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Abstract As is well known, there exists warp drives in GR,
such as the Alcubierre bubbles, which achieve an apparent
faster than light travel (Alcubierre in Class Quantum Gravity
11:L73, 1994). A result due to Gao and Wald (Class Quantum
Gravity 17:4999, 2000) suggests that such a travel is unlikely
for GR with matter satisfying both the Null Energy and the
Null Generic Conditions. There exists a generalization of
this statement due to Galloway, that ensures that the Gao–
Wald result is true regardless the underlying gravity model,
unless there exists at least one inextendible null geodesic
with achronal image in the space time (a null line). The
proof of this proposition is based on techniques of causal
theories, and has never been released. In the present work
an independent proof of this result is presented by use of the
Raychaudhuri equation, and avoiding several technical com-
plications described along the text. Some consequences of
these affirmations are discussed at last section, in particular
their potential use in problems of causality.

1 Introduction

After the introduction of the Alcubierre bubble [1] or the
Krasnikov tube [3], there has been a growing interest in the
topic of time advance in General Relativity as well as in mod-
ified theories of gravity. The Alcubierre bubble is a space time
in which it is possible to make a round trip from two stars A
and B separated by a proper distance D in such a way that a
fixed observer at the star A measures the proper time for the
trip as less than 2D/c. In fact, the duration of this travel can
be made arbitrary small. This fact does not indicate that the
observers travel faster than light, as they are traveling inside
their light cone. The Alcubierre constructions employ the
fact that, for two comoving observers in an expanding uni-
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verse, the rate of change of the proper distance to the proper
time may be larger than c or much more smaller, if there is
contraction instead of expansion. The Alcubierre space time
is Minkowski almost everywhere, except at a bubble around
the traveler which endures only for a finite time. This bubble
is specially designed for making the proper time of the trip
measured by an observer at the star A as small as possible.
Details can be found in [1].

The examples described above are of physical interest, but
the precise definition of time advance is indeed very subtle
[4]. A careful definition of time advance was introduced in
[4]. In this reference, a space time which appears to allow time
advance was constructed, but it was proven that it is in fact the
flat Minkowski metric in unusual coordinates. This suggests
that to conclude time advance by simple inspection of the
metric may be misleading. The definition of time advance
for general space times is involved, and discussions about
this can be found in the works [5–10] and references therein.
However, for space times that are Minkowski outside a tube
or a bubble such as Alcubierre or Krasnikov space times, the
notion of time advance is easier to understand. The common
point in all these constructions is the existence of a causal
path going from two points (t1, x1) to (x2, t2) even though
that x2 − x1 > t2 − t1. The role of the tube or the bubble is
to provide a local deformation of the space time in a region
K , which is essential for this path to exist. The path in fact
crosses that region K . By use of some results due to Tipler
and Hawking [11–13], it can be shown that all these examples
violate the Null Energy Conditions at least in some part of
this region.

The results just described raise the question of whether
time advance could hold in theories which do not violate the
Null Energy Conditions. In this context, a theorem due to Gao
and Wald [2] may be relevant. Its statement is the following.

Gao–Wald proposition Consider a null geodesically com-
plete space time (M , gμν) for which the Null Energy and
Null Generic Conditions are satisfied. Then, given a com-
pact region K , there exists a compact K ′ containing K such

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10323-y&domain=pdf
mailto:juli.osorio@gmail.com
mailto:firenzecita@hotmail.com 
mailto:osantil@dm.uba.ar


353 Page 2 of 10 Eur. Phys. J. C (2022) 82 :353

that for any pairs of points p, q /∈ K ′ and q belonging to
J+(p) − I+(p), no causal curve γ connecting both points
intersects K .

The relevance of this theorem is as follows. Assume that
one is intended to deform a given space time M in a region
K , similar perhaps to a bubble, in order to construct a path
passing through K and connecting two points that otherwise
would be causally disconnected. The theorem states that this
is not possible if the Null Energy Conditions and Null Generic
Conditions are satisfied, unless the points are inside the larger
region K ′. This may constitute a sort of no go theorem. The
problem is that there is no control over the size of the region
K ′. If the region K ′ results infinitely large, this theorem loses
its power. For this reason, this result should be considered
only as a weak version of a no go result.

Recall that the Null Energy Condition is fulfilled if and
only if Tμν satisfies Tμνkμkν ≥ 0 for every null vector
kμ tangent to any null geodesic γ . This implies, in the
context of General Relativity, that Rμνkμkν ≥ 0 [14–18].
On the other hand, the Null Generic Condition means that
k[α Rβ]σδ[εkγ ]kσ kδ �= 0 for some point in the geodesic γ .
Both conditions automatically imply that any null geodesic
γ (λ) possesses at least a pair of conjugate points p and q, if
it is past and future inextendible, see [14, Proposition 9.3.7].

The results described above hold in the context of General
Relativity, and should not be extrapolated to modified gravity
theories without further analysis. However, at the footnote 1
of reference [2] it is commented that there exist a proposition
due to Galloway that can be expressed as follows.

Galloway’s proposition Consider a space time M in which
every inextensible null geodesic can be deformed to a time
like curve (this means all these geodesics contain at least
two conjugate points, see Proposition 1 below). Then, given
a compact region K , there exists a compact K ′ containing K
such that for any pairs of points p, q /∈ K ′ and q belonging
to J+(p)− I+(p), no causal curve γ connecting both points
intersects K .

