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Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However,
often even a small mismatch between the MC simulations and the measurements can undermine the
interpretation of the results. This is particularly important in the context of LHC searches for rare physics
processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM
currently being explored at the LHC, pp → tt̄tt̄ with its large multidimensional phase-space is an ideal
testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental
results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant
backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC
imperfections in modeling of the most relevant discriminating observables—the jet multiplicity distri-
butions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the
assumption of their conditional independence. The signal and background distributions generated from a
deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the
signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate
that our method can mitigate the effects of large MC mismodelings in the context of a realistic tt̄tt̄ search,
leading to corrected posterior distributions that better approximate the underlying truth-level spectra.

DOI: 10.1103/PhysRevD.105.092001

I. INTRODUCTION

In recent years, the large abundance of LHC data on one
hand, and the absence of clear new physics (NP) signals in
theory driven analyses of this data on the other, have
motivated the development of novel, more data driven
approaches to LHC data analysis and NP searches. In
particular, the advent of unsupervised and weakly super-
vised machine learning (ML) techniques has allowed for
the development of broad model independent NP search
and characterization strategies [1]. Simultaneously, there
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have been important efforts to reduce reliance of LHC
measurements on Monte Carlo (MC) simulations of had-
ronic processes [2–6].
The simultaneous production of four top quarks repre-

sents an important NP benchmark (see, e.g., Refs. [7–18]),
but also an interesting point of coalescence for several of
these developments [19]. One of the main issues in
studying this final state is its tiny cross section (12 fb)
compared to its main backgrounds (∼600 fb), which is
compounded by the challenges to correctly model the
complex final states through MC simulations. To address
these issues, we have previously studied the two lepton
same sign channel (2LSS��) [20] which in the SM may
contain signal and background events up to the same order
of magnitude and furthermore exhibits somewhat reduced
complexity of the (multijet) final state, compared to the
single lepton channel [21,22]. In the 2LSSþþ channel
tt̄Wþ production represents the main and most challenging
background for the 4-top signal.1 Recent experimental
analyses in this channel [23,24] have highlighted difficul-
ties in reliably modeling the signal and background
kinematics using state of the art MC tools. This in turn
hinders the sensitivity of this important signature to
possible NP effects in four-top production.
Using the experimental challenge described above as an

example and motivation, in the present paper we describe a
novel Bayesian statistical framework to disentangle in-situ
signal and background distributions of categorical data.
Our method can be used to simultaneously identify and
correct potential (MC) mismodeling of discrete distribu-
tions as well as extract signal and background admixtures
in the data close to their truth values.
The paper is organized as follows. In Sec. II we introduce

our statistical model of multinomial mixtures with
Bayesian inference and demonstrate its use on a toy
example. We apply the model to jet multiplicity distribu-
tions in the 2LSSþþ channel of 4-top production at the
LHC in Sec. III and show how it can be used to identify and
correct MC mismodeling and extract signal and back-
ground fractions. Section IV is devoted to a detailed study
of the assumptions and consistency checks of the model
when applied to realistic datasets. Finally, we summarize
our findings in Sec. V.

II. CATEGORICAL MIXTURE MODEL FOR
FOUR-TOPS

Anticipating the application to 4-top production, in the
following we represent an event generation process by a
pair of random variables ðNj; NbÞ indicating the number of
clustered light-jets and b-jets, respectively. Our starting
point is that a collection of such events can be described
using a likelihood with a joint probability density pðj; bÞ

where j (b) are the observed number of light-jets (b-jets) in
an event. The most general discrete model for this like-
lihood is the multinomial distribution2 with dj × db − 1

parameters, where dj;b are the number of possible light-jets
and b-jets to be expected in an event. However, our goal is
to disentangle the contributions to this joint likelihood
arising from four-top events and tt̄W events. To do so we
introduce two mixture components, one for tt̄W and one for
four-top. If we simply describe each mixture with a
multinomial distribution pðj; bjzÞ with z ∈ ½0; 1� represent-
ing the mixture label, we would have a mixture model with
2 × ðdj × db − 1Þ þ 1 parameters. Since each event is
independent and consists of just a single draw from this
distribution, each mixture can describe all possible combi-
nations of Nj and Nb values in the data and therefore all
correlations by itself. The model would thus overparame-
trize the data making the inclusion of mixtures redundant.3

