is one key factor
determining tissue metal concentrations, our results
were compared to those obtained by other authors
analyzing metal concentration in sediments or water.

2 Materials and Methods

2.1 Study Area

The study was conducted in the rocky shores of
Algeciras Bay (Strait of Gibraltar, Southern Spain)

(Fig. 1a), which is mainly characterized by a high in-
dustrial activity (including petrochemical and thermal
power plants, oil refineries, shipyards, and some facto-
ries related to paper and steel production) and the in-
tense maritime traffic, especially in the inner zones. A
total of six sites (all presenting important C. nigra
populations) (Rivera-Ingraham 2010) were selected on
the coast of Algeciras Bay (Fig. 1b): three of them were
located in the inner areas of the Bay (Roquedillo,
Guadarranque, and Saladillo), characterized for present-
ing low water quality (Guerra-García et al. 2010) and
important levels of pollutants (e.g., trace metals) (e.g.,
Morillo and Usero 2008); the other three sites
(Europa Point, Outer San García Point, and Inner
San García Point) were located in the outermost areas of
the Bay, which are subjected to higher levels of hydro-
dynamics and lower pollutant concentration (Guerra-
García et al. 2010).

2.2 Registration of Abiotic Water Parameters

For each six sites, water temperature, pH (WTW Tetra
Con 340i with a Sen Tix 41–3 electrode), salinity
(WTW Tetra Con 340i), and dissolved oxygen
(WTW Oxi 197i) were recorded, as these parameters
are considered important to define water quality (e.g.,
Karr and Dudley 1981).

2.3 Biochemical Analyses

Taking into account that enzymatic activities and anti-
oxidant contents may differ among seasons (Malanga et
al. 2007), all individuals were collected during the same
month. Furthermore, in order to minimize the intraspe-
cific physiological variability, which can be high among
individuals and sizes (Cravo and Bebianno 2005), indi-
viduals were chosen based on shell length (41.2±
2.2 mm) and soft wet tissue (2.1±0.5 g). Immediately
after collection, both gills and digestive glands were
dissected and preserved in dry ice for transportation
and finally maintained at −80 °C until analysis.

Homogenates from both digestive glands and gills
were prepared in 30 mM potassium phosphate-120 mM
KCl buffer at pH7.4. All activity and content results
were expressed per milligram of protein performed
according to Lowry et al. (1951).

CAT activity was measured as the decomposition of
a 0.3 M H2O2 solution in a 50 mM potassium phos-
phate buffer at pH7.0 (Aebi 1984), and results were
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expressed as picomole per milligram of protein. GST
was assessed using 1 chlorine-2,4-dinitrobenzene
1 mM in ethanol (Habig et al. 1974) while total SOD
activity was registered by cytochrome detection sys-
tem using the protocol originally described by
McCord and Fridovich (1969) and later modified
by Flohe and Otting (1984). For the two later
analyses, results were expressed as USOD or
UGST per milligram of protein. All measurements
were carried out spectrophotometrically at room
temperature (20–25 °C).

The content of α-tocopherol and β-carotene was
quantified using reverse-phase HPLC at an oxida-
tion potential of 0.6 V (Desai 1984) in the same
homogenates in which the enzymatic assays were
carried out. Samples were extracted with methanol:
hexane (1:4), and were centrifuged at 6,000×g for
10 min. The hexane phase was then removed and
evaporated to dryness using N2. Samples were then
dissolved in methanol:ethanol (1:1) and injected for
isocratic HPLC analysis (Desai 1984). Standards of
α-tocopherol and β-carotene were provided by

Fig. 1 Location of the study
area. a Western Europe.
The black box indicates the
location of the Strait of
Gibraltar. b Strait of
Gibraltar. Black lines
indicate the location of each
of the sites considered in the
study. In Outer Algeciras
Bay: SGE Outer San García
Point, SGI Inner San García
Point, PTE Europa Point. In
Inner Algeciras Bay: SAL
Saladillo Marina, GUA
Guadarranque, ROQ
Roquedillo
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Sigma©. Results were expressed as picomole per
milligram of protein.