Note that this proposition does not employ any particular
gravity model, neither impose conditions about the matter
content or geodesic completeness. It should be emphasized
that the presence of an inextendible null geodesic without
conjugate points does not insure that the no go Gao–Wald
theorem is avoided, it is a necessary but not sufficient condi-
tion. Nevertheless, it is clear that the only hope to avoid the
Gao–Wald result is to find a scenario containing at least one
of such curves. These null curves exist for instance, in the
Alcubierre space time [1]. This follows from the fact that,
outside the bubble, the space is Minkowski and all the null
geodesics in this region which do not cross the bubble have all
obviously achronal images. Thus, the Alcubirre space time
does not contradict these two propositions.

As far as the authors know, the Galloway theorem is a
result of causal techniques applied to gravity models, and its

proof has never been released. The motivation of the present
letter is to obtain a similar result, but with a proof based in the
properties of the Raychaudhuri equation. This will constitute
an independent proof of the Galloway result. The reward is
that some continuity properties of conjugate points along
congruence of geodesics are proven, which are not evident
from the Galloway statement.

The present work is written is self-contained manner. The
advantage of this is that the text becomes more readable. The
disadvantage is that the original contribution and the known
results may be mixed. This distinction will be emphasized
along the text to avoid credit confusion. The organization
of the present work is as follows. In Sect. 2 some general-
ities about conjugate points in generic space times are dis-
cussed. In addition, certain topological issues related to the
light cones in space times are also presented. The presentation
is not exhaustive, but focused in the aspects more relevant for
our purposes. In Sect. 3, a continuity lemma of fundamental
importance for proving the Gao–Wald theorem is presented.
In Sect. 4, it is shown that this continuity lemma still holds
even if the hypothesis of the Gao–Wald theorem are erased. In
particular, a result similar to the Galloway theorem is found.
A discussion about the possible applications is presented at
the end.

2 Generalities about conjugate points and a continuity
argument

As discussed above, the Gao–Wald theorem relies on the
notion of conjugate points. It may be important to recall some
of their basic properties, following the references [14–18].

2.1 Null geodesics and conjugate points

In the following M always denotes a paracompact space time.
It will be assumed the existence of a globally defined time
like future pointing vector tμ on it. Given a point p in (M ,
gμν), a point q in J+(p) − I+(p) is said to be conjugated
to p if the following holds. Consider a null geodesic γ (λ)

emanating from p, together with the associated differential
equation

d2 Aμ
ν

dλ2 = −Rμ
αβγ kαkβ Aγ

ν , (2.1)

supplemented with the following initial conditions

Aμ
ν |p = 0,

d Aμ
ν

dλ

∣
∣
∣
∣

p
= δμ

ν .

Here λ is the affine parameter describing γ (λ) and kμ is a
vector tangent to the curve γ (λ), and satisfying the following
conditions
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kμkμ = 0, kμtμ = −1. (2.2)

The point q = γ (λ0) is said to be conjugated to p if and only
if

det(Aν
μ(λ0)) = 0.

The matrix Aμ
ν (λ) has the following interpretation: the com-

ponents Aμ
ν are the coefficients of the Jacobi field ημ along

γ , i.e,

ημ(λ) = Aμ
ν (λ)

dην

dλ

∣
∣
∣
∣
0
, η(0)|p = 0.

The Eq. (2.1) implies that η(λ) satisfies the Jacobi equation
(hence the name) on γ given by

d2ημ

dλ2 = −Rμ
αβγ kαkβηγ . (2.3)

The classical definition of a conjugate point q to p is the
existence of a solution ημ(λ) of the Jacobi equation such
that ημ(0) = 0 and ημ(q) = 0. Clearly, the fact that
det(Aμ

ν (λ0)) = 0 implies that there exist some initial condi-
tions such that ημ(q) = 0, thus q is a conjugate point to p in
the usual sense. For further details see [14, Section 9.3].

There is no guarantee that there exists a point q conjugate
to a generic point p for a given space time (M , gμν). In
addition, there might exist two or more different points q
and s conjugate to p, joined to p by different geodesics.

The study of conjugate points has been proven to have
many applications in Riemannian and Minkowski geometry.
It is well known that, in Riemannian geometry, a geodesic
γ (λ) starting at a point p = γ (0) and ending at a point
r = γ (λ0) is not necessarily length minimizing if there is
a conjugate point q = γ (λ1) to p such that λ1 < λ0. The
presence of a conjugate point in the middle usually spoil the
minimizing property. For time like geodesics in Minkowski
geometries, the proper time elapsed to travel between p and
r is not necessarily maximal if there is a conjugate point in
the middle. For null geodesics, there is an important result
which will be used below, see [14, Theorem 9.3.8].

Proposition 1 Let γ a smooth causal curve and let p, r ∈ γ .
Then there does not exist a smooth one parameter family of
causal curves γs connecting both points, such that γ0 = γ

and such that γs are time like for s > 0 if and only if there is
no conjugate point q to p in γ .

By reading this statement as a positive affirmation, it is
found that if a null curve connecting p and r can be deformed
to a time like curve, then there is a pair of conjugate points in
between and, conversely, if there is such pair, the curve can
be deformed to a time like one. An inextendible causal curve
that has no conjugate points has achronal image. These are
called null lines in the literature [65].