Therefore the key insight is to instead write down a
mixture model in terms of pðjjzÞ and pðbjzÞ, such that the
correlations between Nj and Nb in the dataset are para-
meterized by the class label alone. The number of param-
eters in this model is 2 × ðdj þ db − 2Þ þ 1. To be explicit,
we optimize the model to parameterize the correlations
between Nj and Nb in terms of a discrete variable Z, and
interpret this as a class label for four-top and tt̄W events.
We are making the simplifying assumption that Nj and Nb

are conditionally independent variables, that all correla-
tions between them in the dataset arise only from assign-
ments to the two classes. Conditional independence is of
course an approximation. In particular, in a realistic
measurement setting, Nj and Nb are not strictly condition-
ally independent due to mistagging or other reconstruction
imperfections. The degree to which the method succeeds is
limited by this approximation. Conversely, a failure of
the method to converge to a consistent description of the
measured distributions would be a clear sign that the
assumptions of the statistical model are not respected by
the dataset. We return to this important caveat and discuss
its mitigation in Sec. IV.4 However, as we will show, in the
case at hand, the method exhibits good convergence
indicating that conditional independence holds sufficiently
well in practice.

1Our results and discussion would apply equally well to other
non-negligible backgrounds such as tt̄h and tt̄Z.

2Along this work we refer to multinomial distribution although
in all cases it consists of a single drawing per event and therefore
it is also a categorical distribution, which is a special case of the
former.

3Note that this would not be the case if each event was
generated by several draws from pðj; bjzÞ, since there would then
be additional correlations between the multiple draws per event.
This is the case in s.c. mixed membership models [25–27] used in
jet substructure analyses where the mixtures describe correlations
between the multiple draws per event.

4A systematic study of statistical models which go beyond
strict conditional independence assumptions is in progress and
will be presented elsewhere.
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Within the limitations described above, the generative
process for the dataset proceeds as follows: for each event
(n) a class label zn is first drawn from a binomial
probability distribution parametrized by π ∈ ½0; 1�. Then
jn and bn are sampled from separate multinomials
corresponding to the drawn class and parametrized by
αz;i and βz;k, respectively, where i and k run up to dj and
db, respectively. We assume that the whole dataset X,
consisting of n ∈ N pairs of measurements xn ¼ ðjn; bnÞ
for the 2LSSþþ selected events, is generated through
this probabilistic model and we want to infer the values of
its parameters, namely π; α0;j; β0;i; α1;j and β1;i, which we
collectively indicate as θ. Observe that the described
model corresponds to a special case of a mixture of
multinomials [28].
Adopting a Bayesian framework, we consider the

model parameters (θ) to be random variables as well and
wewant to update our knowledge of these random variables
after measuring X. However, it is more convenient in
practice to consider explicitly also the latent variables Z
which represent the class assignments of each event.
Graphically, the probabilistic model can be represented
through the plate diagram in Fig. 1 and leads to the posterior:

pðZ; π; α; βjXÞ ¼ pðX; Z; π; α; βÞ
pðXÞ ; ð1Þ

where the joint distribution pðX; Z; π; α; βÞ is given explic-
itly by

pðX; Z; π;α; βÞ ¼
YN
n¼1

pðxnjzn; α; βÞpðznjπÞ

× pðπjηπÞ
Y1
k¼0

pðαkjηαkÞpðβkjηβkÞ:

Here pðxnjzn; α; βÞ ¼ αznjnβznbn , pðznjπÞ ¼ πzn and
pðπjηπÞ, pðαkjηαkÞ and pðβkjηβkÞ are Dirichlet distributions
with the corresponding ηi set of parameters.
The main idea in this expression is that given the dataset