In order to determine the content of water-soluble
antioxidants, sample homogenates were prepared in
HClO4 1 M and 2 mM EDTA, and centrifuged at
29,000×g for 20 min at 4 °C. The content of GSH and
GSSG were quantified by isocratic HPLC analysis with
a 20 mM sodium phosphate buffer, pH2.7 as the mobile
phase (Rodríguez-Ariza et al. 1994) and through a stan-
dard curve with a linear relationship between 5–200 ng
GSH or GSSG. Results were expressed as microgram
per milligram of wet weight.

2.4 Trace Metal Concentration in Soft Tissues
of C. nigra

For each site, six additional individuals were collected
(two per size class, which ranged in 1-cm intervals
from 4 to 7 cm of maximum shell length), regardless
their sex or reproductive stage. Animals were mea-
sured to the nearest millimeter using a caliper. The
shells were then removed, and the complete animals
were weighted and then preserved at −20 °C.

Analyses were carried out following the indications
described by Guerra-García et al. (2010): samples
were finely ground after drying them at 30 °C until
constant weight. The resulting powders were accurate-
ly weighed in a dry, pre-cleaned Teflon digestion
vessel. To each vessel, 2 ml of HNO3, 1 ml of HCl,
and 3 ml of H2O2 were added. The vessels were then
sealed and placed in the microwave chamber (Anton
Paar, Multiwave 3000) at 240 °C for 20 min with a
maximum pressure of 40 bar. After digestion, the
solution was brought to 25 ml volume with deionised
waters. Analytical determinations were performed by
using inductively coupled plasma-optical emission
spectrophotometer (ICP-OES Horiba Jobin-Yvon,
Ultima 2). Patterns used for ICP measurements includ-
ed Merck ICP multi-element calibration standard sol-
utions IV (HC612727) and XII (OC461429). The
following trace metals were analyzed: As, Cr, Cu,
Cd, Fe, Hg, Mn, Ni, Pb, V, and Zn. All values were
expressed as microgram of trace metal per gram of
limpet soft wet tissue.

2.5 Statistical Analyses

One-way ANOVA analyses of variance were carried
out when data satisfied the assumptions of normality

and homoscedasticity. When data did not meet these
requirements, Kruskal–Wallis tests were carried out.
Linear and nonlinear regression analyses were con-
ducted to find the best relationship among factors. A
total of 11 models were tested: linear, logarithmic,
inverse, quadratic, cubic, power, compound, S, logis-
tic, growth, and exponential. Only when the linear
model did not significantly explain our results, non-
linear models were taken into account, and among
those showing significant relationships, the model
presenting the better adjustment (R) was selected as
optimum. The level of significance was set at 5 %. All
statistical analyses (parametric and nonparametric
analyses) were carried out with SPSS 14.0.

3 Results

3.1 Abiotic Water Parameters

The average values recorded are shown in Table 1.
No significant differences were found among sites
located in inner and outer Algeciras Bay regarding
water temperature, dissolved oxygen or pH.
However, a one-way ANOVA analysis evidenced
that the outer Algeciras sites (36.67±0.03‰) show
significantly higher water salinity values than inner
(36.43±0.03‰) Algeciras sites (F=24.50; p<0.01)
(Table 1).

Table 1 One-way ANOVA results for the influence of the site
location on the environmental parameters registered

Source of variation Mean±SE P

Water temperature (°C) n.s.

Outer Bay 20.00±0.50

Inner Bay 21.53±0.52

Dissolved oxygen (mg/l) n.s.

Outer Bay 6.28±0.67

Inner Bay 7.56±0.43

Water salinity (‰) *

Outer Bay 36.67±0.03

Inner Bay 36.43±0.03

pH n.s.

Outer Bay 8.15±0.10

Inner Bay 8.26±0.06

n.s. non significant

*p<0.01
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3.2 Biochemical Analyses

Only CAT activity was significantly different
among sites (see Table 2). For both gills and
digestive glands, the activity values recorded were
significantly higher in those animals collected from
the inner areas of Algeciras Bay. Regarding water
soluble antioxidants, although differences were ob-
served in the content of GSH and GSSG between
sites, these did not reflect in the GSH/GSSG ratio
(Table 3).

The overall antioxidant activity/content values
was significantly higher in digestive glands than in gills
for GST (K=24.23; p<0.001), α-tocopherol (K=23.87;
p<0.001), β-carotene (K=25.53; p<0.001), and
GSH/GSSG ratio (K=12.75; p<0.001). No significant
differences were recorded for either CAT (K=1.66;
p=0.20) or SOD (F=0.51; p=0.48) activities between
organs.