The matrix Aν
μ(λ) defined by Eq. (2.1) takes values which

depend on the choice of the null geodesic γ . For this reason

it may be convenient to denote it as (Aγ )
μ
ν . The same follows

for the quantity

Gγ (λ) =
√

det Aγ (λ), (2.4)

which also vanish at both p and q. Note that the initial condi-
tions below (2.1) imply that Aν

μ ∼ λδν
μ is positive for points

in J+(p)− I+(p) close enough to p, and so it is det Aγ > 0.
If there is a change of sign, then a conjugated point q has
been reached. Thus, for studying the first conjugate point
q to p, the square root in the definition of Gγ (λ) does not
pose a problem. The Eq. (2.1) implies that Gγ (λ) satisfies
the following second order Equation [2,50]

d2Gγ

dλ2 = −1

2
[σμνσ

μν + Rμνkμkν]Gγ , (2.5)

and that Gγ (0) = 0 and Gγ (λ0) = 0. These two values cor-
respond to the points p and q. Here σμν denotes the shear of
the null geodesics emanating from p. The last is an equation
of the form

d2Gγ

dλ2 = −pγ (λ)Gγ .

Near the point p the initial conditions in (2.1) and the Jacobi
formula for a determinant derivative imply that

Gγ (0) = 0,
dGγ (0)

dλ
= 0. (2.6)

Then, if pγ (λ) is C∞, by taking derivatives of Eq. (2.5) with
respect to λ it may be shown that

dnGγ (0)

dλn
= 0,

for every value of n. This suggest that Gγ (λ) may not ana-
lytical at the point λ = 0. In other words, an attempt to solve
Eq. (2.5) with the initial conditions (2.6) may result in the
trivial solution. However, Gγ (λ) is a derived concept from
the Jacobi equation (2.1) and this equation is well defined by
the initial conditions at λ = 0. The advantage of Eq. (2.5) is
that allows to state some continuity arguments which are use-
ful for the present work. These arguments will be described
in the next sections.

Another typical equation appearing in the literature [50]
is given in terms of the expansion parameter θγ (λ), which is
related to Gγ (λ) by the formula

Gγ (λ) = Gi exp
1

2

∫ λ

λi

θγ (χ)dχ, (2.7)

with Gi = G(λi ) the value of
√

det Aγ (λ) at generic param-
eter value λi > 0. In terms of θγ the Eq. (2.5) becomes the
well known Raychaudhuri equation

dθγ

dλ
+ θ2

γ

2
= −σμνσ

μν − Rμνkμkν . (2.8)
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The definition (2.7) implies that

θγ = 2

Gγ (λ)

dGγ (λ)

dλ
(2.9)

Thus θγ (λ) → −∞ when λ → λ0, since Gγ (λ) approaches
to zero from positive values at q. Analogously, θγ (λ) → ∞
when λ → 0, since Gγ (λ) grows from the zero value when
starting at p.

On the other hand, the fact that θγ → −∞ at q itself
does not imply that Gγ (λ) → 0 when λ → λ0. This can
be seen from (2.7), as the integral of the divergent quantity
θγ may be still convergent. However, Gγ (λ) should tend to
zero when λ → λ0 by the very definition of conjugate point
given below (2.1). By an elementary analysis of improper
integrals it follows that, at the conjugate point q = γ (λ0),
the expansion parameter θγ (λ) is divergent with degree

θγ (λ) ∼ −1

|λ − λ0|1+ε
, ε ≥ 0, (2.10)

up to multiplicative constant. The behavior (2.10) will play
an important role in the next sections.

Note that the quantity (2.7) is not well defined when
λi → 0, that is, when the initial point is p. This reflects
the expansion parameter is singular at p.

Each of the Eqs. (2.8) and (2.5) have their own advantages.
In the following, both versions will play an important role,
and will be employed in each situation by convenience.

2.2 Future light cones in curved space times

In addition to conjugate points, another important concept is
the future light cone emanating from a point p in the space
time (M , gμν). Given the point p this cone is constructed
in terms of all the future directed null vectors kμ in T Mp

which satisfy the normalization (2.2). Far away from p these
geodesics form a congruence γσ (λ), but for λ = 0, the con-
gruence is singular since γσ (0) = p for every value of σ . In
other words, p is the tip of the cone.

Close to the point p there is an open set U composed
by points p′, with their respective set of future directed null
vectors k′μ in T Mp′ which satisfy the normalization (2.2).
When comparing geodesics emanating from different points
p and p′, not only both points should be compared, but also
the corresponding null vectors kμ and k′

μ. In some vague
sense, two null geodesics γ and γ ′ are ”close’ when p and
p′ are close and the corresponding vectors kμ and k′

μ “point
in similar directions”. In order to put this comparison in more
formal terms, it is convenient to introduce the set S defined
as follows [2]

S = { = (p, kμ) | p ∈ M, kμ ∈ T Mp, kμkμ

= 0, kμtμ = −1}. (2.11)

This set has an appropriate topology which allows to compare
a pair  = (p, kμ) with another one ′ = (p′, k′μ) and to
determine if they are “close”. The definition implies that the
vectors kμ are all null and satisfying the normalization (2.2).