X, a probabilistic model that allows us to write down an
expression for pðXjθÞ and a reasonable prior pðθÞ, we can
in principle determine the probability density function
(pdf) for the parameters pðθjXÞ. This is a powerful result,
since it gives us not only the fraction of signal to
background and its uncertainty through pðπjXÞ margin-
alizing over the other parameters, but it can also give us
the Nj and Nb distributions of both individual classes. If
the probabilistic model describes the data well and the
prior is reasonable, then these should match within
uncertainties the true underlying background and signal
Nj and Nb distributions.
There are many known approaches to solving Eq. (1)

using Bayesian inference; including mean-field techniques
such as variational inference (VI) [28] and numerical
Markov Chain Monte Carlo methods such as Gibbs
Sampling (GS) [28]. Below we focus on the latter numeri-
cal approach which turns out to be preferred to the mean-
field methods which approximate the posterior with a fully
factorized model that neglects possible correlations
between the inferred parameters. As we are interested in
finding the correlations between Nj and Nb through class
assignment, VI is challenged by definition to find the
appropriate correlations.
The goal of the GS algorithm is to approximate the

posterior through the use of a finite number of samples.
These samples can then be used to obtain any desired
expected values such as the mean of the relevant param-
eters E½θi�. To obtain samples from the posterior, each
iteration samples an observation of each parameter θi
from the marginal distribution conditioned on the
remaining parameters pðθijθni; XÞ. When implementing
a Gibbs sampler to approximate Eq. (1), the conditional
distributions can be obtained and sampled from effi-
ciently, being either Dirichlet or multinomial distribu-
tions. Our algorithm implemented in python is available
at GitHub [29].
In practice, subsequently drawn samples are highly

correlated. To mitigate this we drop the first M samples,
which constitute what is called the burn-in phase, and then
apply a “thinning” procedure which consists in only
keeping every lth sample. We also implement different
chains, or walkers, initialized at different randomly chosen
starting points. We estimate sufficient M and l values by
computing the integrated autocorrelation time τ as defined
in Ref. [30] and adapting its implementation in EMCEE [31]
accounting for the fact that we do not have an ensemble
sampler. We find that with 30 walkers and 1000 saved
iterations per walker after thinning with l ¼ 100 we have
τ’s in the range τ ∈ ½1; 2.5�. We consider a burn-in phase of
M ¼ 1000 after which we save the aforementioned 1000

FIG. 1. Plate diagram of (Bayesian) 2-mixture model of multi-
nomials for ðNb;NjÞ N-event dataset. From the Dirichlet prior
distributions (with hyperparameters ηi) the multinomial param-
eters (π; αi and βi) are sampled, then N events are sampled
through a latent variable Z that determines in turn from which
multinomial the two observables in each event (Nj and Nb) are
sampled.
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samples with thinning.5 Once we have an accurate approxi-
mation of pðZ; π; α; βjXÞ, we can marginalize over the class
assignments by neglecting the sampled values Z.

A. A simple toy example

To demonstrate the efficiency of this approach, as well as
the limitations due to the approximations we make, we will
first apply it to inference in a very simple toymodel.We take
a sample of “events,” eachwith just two features. The sample
is comprised of two types of events, which for the sake of
analogy we call background and signal. These signal and
background events are sampled from sets of overlapping
distributions in the feature-space. The features for each event
are sampled independently, therefore in this simple toy
example these two features are completely uncorrelated
from each other. We consider the case in which the prior
distributions for these features are not too far from the truth.
In contrast, we consider a uniform prior distribution for the π
parameter giving the fraction of signal andbackground in the
sample. This indicates no prior knowledge on how much
background and signalwe can expect in the dataset and is the
most conservative assumption we can make in this regard.
We show the prior distributions as well as the true values of
the parameters in the upper row of Fig. 2.
After numerically solving the Bayes inference problem

using GS, we compare the class-0 and class-1 inferred
distributions for Nj and Nb to the truth-level background
and signal distributions in X. A good summary to assess the
success of the algorithm is the corner-plot which visualizes

the distribution through marginalizing to either two or one
parameter dimensions and the true values. An excerpt is
shown in Fig. 3. In each panel we show the corresponding