3.3 Metal Concentration in Soft Tissues

In general terms, trace metal concentrations in C. nigra
soft tissues presented high variability. The Fe values
were at least one order of magnitude greater than the
rest of metal species considered during the study (see
Table 4). For the specific case of those animals collected
from the inner areas of Algeciras Bay, metal concentra-
tions decreased following the sequence: Fe≫Zn≫As>
Mn>Cu>Cr≈Ni≈V>Pb>Cd≈Hg. For the case of the
outer areas, concentrations decreased according to the

sequence: Fe≫Zn≫As>Cu>V≈Ni≈Mn>Pb≈Cr>
Cd≈Hg. No significant differences were recorded be-
tween the two areas. However, animals collected from
the inner areas of Algeciras Bay showed significantly
higher concentrations of Cr and Mn in their tissues than
those collected from the outer sites. On the other hand,
V concentrations followed the opposite pattern and pre-
sented significantly increased concentrations in those
animals located in the outer sites of Algeciras Bay
(Table 4).

The results obtained from the animals collected
in inner areas of Algeciras Bay were additionally
used to test if there was any correlation between
the sizes/weights of the animals and trace metal bioaccu-
mulation. Although as a general rule, trace metal concen-
trations increase with the animal’s shell length (see
Table 4), no significant relationship was found. The same
was true when considering the animals’ soft weight tissue
except for the case of V, for which a significantly corre-
lation (best explained by a linear model) was found
(R=0.559; p=0.016) (Fig. 2).

4 Discussion

The inner zone of Algeciras Bay constitutes one of the
most polluted areas in Spain. This is mainly due to the
high industrial activity that is carried out nearby,
which includes, as aforementioned, oil refining and
steel and paper production. Moreover, the fact that
the Bay holds one of the largest and busiest

Table 2 One-way ANOVA results for the influence of the site’s location on the mean values of the parameters taken into consideration

Digestive glands Gills

Inner
Algeciras Bay

Outer
Algeciras Bay

F p Inner
Algeciras Bay

Outer
Algeciras Bay

F p

Enzymatic
antioxidante
activities

Catalase (pmol·mg prot−1) 12.54±1.14 6.10±1.17 12.28 * 19.67±2.13 5.49±1.84 25.59 *

GST(U·mg prot−1) 19.66±3.64 13.64±1.33 2.65 n.s. 2.41±1.02 1.94±0.84 0.11 n.s.

SOD (U·mg prot−1) 0.01±0.00 0.01±0.00 0.02 n.s. 0.01±0.00 0.02±0.01 1.75 n.s.

Nonenzymatic
antioxidante
concentrations

α-tocopherol
(pmol·mg prot−1)

1.44±0.53 0.75±0.09 1.69 n.s. 0.17±0.04 0.10±0.02 1.80 n.s.

β-carotene
(pmol·mg prot−1)

2.35±0.49 3.55±1.13 0.86 n.s. 0.08±0.03 0.13±0.03 1.35 n.s.

Values are expressed as mean±SE. U(GST): One unit GST is defined as the enzyme amount which catalyzes the formation of 1 μmol of
GS-DNB per min at 30 °C. U(SOD): One unit SOD is defined as the enzyme amount that inhibits the rate of reaction by 50 %.

n.s. non significant

*p<0.001
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commercial ports of Spain also contributes to the high
levels of pollution that have been registered in the
area. The Bay, and specially the innermost area,
presents the highest concentrations of pollutants
(e.g., Carballo et al. 1996; Conradi et al. 1997;
Guerra-García et al. 2006), including trace metals
(e.g., Morillo and Usero 2008) and is chronically
affected by oil spills (Morales-Caselles et al. 2007).
This makes the area an interesting place to conduct
toxicological analyses and studies which is proven by
the high number of articles published in the last de-
cade related to the subject (e.g., Carballo et al. 1996;
Conradi and López-González 1999; Guerra-García et
al. 2006; Morillo and Usero 2008; Guerra-García et al.
2010)