3 A continuity argument for GR with null conditions
and its use

3.1 Statement and proof of the lemma

The following lemma is of fundamental importance for the
proof Gao–Wald statement in its original form [2], and a
similar lemma will be important for the present work. This
lemma assumes that the Null Energy and Null Generic Con-
ditions are fulfilled and that the underlying theory is GR. As
discussed in the introduction, these null conditions imply that
every null geodesic in the space time contains at least a pair
of conjugate points p and q.

Before describing the proof of this lemma, it is convenient
to make a small redefinition of notation. In the following, the
null geodesic defined by the pair  = (p, kμ) will be denoted
as γ(λ). All the quantities depending on this curve such as
Gγ (λ) will be subsequently denoted as G(λ) and so on.
This notation is more adequate for studying the continuity
properties of these quantities as functions on the space S
defined in (2.11).1

Lemma 1 Assume that a given space time (M, gμν) is
described by the Einstein equations with matter content sat-
isfying the Null Energy and Null Generic condition. Consider
a pair 0 =(s0, kμ

0 ) in S, and a pair of conjugate points q0

to p0 along γ0(λ). Then, there exists an open set O in S
containing 0 for which the following two properties hold.

(a) For every pair  =(p, kμ) in O, the corresponding
geodesic γ(γ ) will posses at least a conjugate point
q to p, q ∈ J+(p) − I+(p).

(b) The map h : O → M defined by h() = q, with q

the first conjugate point to p, is continuous at 0.

The intuition of the Lemma 1 is simply that, if one choses
any point p close enough to p0 and draw a geodesic ema-
nating from it with kμ pointing in a direction “similar” to
kμ

0 , then there will appear a conjugate point q to p along
this curve that is “very close” to q0. That is roughly what
the continuity statement is all about. The reason for it which
becomes a bit technical is that the notion of being “very
close” becomes tricky in non Riemannian geometry, as the
distance between two widely separate points may vanish.

1 Another convenient notation is to denote such quantities as G(λ,)

and so on. We decided to use the notation described above instead.
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Proof Denote the null geodesic γ0(λ) as γ0(λ) by sim-
plicity, and choose the parameter λ such that p0 = γ0(0)

and q0 = γ0(λ0) are conjugate points, with λ0 > 0. This
pair of conjugate points exists, as the Null Generic Condi-
tion is assumed to hold. On the other hand, the results of
the previous section show that G0(0) = G0(λ0) = 0 and
G0(λ) > 0 for all λ in the interval 0 < λ < λ0. The Null
Energy Condition Tμνkμkν ≥ 0 implies, in the context of
General Relativity, that Rμνkμkν ≥ 0 for kμ a null vector.
This, together with (2.5) shows that G ′′

0(λ) < 0 in the interval
0 < λ < λ0. The mean value theorem applied to G0 shows
that G ′

0(λ1) = −C2 for some value λ1 in the interval and
furthermore G ′

0(λ1) < −C2 for λ1 < λ < λ0, with C2 a
positive constant. By choosing λ0 − δ < λ < λ0 it is found
that

G0(λ1)

|G ′
0(λ1)| < δ, (3.1)

since |G ′
0(λ)| is larger than C2 and G0(λ1) is very close to

zero if δ is small enough.
Consider now a small open O ⊂ S around the point

0 = (p0, kμ) generating γ0(λ). As G(λ) and its deriva-
tives are continuous when moving in this open set, it follows
that G ′

(λ) < 0 and that

G(λ1)

|G ′
(λ1)| < δ, (3.2)

for all the  = (p, kμ) ∈ O if O is small enough. What
(3.1) and (3.2) is showing is that the absolute value of the
derivative G ′

(λ) is much more larger than G(λ) in this
small set. As the function G(λ) has second derivative due
to (2.5), it follows that it is differentiable. This together with
(3.2) and the fact that G ′

0(λ1) < −C2 and that G ′′
(λ) < 0

imply that

G(λ1) + G ′
(λ1)δ < 0,

This means that

G(λ1 + δ) + O(δ) < 0,

with O(δ) going to zero faster than δ. Thus G(λ2) = 0 for
a λ2 such that |λ2 − λ1| < δ. This shows that there exists a
conjugate point q to p, which is close to q0 when O is small
enough. (Q.E.D)

The Lemma 1 is intuitive but technical in nature, for this
reason it may be convenient at this point to explain its utility.
This is done in the next subsection.

3.2 The utility of the Lemma 1

Perhaps the best way to explain the use of the Lemma given
above is to show how it leads to the Gao–Wald statement
right from the scratch.

As the manifold M is by assumption paracompact, it can
be made into a Riemannian manifold with Riemannian met-
ric qμν [55]. The advantage of passing to this Riemannian
setting is that the the distance function between two points is
small only if the points are close, while in a Minkowski space
the condition of zero distance may not describe closeness
adequately. The metric qμν can be converted into a complete
one by a conformal transformation [55], thus completeness
may be assumed without further reasoning. Fix any point
r ∈ M and let dr : M → R, with dr (s) the geodesic dis-
tance between r and s with respect to the metric qμν . The
function dr is continuous in M and for all R > 0 the set
BR = {p ∈ M : dr (p) ≤ R} is compact (this follows from
[55, Theorem 15]).