FIG. 2. Nj,Nb, and π1 distributions: true values (blue), priors (red), and posterior (black) for the toy model. Shaded regions in first four
plots indicate the 1σ uncertainty region. Comparing the posteriors to the priors one can appreciate the improvement in estimating the true
distributions departing from incorrect and uncertain priors using Bayesian inference on the data.

FIG. 3. Excerpt from the corner-plot for the toy model. Red
indicates the prior distribution, black the posterior distribution
obtained through GS and blue is the true value. We see how the
posterior distribution captures the correlation betweenNj andNb.
The titles of each 1D histogram contain the log-likelihood ratio
between the posterior and the prior using either GS or VI for the
posterior estimation, with the latter shown in parentheses. The
table contains the sum of log-likelihood ratios per parameter
block, again considering the posteriors obtained through GS and
through VI. We see that VI is a bad approximation to GS, failing
to improve on the prior for several parameter blocks.

5The GS algorithm and techniques described above are well
known in other disciplines, in particular computer sciences,
however they have to our knowledge not been applied before
in the context of (high energy) physics.
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prior distribution (red), posterior distribution (black) and
the true values (blue). Quantitatively, one can also compare
the level of improvement between the prior and the
posterior by computing their log-likelihood ratio (LLR)
with respect to the true value for each parameter. We
display these numbers above the diagonal panels of the
corner plot, and we see a robust improvement in
most of them. To compute the LLR of the posterior
and prior of the complete model one would in principle
need to evaluate the joint density distributions of all pairs
of parameters (off-diagonal elements in the corner-plot)
which is beyond the scope of this work. Instead, as a rough
approximation, neglecting the correlations between the
parameters, we obtain a global LLR as a sum of the
individual parameter LLRs, LLR ≈ 36. We display this
global sum as well as partial sums grouping different
parameters together in Fig. 3. We also include the partial
and global sums of LLR obtained when approximating the
posterior through VI. We observe that although VI
captures the maximum of the posterior accurately, it
consistently underestimates the variance of the distribu-
tion yielding a too narrow approximation to the GS
obtained posterior. This is reflected in a lower improve-
ment over the prior (LLR ≈ 15).
Finally, in the bottom row of Fig. 2 we group together the

one-dimensional marginalized posterior distributions for
each parameter to obtain the Nj, Nb distributions of the
signal and background, as well as for the π parameter, i.e.,
the fraction of signal in the sample. In the plot the true value
of the parameters is shown in solid blue. Notice that the
posterior exhibits good convergence to the true values as
well as a considerable reduction of the uncertainty, when
compared to the prior, which emulates the imperfect MC.
We find an improvement in both the Nj and Nb distribu-
tions for each process as expected from Fig. 3. It is also
interesting to notice in Fig. 2 how from a complete
ignorance of the signal and background fractions in the
sample, the algorithm recovers a pdf for π in good agree-
ment with its true value.

III. APPLICATION TO FOUR-TOP
MEASUREMENTS

In the 2LSSþþ channel, the final state is usually
characterized by at least 2lþ, at least 2b-tagged jets,
and at least 4 light jets. Additional cuts on missing
transverse energy and transverse momentum may be
invoked to enhance the signal fraction in the sample.
The exact details of the event selection are however not
important for the purposes of this work. From the decay
products at matrix-element level of the signal, one expects
a priori that the Nj and Nb distributions to be skewed
toward higher values when compared to the background
process, thus providing enough separation for disentan-
gling them using statistical inference.
In our setup we have simulated 4-top and tt̄W� events