Based on limpet abundance, previous studies have
indicated that C. nigra may be relatively more tolerant
to certain human impacts such as the presence of sewage
outfalls than other limpet species present in the study
site (Espinosa et al. 2007). This may be supported by the
fact that C. nigra shows important populations in the
inner areas of Algeciras Bay (Rivera-Ingraham 2010),
despite the pollution levels registered in the area.
However, it is widely accepted that toxicity events will
manifest themselves at a subcellular level before they
are evident at other levels of organization (Cajaraville et
al. 2000). Catalase activities, which are widely consid-
ered as an important and sensitive biomarker of stress
(Regoli, Gorbi et al. 2002; Regoli, Nigro et al. 2002)
were up to 3.5-fold higher in those animals collected
from the inner areas than in the outer areas of the Bay,
supporting the hypothesis that C. nigra individuals lo-
cated in Algeciras Bay (and especially those in the inner
areas) may be subject to some degree of stress. Among
the factors that could be inducing this oxidative stress,

pollutants (such as trace metals) should be considered.
In fact, C. nigra individuals from the inner areas also
showed the highest concentrations of Cr andMn per unit
of wet tissue, and these could be responsible for the
enhanced catalase activities recorded. Other authors
have also reported that invertebrate species like mussels
show an increase in catalase activity when exposed to
metals (Vlahogianni et al. 2007). For the specific case of
limpets, some species like Patella vulgata also show
increased CAT activity when they are subject to low-
quality environments (Douhri and Sayah 2009) and
have been reported to be especially sensitive to copper
exposure (Brown et al. 2004).

It is also interesting to comment the different activity
rates/antioxidant content among the gills and digestive
glands used in the study. As a general pattern, the latter
showed higher values than gills. This allows us to think
that digestive glands may be subject to higher exposure
to pollution. Even though gills (compared to other tis-
sues) are highly sensitive to genotoxic damage (Manna
and Sadhukhan 1986; Hayashi et al. 1998), it is known
that marine organisms, and specially mollusks, can up-
take trace metals from food (e.g., Phillips 1977;
Depledge andRainbow 1990) andmay end up increasing
the oxidative stress in digestive glands. Any cyanobac-
terium and diatom species (which constitute the micro-
algal biofilm on rocks and are the limpets’ food resource)
(see Della Santina and Naylor 1993) have the capacity to
bioaccumulate certain pollutants (Dwivedi et al. 2006).
Through this accumulation processes, these compounds
can be transmitted through the food chain (Vasconcelos
1995; Vasconcelos et al. 2001; Lance et al. 2010) and
affect consumers at a subcellular level, which would
explain our results. This can also be considered as an
important conclusion, as it should be taken into account

Table 3 One-way ANOVA results for the influence of the site’s location on the mean values of the different glutathione species taken
into consideration

Digestive glands Gills

Inner
Algeciras Bay

Outer
Algeciras Bay

F p Inner
Algeciras Bay

Outer
Algeciras Bay

F p

GSH (μg/mg wet weight) 0.006±0.001 0.01±0.002 4.54 n.s. 0.007±0.001 0.025±0.008 5.75 *

GSSG (μg/mg wet weight) 0.006±0.001 0.020±0.004 11.93 ** 0.003±0.001 0.013±0.005 3.54 n.s.

GSH/GSSG 2.74±1.16 2.45±0.58 0.05 n.s. 0.61±0.21 0.53±0.16 0.10 n.s.

Values are expressed as mean±SE

n.s. non significant

*p<0.05; **p<0.01
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that limpet are commonly consumed in some countries
such as Portugal, Italy or even Spain. In fact, in the past
years, C. nigra collection rate in Algeciras Bay has
significantly increased, presumably to be used in part
for human consumption (Rivera-Ingraham 2010). In con-
sequence, special attention should be paid to this fact and
how uncontrolled collection and consumption of polluted
organisms may constitute a risk for human health.

Because of their ecological and economic importance,
molluscs have been very frequently used for bioaccumu-
lation studies, even more than others such as polychaeta
and crustaceans (Feldstein et al. 2003). Up to date, there
are no available data regarding trace metal concentration
in the soft tissue of Cymbula species, but other Patellid
limpets have also been frequently analyzed under differ-
ent water quality conditions. In general terms, marine
gastropods, and Patella species in particular, accumulate
in their soft tissues preferentially Fe≫Zn≫Mn (Cravo
and Bebianno 2005). Taking into account that the same
pattern was observed for C. nigra in the present study,
we can suggest that this accumulation pattern is main-
tained across genera. Fe was the predominant metal inC.
nigra soft tissues and was at least one order of magnitude
greater than the rest of metals analyzed during the pres-
ent study. Fe is an essential metal which is required by
organisms at low concentrations. It is known that Fe, due
to its low solubility in oxygenated water, does not enter
freely in marine organisms (Depledge and Rainbow
1990). However, it has been reported to be abundant in
marine invertebrates (Depledge et al. 1994), and other
authors studying patellid limpets have attributed this to
the fact that Fe is an important constituent of the limpet
radula (Cravo and Bebianno 2005). On the other hand,
Zn (yet another essential metal) also showed one of the