Now, given  ∈ S, with S the set defined in (2.11) let γ

be the null geodesic determined by . Consider the function
f : S → R defined as

f () = {inf
R

BR such that contains a connected segment of

γ that includes

the initial point determined by 

together with a pair of conjugate points of γ}.
In other words, f () is constructed starting with the point
 =(s0, kμ

0 ) in S by drawing the corresponding geodesic in
the Riemannian geometry until two conjugated points have
been found, and by finding a sort of minimal ball BR that
contains this drawing. Its radius R is by definition f (). If
there is no a line without conjugate points in the manifold,
then it can be shown that f (1)− f () < ε for a  in a open
O in S containing 1. This is analogous to the condition of
a continuity for a given function, but without the modulus.
Such functions are called upper semicontinuous and have the
property that they reach a maximum (but not necessarily a
minimum) in a compact subset. The proof of the upper semi
continuity property is given in the following lemma, see [2]
and references therein for further details.

Lemma 2 The function f () defined is upper semi contin-
uous for a space time (M, gμν) satisfying the Null Energy
and Null Generic conditions.

Proof Consider a geodesic γ0(λ) in the Minkowski geometry

corresponding to a point 0 = (s0, k
′μ
0 ) in S. By hypothesis,

this curve posses at least two conjugate points p0 and q0. The
parameter λ may be chosen such that p0 = γ0(0). The tan-
gent vector to the geodesic at this point satisfying (2.2) will be
denoted as kμ

0 . Analogously, let λ0 the parameter correspond-
ing to q0 = γ0(λ0). The continuity Lemma 1 implies that for
any point  = (p, kμ) in an open O1 of 1 = (p0, kμ

0 )

small enough, there is a conjugate point q = γ(λ1) with
λ0 − δ < λ1 < λ0 + δ. By making O1 small enough, it may
be shown that in the Riemannian geometry defined by the
metric qμν the distance between q0 and q is less than ε1.
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Now, consider the parameter λ′
0 < 0 corresponding to

s0 = γ0(λ
′
0). Draw all the geodesics defined by the points 

in O1 at the value λ′
0 together with their corresponding tan-

gent null vectors k
′μ. The points s = γ(λ′

0) will lay inside a
ball of radius ε2. By making O1 small enough both εi < ε/2.
By taking into account the continuity of the exponential map
an open neighborhood O0 of 0 may be chosen, in such a
way that the point s will stay at distance less than ε/2 of s0

and the second conjugate points q will be at a distance less
than ε/2 from q0. This means that f () < f (0) + ε and
this concludes the proof. (Q.E.D)

Gao–Wald–Galloway proposition Let (M, gμν) a space
time satisfying the Null Energy and Null Generic conditions.
Then, given a compact region K in M there exists a compact
K ′ containing K such that, for any two points p, q /∈ K ′ and
q belonging to J+(p) − I+(p), no causal curve γ joining p
with q can intersect K .

Proof The proof relies on the upper semi continuity prop-
erty of Lemma 2. Let K ⊂ M be a compact set. Let
SK = {(p, kμ) ∈ S, p ∈ K }. Since the tangent bundle has
the product topology, K is compact and kμ is of bounded
norm, it follows that SK is compact as well. Furthermore,
as f () is upper-semicontinuous, it must achieve a max-
imum R in SK . Let K ′ = BR̄ and let p, q /∈ K ′ with
q ∈ J+(p)−I+(p). Construct a causal curveγ joining p with
q. Then γ must be a null geodesic since q ∈ J+(p)− I+(p).
However, the Proposition 1 given in Sect. 2 insures that γ

should not contain a pair of conjugate points between p and
q. On the other hand, if γ ∩ K �= ∅ then by the defini-
tion of K ′, γ must have a pair of conjugate points lying in
K ′ and in between p and q. This contradiction shows that
γ ∩ K = ∅ and therefore no of such causal curves cross K .
This is the precisely the statement that was intended to be
proved.(Q.E.D)

It is important to remark that all the proof given in the
present section are based on the properties (a) and (b) of the
Lemma 1, together with the absence of null curves that can
not be deformed to time like curves. Thus, a generalization
of these theorems for any matter field content and any grav-
ity theory is possible if these two properties of the lemma
are satisfied, regardless the Null Energy and Null Generic
conditions are relaxed or not.

4 Generalization to general gravity models and
arbitrary matter content

The quantity G(λ) defined in (2.4) is crucial for the proof
of Lemma 1 and for the proof of the Gao–Wald proposition.
The fact that G ′

(λ) is negative in certain region around the
conjugate point q0, and that the inequality G ′′

(λ) < 0 is

always satisfied, is of particular importance. This inequality
is a consequence of the Null conditions, together with the
Einstein equations. The aim of the present section is to gen-
eralize these statements to more general gravity models. The
strategy is based on the observation that the desired gener-
alization will hold if the conditions (a) and (b) of Lemma 1
are still satisfied. Therefore, it is important to understand if
these two conditions are true for general models of gravity.

The problem with relaxing the Gao–Wald conditions and
still be able to prove such continuity argument in terms of
G(λ) is the following. There is not obstruction to prove
that, given a geodesic defined by some element 0 in S, pos-
sessing two conjugate points p0 and q0 (therefore G0(0) =
G0(λ1) = 0), then for an open O in S small enough con-
taining 0 it follows that |G(λ1)| < δ, with δ as small
as possible. However, this fact alone does not imply alone
that there exists a pair of conjugate points p = γ(0) and
q = γ(λ1 +ε) in γ(λ), with ε small and  a point in O . In
fact, one may visualize G(λ) as a sort of function in several
variables, and there are a lot of such functions which has only
isolated zeroes. If this is the case, the Lemma 1 won’t hold, as
the property of possessing a pair of conjugate points will not
be inherited by the “nearby” null geodesics of 0. In other
words, in order to generalize the Gao–Wald result, it must
be show that the conjugate points do not “evaporate” by any
slight perturbation of the curvature. This is not necessarily a
trivial task.