using MADGRAPH [32], PYTHIA [33], and DELPHES [34]
to account for matrix level calculations and showering,
hadronization and detector simulation, respectively.
We selected N ¼ 500 events, roughly equivalent to
L ¼ 800 fb−1, in the 2LSSþþ channel with 70% back-
ground and 30% signal (we also tested for other signal
fractions and obtained similar results). Using this data we
created a dataset X, represented by N pairs (jn, bn),
n ¼ 1;…; N, to serve as our benchmark truth-level sample.
The resulting two dimensional distributions are shown
in Fig. 4.
We observe from Fig. 4 that the Nj and Nb distributions

do not appear to be strictly (conditionally) independent.
This is evidenced by the fact that different rows (columns)
show different bin hierarchies depending on the column
(row) they are conditioned on. These effects arise from
experimental systematics such as imperfect b-tagging and
different (b-)jet acceptances, as well as from statistical
fluctuations due to finite sample sizes involved: the sample
size of the Monte Carlo simulation and the sample size of
the expected events at to the collider luminosity considered.
Category bins with very small event yields are particularly
affected by these later effects. In Sec. IV we study in detail
how well our model approximates the true data

FIG. 4. Nj and Nb two dimensional distributions for tt̄W� and 4-top.
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distributions even when conditional independence is not
exact. We find that for the foreseen (HL)LHC luminosities
our model is statistically indistinguishable from the data
while retaining classification power to infer the 4-top and
tt̄W� distributions.
On the other hand, regarding the potential MC mismod-

eling, we would like to emphasize that our model is aimed
to work directly on data and thus address this very kind of
problem. That is, we care that our model recovers the true
underlying distribution with imperfect (i.e., MC based)
priors. In this context we use MC simulations as stand-in
mock data for actual (mixed) distribution measurements
and apply our model to this mock data with imperfect
knowledge encoded in the priors. In order to emulate an
imperfect MC prior we skewed the corresponding Nj and
Nb distributions from X to higher values and incorporated
this into our model through the prior hyperparameters. In
general, we can write the hyperparameters η of a V-
dimensional Dirichlet distribution of a random variable θ
as ηv ¼ Σ · pv, for v ¼ 1;…; V. Here p is a multinomial
probability distribution and Σ is a normalization factor. The
role of pv and Σ can be understood by looking at the mean
and variance of θv:

E½θv� ¼ pv

Var½θv� ¼
pvð1 − pvÞ

Σþ 1
: ð2Þ

From these equations, we see that pv represents the
expected value of θv while Σ controls the confidence we
have on that expectation. We fixed the pv values of the
priors for α and β in their respective Dirichlets to the
normalized Nj and Nb populations given by the imperfect

MC predictions. To reflect our confidence in this estimate,
in this example we chose Σ ¼ 10 for each Dirichlet. See
Fig. 5 upper row, where we plot the central values and 1σ
ranges for the prior distributions for α and β. In an actual
experimental analysis, Σ could be chosen such that the
priors cover all reasonable ranges of the modeled observ-
ables. As an extreme example, for the prior on the π
parameter, giving the fraction of signal and background in
the sample, we take a uniform distribution, indicating no
prior knowledge on how much background and signal we
can expect in the dataset.
As we do for the toy model, we study the posterior

distribution obtained using GS through the corner-plot,
with its LLR partial and global and sums, and through
histograms that condense the class-0 and class-1 Nj and Nb
probability distributions and the π probability distribution.
We show an excerpt of the corner-plot in Fig. 6. The global
sum of the LLRs is ≈20, reflecting an improvement over
the prior. In comparison, the VI estimated posterior does
not show an improvement over the prior. This is due to the
narrow width of the approximation which excludes the true
values of the parameters to a higher level than the more
accurate GS obtained posterior estimation.
In Fig. 5 we show the results for Nj and Nb distributions

of the signal and background, as well as for the π parameter,
i.e., the fraction of signal in the sample. As in the toy model
case, the posterior exhibits good convergence to the true
values as well as a considerable reduction of the uncertainty
when compared to the prior which emulates the imperfect
MC. However, in this case the improvement is different for
each feature. The Nj distribution shows a larger improve-
ment, as expected from Fig. 6, while the Nb distribution is
harder to reconstruct due to the much larger fraction of
events populating the first bin. Similar results are obtained