highest concentration values, but unlike Fe, organisms
can in many cases easily accumulate Zn by passive
uptake (Bryan 1968). Fe, Zn, and Mn are additionally
essential metals incorporated in the soft tissue in meta-
bolically important biomolecules namely proteins (in-
cluding enzymes), metalloenzymes, and respiratory
pigments (Bryan et al. 1985; Catsiki et al. 1994;
Depledge et al. 1994; Rainbow 1997; Langston et al.
1998). Moreover, it is interesting to note the important
differences recorded in trace metal concentrations even
among individuals collected from the same site, which
has been previously reported in marine invertebrates
(Depledge and Rainbow 1990) and limpets in particular
(Cravo and Bebianno 2005). Since the influence of en-
vironmental factors can be ruled out due to the experi-
ment’s design, the physiological state of the individuals
under study arises as the most plausible explanation for
the abovementioned differences. Nutritional state and
reproductive condition have been observed to be the
physiological factors that could in greater measure con-
tribute to these interindividual differences (see review by
Depledge and Rainbow 1990). However, since these
parameters have not been taken into consideration during
the study, we cannot contrast this hypothesis. This idea is
in any case supported by the fact that the two available
reproduction studies that have been carried out for
the species coincide in the fact that, on the con-
trary of what happens with other patellid species
such as Patella ferruginea or Patella ulyssiponen-
sis, an important proportion of C. nigra individu-
als can monthly be found in different reproductive
states (Frenkiel 1975; Rivera-Ingraham 2010),
which would increase the probability of having
analyzed individuals in different reproductive

Fig. 2 Relationship
between fresh body
weight and V concentration
in C. nigra individuals
collected in the inner
areas of Algeciras Bay
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stages and thus, contributing to the high metal
variability observed in the study.

As aforementioned, in the inner areas of Algeciras
Bay, individuals showed significantly increased Cr and
Mn concentrations, and previous authors have also
pointed out the high Mn concentration values in the
same area (Morillo and Usero 2008). However, it should
also be taken into account the possibility that other
biological factors may be influencing our results like:
sex (Orren et al. 1980; Boening 1999), weight
(Krantzberg 1989), biochemical composition (Frazier
et al. 1985), or size of organisms (Boyden and Zeldis
1979; Boening 1999). Even though we did not record
significant differences, our results agree with these
reports; as we observed, as a general rule, higher trace
metal concentration accumulation in larger individuals.
This was, however, only statistically supported for V. It
is also known that geochemical factors such as metal
bioavailability, water temperature, pH, dissolved oxy-
gen, and water salinity (Phillips 1976; Lares and Orians
1997) among others, can influence trace metal uptake.
For example, lower water salinities (such as those found
in the inner locations of Algeciras Bay, probably due to
the fresh water supplied by several rivers as the
“Guadarranque” and the residual effluents of coastal
cities and smaller towns) (e.g., Sánchez-Moyano 1996)
can increase trace metal uptake in marine invertebrates
(e.g., Hutcheson 1974; Denton and Burdon-Jones
1981).

The present study can be considered as a first
approximation to the study of the effects of pollu-
tants and physicochemical parameters on the anti-
oxidant metabolism of C. nigra. Future studies
should include the analysis of the oxidative dam-
age (measurements of protein carbonyls, DNA
damage or malondialdehyde) to directly assess the
impact of environmental quality on these organ-
isms. Studies should furthermore be carried out
in controlled conditions in order to confirm the
results of the present study. The determination of
the accumulated concentration of trace metals in
C. nigra soft tissues in relation to the available
concentrations of the same compounds in the en-
vironment should be deeply studied in order to
determine the possibility of locally using this spe-
cies as a pollution indicator. Finally, the determi-
nation of the ranges of tolerance of exposure to
certain pollutants would be undoubtedly useful for
the future management of the species.
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