Before going about this generalization, it should be men-
tioned that it seems possible for the authors to find a proof of
this continuity statement for generic matter fields and generic
gravity models, based on Morse theory [66–68] and its appli-
cations to geodesics [16,69–71]. For achieving this proof, a
mathematical index form Iγ associated to a given geodesic
introduced in those references must be studied. By making
a suitable Hilbert completion of the space of vector fields
along a geodesic γ , the index form may be represented as
an adjoint self operator in the corresponding Hilbert space.
The problem of convergence of a set of geodesics could be
then formulated as a convergence of the index of self-adjoint
operators. This approach is not so direct however, as there
exist sequences of symmetric matrices with limiting matrix
with different index. This happens, for instance, if the limit
matrix is not invertible. Thus, this idea has to be improved.
One possibility is to consider an analogy between the prob-
lem of geodesics with a Sturm Liouville problem of ordinary
differential equations. The Sturm–Liouville techniques are
based on a bilinear form B which can be related to the index
of two homotopic curves in a real projective line. As the
winding number is stable by homotopy, and in particular is
protected by small perturbations, the index of B is stable by
small perturbations. The references [72–74] indicate that the
correct index to be considered in the context of the Jacobi
equation is the Maslov index. Given a particular geodesic γ0,
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it is clear that a nearby geodesic γ sees a slightly perturbed
curvature term in the Jacobi equation. Then, based on the
homotopy techniques described in those references, it may
be possible that the number of conjugate points on γ remain
the same as in the unperturbed geodesic γ0, and that they tend
continuously to the ones of γ0.

One of the problems of the approach schematically
described above is that is rather technical, although conceptu-
ally very rich and interesting. The other problem is that these
references consider one parameter deformation of geodesics,
while one may desire to consider a more general geodesic
deformation. To generalize these theorems to this situation
may require a lengthy proof, but we believe that this gen-
eralization is possible. Fortunately, we have found a way to
overcome this difficulties and to proof the continuity lemma
for general gravity and matter field contents. The proof is
based on constructing a function u(λ) analogous to the one
G(, λ) described in previous section, for these general sce-
narios. The advantage is that this proof is readable for any
researcher in gravity theory, without knowledge about the
hard technical details described in the previous paragraph.

The desired function may be constructed as follows. By
redefining θ → 2θ for convenience, write the Raychaud-
huri equation (2.8) as

dθ

dλ
= −θ2

(λ) + p(λ),

p(λ) = −2Rμνkμkν − 2σμνσ
μν.

By integrating this equation and taking the square of the
result, one obtains that

θ2
 =

[

−
∫ λ

λ0

θ2
(ξ)dξ + p(λ) + θ0

]2

.

By defining the quantity

R =
∫ λ

λ0

θ2
(ξ)dξ, (4.1)

the last equation may be written in the following form

d R

dλ
=

[

− R(λ) + I(λ)

]2

, I(λ) = p(λ) + θ0.

The definition of R depends on an initial parameter λ0. Note
that the asymptotic behavior (2.10) implies that R(λ) → ∞
when a conjugated point is reached. By dividing by R2

 the
following equation

d

dλ

(
1

R

)

= −
[

− 1 + I(λ)

R

]2

, (4.2)

is obtained. In terms of the quantity u(λ) = R−1
 (λ) the

last equation becomes

du

dλ
= −(u(λ)I(λ) − 1)2.

The last formula implies that, regardless the gravity model or
matter content in consideration, the derivative of u = 1/R

is always less or equal to zero. This observation will be of
importance in the following.

The quantity u(λ) = R−1
 (λ) defined above is useful

for proving the Lemma 1 for general space times. Note that
the fact that R → ∞ at the conjugate point implies that
u → 0 at this point.

Lemma 3 Given a space time (M, gμν) consider a pair
0 =(s0, kμ

0 ) in S, such that the corresponding geodesic
γ0(λ) contains a pair of conjugate points p0 and q0. Then,
there exists an open set O in S containing 0 for which the
following two properties hold.

(a) For every pair  =(p, kμ) in O, the corresponding
geodesic γ(γ ) will posses at least a conjugate point
q to p, q ∈ J+(p) − I+(p).

(b) The map h : O → M defined by h() = q, with q

the first conjugate point to p, is continuous at 0.