FIG. 5. Nj, Nb, and π1 distributions: true values (blue), priors (red) and posterior (black). Shaded regions in first four plots indicate the
1σ uncertainty region. Comparing the posteriors to the priors one can appreciate the improvement in estimating the true distributions
departing from incorrect and uncertain priors using Bayesian inference on the data.
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for other cases which differ in signal-to-background ratio
and number of events. It is also interesting to notice in
Fig. 5 how again from a complete ignorance of the signal
and background fractions in the 2LSSþþ sample the
algorithm recovers a pdf for π in good agreement with its
true value. We also checked that this agreement holds for
other truth values of π, and that the matching only worsens
as the value of π approaches the boundaries of [0, 1].
In summary, we find that the algorithm successfully

infers the Nj and Nb distributions as well as the signal/
background fractions. Notably, the best inference occurs
for the Nj distribution, which is usually the hardest to
predict correctly through MC simulations based on
perturbative QCD calculations matched to parton shower
algorithms.

IV. TESTING MODEL VALIDITY

Our method hinges on the validity of the underlying
statistical (generative) model. Thus it is imperative to
understand how well our model that assumes conditional
independence, approximates the true data distributions
even when their conditional independence is not exact.
To quantify the agreement between the data and our model

we consider the mutual information (MI) IðNj;NbÞ
between Nj and Nb,

IðNj; NbÞ ¼ DKLðpðj; bÞjjpðjÞpðbÞÞ

¼
X9
j¼4

X5
b¼2

pðj; bÞLn pðj; bÞ
pðjÞpðbÞ : ð3Þ

The MI encodes how much information is lost by approxi-
mating the full distribution with the product of the two
marginal distributions. We can also condition the MI on the
class label and obtain the MI for each process IðNj; NbjzÞ.
By combining the per process MI, we build the conditional
MI IðNj; NbjZÞ ¼

P
z pðzÞIðNj;NbjzÞ which encodes our

exact model hypothesis: the data follows a probability
distribution which can be written as a combination of two
processes, each of which presents a factorized probability
distribution. We should note that IðNj; NbjzÞ and
IðNj; NbjZÞ depend explicitly on the availability of labeled
data and thus are not computable purely from measured
distributions. However, because we expect the simulations
to be qualitatively reasonable approximations to measure-
ments, studying the validity of the modeling hypothesis
using MC simulations is justified.
Using our finite 4-top and tt̄W� dataset, we can estimate

the relevant probability distributions and obtain finite
sample estimations of the relevant MIs. In the large
statistics limit, the estimator follows compact asymptotic
distributions [35]. However, we are dealing with finite
event samples where some category bins are scarcely
populated. Thus, in order to quantify the compatibility
of our model with the data, we do a series of pseudoexperi-
ments according to the following procedure:
(1) We take the expected event rates obtained from the

MADGRAPH+ PYTHIA+ DELPHES pipeline and their
uncertainties to generate 2500 pseudodatasets. For
each pseudodataset, we sample the expected event
rate for each bin according to a Gaussian centered in
the MC central value and with the appropriate
uncertainty. Then, we sample the observed events
for that bin through a Poisson distribution.

(2) For each of these pseudodatasets, we compute the
two-dimensional probability distribution and the
marginals for each process and for the full dataset.
With these, we obtain the estimators of all four
relevant MIs ÎðNj; NbjzÞ, with z ¼ tt̄W�; 4 − top,
ÎðNj; NbÞ, and ÎðNj;NbjZÞ.

(3) We use these estimators to study the validity of
approximating the joint probability distribution with
a certain modeling hypothesis. To this end we
construct the probability distribution of the estimator
by generating another batch of 2500 pseudodatasets.
This time, each pseudodataset is generated using the
relevant approximation: for IðNj; NbjzÞ, we generate
the pseudodatasets with pðjjzÞpðbjzÞ; for IðNj; NbÞ,

FIG. 6. Excerpt from the corner-plot. Red indicates the prior
distribution, black the posterior distribution obtained through GS
and blue is the true value. We see how the posterior distribution
captures the correlation between Nj and Nb. The titles of each 1D
histogram contain the log-likelihood ratio between the posterior
and the prior using either GS or VI for the posterior estimation,
with the latter shown in parentheses. The table contains the sum
of log-likelihood ratios per parameter block, again considering
the posteriors obtained through GS and through VI. We see that
VI is a bad approximation to GS, failing to improve on the prior
for several parameter blocks.
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we generate the pseudodatasets with pðjÞpðbÞ; and
for IðNj; NbjZÞ, we generate the pseudodatasets
with

P
z pðzÞpðjjzÞpðbjzÞ. The hypothesis that

the obtained estimators Î are sampled according
to the model is the null hypothesis H0.

(4) Having obtained the probability distribution of each
estimator conditioned on its null hypothesis H0

using these additional pseudodatasets, we compute
the one-sided p-value for the “measured” estimator
which allows us to discard the null hypothesis with a
certain confidence level.6 The p-value can be com-
puted as

p-value ¼
Z

∞

Î
pðIjH0ÞdI

where I can be any of the four metrics considered
and H0 its associated null hypothesis. In the large
statistics limit, this one-sided test asymptotically
converges to the compact formulae considered
in Ref. [35].

We show the results of this procedure in Fig. 7 for four
types of pseudodatasets. In solid black line we show the
pseudo-dataset generated with the expected events as
obtained from the MADGRAPH+ PYTHIA+ DELPHES pipeline.
In dashed black line we consider the event rates we obtain
when considering perfect b-tagging in DELPHES. We do this

to verify whether the introduction of imperfect b-tagging,
and the resulting correlations between the number of light-
and b-jets, spoil conditional independence. In green
solid and dashed lines we modify the sampled expected
event rates to ensure conditional independence for realistic
and perfect b-tagging. These two pseudodatasets thus agree
with our modeling hypothesis and provide a self-consis-
tency check. One should note that the Poisson sampling
with relatively small event rates induces a slight violation of
conditional independence as it is done in a bin by bin basis.
In Fig. 7, we observe that for the considered luminosity

L ≃ 800 fb−1, the data and our model are not statistically
distinguishable from each other. This can be seen from the
first, second, and fourth columns, where the null hypothesis
coincides with the green curves. The p-value distributions
in the first and second column imply that 4-top and tt̄W�
cannot be ruled out to have factorized ðNj; NbÞ distribu-
tions while the fourth column implies the same for the full
data and the model which assumes conditional independ-
ence. For the third column, both the data and the model are
different from the null hypothesis that considers full
independence between Nj and Nb. In that case, both the
model and the data show slight disagreements with the null
hypothesis although they remain compatible with it. We
observe how the p-value distribution is more tilted toward
the discarded region for the MI compared to the
Conditional MI for the full data distribution, specially
for perfect b-tagging. Conditional independence is thus a
reasonable modeling hypothesis that yields qualitatively
different behavior than assuming a single process with a
factorized ðNj; NbÞ distribution. Because conditional inde-
pendence assumes that correlations between light- and

FIG. 7. Top row: we show in solid (dashed) black lines the MI between Nj and Nb with realistic (perfect) b-tagging. In solid (dashed)
green we show the MI distribution for the expected event rates which respect conditional independence with realistic (perfect) b-tagging.
Bottom row: we show with the same color and line conventions the p-value of the null hypothesis distribution of each estimator. We
show in red the p ¼ 0.05 conventional exclusion value. We can see that for the considered luminosity, Nj and Nb cannot be ruled out to
be conditionally mutually independent. See text for details.