Proof Assume first that the function I(λ) in (4.2) does not
have any singularity. By hypothesis, the null geodesic γ0(λ)

contains two conjugate points p0 = γ0(0) and q0 = γ0(λ1).
Then it follows from (2.1) that there exist a matrix function
(A)νμ satisfying

d2 Aμ
ν

dλ2 = −Rμ
αβγ kαkβ Aγ

ν ,

together with the following initial conditions

Aμ
ν |p0 = 0,

d Aμ
ν

dλ

∣
∣
∣
∣

p0

= δμ
ν ,

such that det A|q0 = 0. The initial data defines a point
0 = (p0, kμ

0 ) in S. For causal curves, there is an λ1 > 0
such that γ0(λ) does not contains conjugated points to p0 if
λ < λ1 [17]. That means that in this interval det A �= 0. Now,
if the pair  = (p, kμ) belongs to a small open O containing
0 = (p0, kμ

0 ), then the same equation for (A)
μ
ν may be

solved along the geodesic γ(λ), with exactly the same initial
conditions. As the corresponding equation is linear and I(λ)

is assumed to be non singular, it follows that if O is small
enough then the corresponding solution (A)νμ is continuous
as a function of . In other words, it is continuous as a func-
tion in compact set contained in O . Without losing generality
the choice λ0 = 0 may be employed for the initial points.
As both det A and its time derivative are continuous in O ,
the expansion parameter θ(λ) = (det A)−1∂λ det A is
continuous for λ �= 0 as a function of , if a conjugate point
has not been reached.

The continuity argument stated above implies that for
 = (p, kμ) in open O small containing 0 = (p0, kμ

0 )

the inequality |θ(λ) − θ0(λ)| < ε is valid, if λ < λ1, with
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the size of O depending on the choice of λ. On the other hand
the definition (4.1) implies that

R(λ) − R0(λ) =
∫ λ

λ0

[θ2
(ξ) − θ2

0 (ξ)]dξ

=
∫ λ

λ0

[θ(ξ) − θ0(ξ)][θ(ξ) + θ0(ξ)]dξ,

with λ0 > δ > 0. From here the following bound is found

|R(λ) − R0(λ)| ≤ (λ − λ0)Max(θ + θ0)|[λ0,λ]ε.

As θ(λ) is finite in this interval, one may chose a compact
O ′ ∈ O and show that the last quantity is very small if O
and O ′ are both small enough. Thus R(λ) is continuous in
O ′, unless a conjugated point is reached, since at this point
the size of O ′ becomes arbitrarily small.

On the other hand, the function u = 1/R(λ) has in fact
nicer properties than R(λ). It is clearly continuous, even
if R blows up. It follows then that if u0(λ1) = 0, which
implies that the conjugated point q0 has been reached, then
u(λ1) < δ if O in S is small enough (note that u > 0
since R in (4.1) is obviously positive). As (4.2) shows that
u′

(λ) ∼ −1 it follows that, for λ < λ1 + δ,

u(λ)

|u′
(λ)| ≤ δ,

if O and δ are both very small. This inequality, and the dif-
ferentiability of u implies that u(λ) = 0 for some λ such
that |λ−λ1| < δ. In other words, there is a conjugate point q
for any γ originated by an initial data  ∈ O , for a param-
eter λ1 − ε < λ < λ1 + ε. This proves the theorem, if the
curvature function I (λ) does not achieve a singularity inside
this set.

The other possibility is that I(λ) is divergent at some
point λ2 of the curve γ0(λ). Then (4.2) shows that u′

 → −∞
when λ → λ2. After some reasoning, it may be concluded
that u(λ1) = 0 for λ1 < λ2 and thus there will appear
a conjugate point q0 = γ0(λ1) before reaching the singu-
larity. The discussion of the previous paragraph shows that
the continuity argument still holds. This concludes the proof.
(Q.E.D)

By virtue of Lemma 3 it follows that, once a null geodesic
contains two conjugate points q0 and p0, then the “nearby”
null geodesics will also contain such pair p and q. One can
move along these null geodesics and conclude that all of them
have conjugate points unless the conjugate point q moves far
away. Another possible situation is that the point q moves
to a point where I(λ) is finite but the space time is not
extended further. Note that there exist space times which
does not extend beyond some point or hypersurface even if
there are no curvature singularities there [56]. If anything like
this happens, it should not be necessarily concluded that the
geodesic does not contains conjugate points. It may be the

case that this null geodesic admits another pair of conjugate
points r0 and s0 which are simply not “close” to p0 and q0.
The nearby geodesics however, will also contain close con-
jugate pairs r and s. One may wander again along the null
geodesics around this particular one. By repeating this proce-
dure, one may find eventually an inextensible null geodesic
γ : [a, b] → M that has no conjugate points. If this geodesic
appears, Proposition 1 shows that it can not be deformed to
a time like one. Its image is achronal. If instead this null line
is not present in the space time, then the points a) and b) of
Lemma 1 will be satisfied and the function f () of Lemma 2
becomes upper semi-continuous. Then the generalization of
the Gao–Wald proposition follows, as it is a consequence
of this upper semi continuity property and the presence of
conjugate points in every null geodesics. In other words, the
following has been proved.

Galloway statement Let (M, gμν) be a generic space time.
Then one of the two possibilities at least is realized.

(a) There is an inextensible null geodesic γ : [a, b] → M
with achronal image (a null line).

(b) Given a compact region K in M there exists a compact
K ′ containing K such that, for any two points p, q /∈ K ′
and q belonging to J+(p) − I+(p), no causal curve γ

joining p with q can intersect K .

Note that the possibility (a) does not exclude the possibil-
ity (b) or viceversa. In other words (a) and (b) can be real-
ized simultaneously. The only thing that is not possible is
to exclude both possibilities, at least one should be realized.
Note that this theorem is valid for any gravitational theory
with arbitrary matter content [19–50], if a null line is absent.