6Although not explicit, there is an assumed alternative hy-
pothesis H1: the saturated model. For a given pseudodataset of N
events sampled from a multinomial distribution, its MI is nothing
more than 2N times its saturated log-likelihood [36].
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b-jets are induced by marginalizing over the labels, the
model acquires classification power for the underlying
processes (that we can match to 4-top and tt̄W�) by
learning the induced correlations to achieve explanatory
power over the full data distribution.
The different hypotheses become better distinguishable

at larger luminosities. This is seen in Fig. 8 where we show
the results for high-luminosity LHC projections with
L ¼ 3000 fb−1. We observe that 4-top exhibits larger
deviations from independence than tt̄W�. In particular
Nj and Nb independence can be ruled out for the 4-top
distribution with realistic b-tagging. This in turn causes the
full data distribution to be tilted toward lower p-values for
the conditionally independent null hypothesis. The tt̄W�
does not exhibit the same behavior. We verify that the MI of
both processes decreases considerably in the case of (near)
perfect b-tagging. In particular, joint (black) 4-top distri-
bution is much closer to its marginalized (green) counter-
part which is also reflected in the full data conditional MI
distribution This implies that imperfect b-tagging is indeed
an important factor behind observed deviations from the
conditional independence hypothesis although it is not the
only one. Because we are considering a probabilistic model
for the data, a feasible sophistication of this model that
includes b-tagging efficiencies as a random variable could
restore conditional independence while keeping the number
of parameters under control. Such incorporation of the b-
tagging efficiency would be the analogue to the introduction
of an associated nuisance parameter in traditional statistical
analyses. Another key feature at HL-LHC luminosity is that
for all four pseudodatasets full independence between Nj

and Nb can be ruled out, as evidenced by the third column.
For perfect b-tagging, we can conclude that conditional
independence is a valid approximation which yields learn-
able distributions with discriminatory power between proc-
esses. If imperfect b-tagging is taken into account in the

generative model then conditional independence remains a
valid modeling hypothesis with explanatory power for the
full range of luminosities expected at the LHC.

V. CONCLUSIONS

In summary, we have proposed a new technique to
extract signal and background features and fractions
relevant for measurements of four-top production at the
LHC using Bayesian inference on the Nj and Nb jet
multiplicity distributions. It relies on the assumption of
conditional (upon signal and background class) independ-
ence of the inferred distributions and harnesses the result-
ing correlations between Nj and Nb within each class. The
algorithm is weakly supervised since, in addition to data (in
the signal region), it only relies on imperfect a priori
knowledge how the signal and background differ in their
Nj and Nb distributions. Using these results we have
proposed a novel approach to test or tune MC predictions
in the signal region. Alternatively, it could allow to measure
four-top production cross section and/or test forNP effects in
a novel way that alleviates the dependence on MC simu-
lations altogether, as also proposed in Ref. [19]. One could
for instance tune theMC in the signal region using the class-
0 (background) Nj and Nb distributions and then simulate
the signal using the tunedMC to checkwhether its predicted
fraction in the 2LSSþþ sample agrees with the predictions
in pðπjXÞ. Moreover, one can also check whether the MC
signal Nj and Nb distributions match the pðα1;ijXÞ and
pðβ1;ijXÞ inferred by the algorithm. Using these ideas one
would be able effectively to compute acceptanceswith aMC
tuned in-situ in the signal region, while simultaneously
measure the four-top cross-section, or study potential NP
contributions to the signal or the backgrounds.
Certainly, our method as presented in Sec. II is general

and applicable also to other particle physics scenarios

FIG. 8. Same as Fig. 7 but for projected high-luminosity expected event rates.
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beside four-top production and potentially opens new
venues of searches for NP at colliders. Certainly however,
much further work is needed to implement these techniques
into feasible experimental analyses.
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