5 Applications

In the present work an original proof of the continuity
Lemma 3, valid regardless the underlying theory or matter
content, was presented. This lemma is not trivial from the
mathematical or physical point of view, and is fundamen-
tal for extending the Gao–Wald statement about apparently
faster than light travels to general gravity models with general
matter content. In particular, it was shown that this statement
leads directly to the Galloway unpublished statement. The
presented arguments avoid the use of Morse theory, and is
more accessible to researchers in gravity models. The idea
of the proof is to engine a suitable function u(λ) analogous
the Flanagan-Marolf-Wald function G(, λ), adapted to the
more general context.

The next task is to discuss some applications of the pre-
sented results. The results to be discussed below follow from
[2] combined with the ones presented here. In that reference,
several results follow directly from the Lemma 3. However,
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these authors present a proof of this lemma that is valid only
for GR with Null Energy and Null Generic conditions. As
this lemma was generalized here to the more general context,
analogous affirmations may be found for general gravity sce-
narios. As the discussion of all the underlying physics would
be lengthy, the exposition will be very succinct. For details
about the physical meaning of these statements we refer the
reader to [2] and references therein.

The first application is the following proposition about the
absence of particle horizons, if a null line is absent. This is
the statement of Corollary 1 of [2] but with the mentioned
conditions replaced by the absence of a null line.

Theorem 1 Let (M, gμν) an space time without inextendible
null geodesics with achronal images. If (M, gμν) is globally
hyperbolic with a compact Cauchy surface �, then there exist
Cauchy surfaces �1 and �2 (with �2 ⊂ I +(�1)) such that
if q ∈ I +(�2), then �1 ⊂ I −(q).

Another important result is related to conformal embed-
dings of space times. Suppose that (M, gμν) can be confor-
mally embedded into another space time (M̃, g̃μν), so that in
M the relation g̃μν = �2gμν holds. The boundary Ṁ of M
in M̃ is assumed to be a time like hypersurface. Given a point
p in Ṁ , a set of interest is is composed by the points of Ṁ
that can be joined by curves starting from p and lying inside
M , except for the endpoints. This motivates the following
definition

A(p) = {r ∈ Ṁ|there exists a future directed causal curve

λ starting

from p and ending at r satisfying λ − p ∪ r ⊂ M}. (5.1)

The boundary of A(p) in Ṁ is denoted as Ȧ(p). In these
terms, by replacing the Gao–Wald conditions by the absence
of null lines in Theorem 2 of reference [2], the following
statement is found.

Theorem 2 Consider a space time (M, gμν) that can be con-
formally embedded into another (M̃, g̃μν), so that in M the
relation g̃μν = �2gμν holds, and on Ṁ the conformal factor
� = 0, where � is a smooth function on M̃. Assume that
(M, gμν) satisfies the following conditions.

(a) (M, gμν) does not contain a null line.
(b) M̄ is strongly causal.
(c) For any p, q ∈ M = M ∪ Ṁ, J+(p) ∩ J−(q) is a

compact set.
(d) Ṁ is a timelike hypersurface in M̃.

Given a point p ∈ Ṁ, for any q ∈ Ȧ(p), it follows that
q ∈ J+(p) − I +(p). Furthermore, any causal curve in M̄
connecting p to q must lie entirely in Ṁ and, hence, must be
a null geodesic in the spacetime (Ṁ, g̃μν).

In the statement of this theorem, all the past and future
sets are taken with respect to M .

It should be mentioned that Anti de Sitter spaces do not
satisfy the hypothesis of this result. However, any deforma-
tion of them which fails to produce a null line and satisfy all
these hypothesis always produce time delay with respect to
anti de Sitter itself. This follows from the fact anti de Sitter
space times admits pairs of point p and q connected by null
geodesics which lies in M , but any of such deformation will
move these geodesics to the boundary Ṁ . The boundary is
not changed for this geometry by the conformal transforma-
tion. Thus, the race between two null geodesics joining p and
q is favored by the geodesic of the boundary, once the defor-
mation takes place. It may be said that for these deformations
of anti de Sitter space, there is a time delay with respect of
the anti de Sitter space itself [2].

The results presented here are technical details that play
an important role for the Penrose–Sorkin–Woolgar positive
mass theorem [57–59]. The authors [57–59] in fact realize
that this theorem can be proved for more general theories
than GR if the underlying space time if certain focusing con-
ditions for null geodesics such as [60,61] are satisfied. These
focusing conditions are chosen in order to assure that null
lines are absent. More general conditions have been found in
[52–54]. These conditions involve non local quantities con-
structed in terms of the curvature such as

I(λi ) = lim
λ→∞ inf

∫ λ

λi

e−cξ [Rμνkμkν + σμνσ
μν](ξ)dξ,

with c > 0. It can be shown that if these quantities are
not divergent, which in particular implies that a light trav-
eller never finds an asymptotic exponential grow of the form
Rμνkμkν ∼ −ecξ , then given some suitable initial conditions
the presence of conjugate points may be insured, regardless
the underlying gravity theory. We refer the reader to the orig-
inal references, and to [62–64] for more information about
this focusing conditions and for further applications.

As a final comment, we would like to mention that the
results of the present work may be applied to the causality
issues deeply studied in references [75–86]. But these appli-
cations will be considered in a separate work.
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