
A Concrete Categorical Semantics of Lambda-S

Alejandro Díaz-Caroa,b,1,3 Octavio Malherbec,d,2,4
a Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina

b Instituto de Ciencias de la Computación (CONICET-Universidad de Buenos Aires), Buenos Aires,
Argentina

c Departamento de Matemática y Afines, CURE, Universidad de la República, Maldonado, Uruguay
d IMERL, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Abstract

Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum
lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms
as algebraic linear functions. The type system of Lambda-S have a constructor S such that a type A is
considered as the base of a vector space while S(A) is its span. A first semantics of this calculus have
been given when first presented, with such an interpretation: superposed types are interpreted as vectors
spaces while non-superposed types as their basis. In this paper we give a concrete categorical semantics
of Lambda-S, showing that S is interpreted as the composition of two functors in an adjunction relation
between the category of sets and the category of vector spaces over C. The right adjoint is a forgetful
functor U , which is hidden in the language, and plays a central role in the computational reasoning.

Keywords: Quantum computing, algebraic lambda-calculus, categorical semantics

1 Introduction

The non-cloning property of quantum computing has been treated in different ways
in quantum programming languages. One way is to forbid duplication of variables
with linear types [1,12], and hence, a program taking a quantum argument will not
duplicate it (e.g. [3, 14, 17, 20, 22]). Another way is to consider all lambda-terms as
expressing linear functions (e.g. [4–6,11]). The first approach forbids a term λx.(x⊗
x) (for some convenient definition of ⊗), while the second approach distributes
(λx.(x ⊗ x))(|0〉 + |1〉) to λx.(x ⊗ x) |0〉 + λx.(x ⊗ x) |1〉, mimicking the way that
linear operations act on vectors in a vector space. However, adding a measurement
operator to a calculus following the linear-algebraic approach need to also add linear

1 Partially supported by PICT 2015 1208 and ECOS-Sud A17C03 QuCa.
2 Partially supported by MIA CSIC UdelaR.
3 Email: adiazcaro@icc.fcen.uba.ar
4 Email: malherbe@fing.edu.uy

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 344 (2019) 83–100

1571-0661/© 2019 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2019.07.006

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:adiazcaro@icc.fcen.uba.ar
mailto:malherbe@fing.edu.uy
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2019.07.006
https://doi.org/10.1016/j.entcs.2019.07.006
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

types: indeed, if π represent a measurement operator, (λx.πx)(|0〉+ |1〉) should not
reduce to (λx.πx) |0〉 + (λx.πx) |1〉 but to π(|0〉 + |1〉). Therefore, the functions
taking a superposition have to be marked in some way and ensure that they will not
use their arguments more than once (i.e. ensure linearity in the linear-logic sense).

The calculus Lambda-S has been introduced in [9] and slightly modified later
in [18], as a first-order fragment of Lineal [6], extended with measurements. In
linear logic we would write A the types of terms that cannot be duplicated while
!A types duplicable terms. In Lambda-S instead A are the types of the terms that
cannot be superposed, while S(A) are the terms that can be superposed, and since
superposition forbids duplication, A means that we can duplicate, while S(A) means
that we cannot duplicate. So the S is not the same as the bang “ !”, but somehow
the opposite. This can be explained by the fact that linear logic is focused on the
possibility of duplication, while here we focus on the possibility of superposition,
which implies the impossibility of duplication.

In [9] a first denotational semantics (in environment style) is given where the type
B is interpreted as {|0〉 , |1〉} while S(B) is interpreted as Span({|0〉 , |1〉}) = C2, and,
in general, a type A is interpreted as a basis while S(A) is the vector space generated
by such a basis. In this paper we go beyond and give a categorical interpretation
of Lambda-S where S is a functor of an adjunction between the category Set and
the category Vec. Explicitly, when we evaluate S we obtain formal finite linear
combinations of elements of a set with complex numbers as coefficients and the
other functor of the adjunction, U , allows us to forget the vectorial structure.

The main structural feature of our model is that it is expressive enough to de-
scribe the bridge between the quantum and the classical universes explicitly by
controlling its interaction. This is achieved by providing a monoidal adjunction.
In the literature, intuitionistic linear (as in linear-logic) models are obtained by a
comonad determined by a monoidal adjunction (S,m) � (U, n), i.e. the bang ! is
interpreted by the comonad SU (see [8]). In a different way, a crucial ingredient of
our model is to consider the monad US for the interpretation of S determined by
a similar monoidal adjunction. This implies that on the one hand we have a tight
control of the Cartesian structure of the model (i.e. duplication, etc) and on the
other hand the world of superpositions lives in some sense inside the classical world,
i.e. determined externally by classical rules until we decide to explore it. This is
given by the following composition of maps:

US(B)× US(B)
n−→ U(S(B)⊗ S(B))

U(m)−→ US(B× B)

that allows us to operate in a monoidal structure representing the quantum world
and then to return to the Cartesian product.

This is different from linear logic, where the classical world lives in some sense
inside the quantum world i.e. (!B)⊗ (!B) is a product inside a monoidal category.

Another source of inspiration for our model has been the work of Selinger [19]
and Abramsky and Coecke [2] where they captured the notion of scalars and inner
product in a more abstract categorical setting, i.e. a category in which there is an

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–10084

abstract notion of a dagger functor. It is envisaged that this approach will provide
the basis for an abstract model in future work.

The paper is structured as follows. In Section 2 we recall the definition of
Lambda-S and give some examples, stating its main properties. Section 3 is di-
vided in three subsections: first we define the categorical constructions needed to
interpret the calculus, then we give the interpretation, and finally we prove its sound-
ness and adequacy properties. Finally, we conclude in Section 4. An appendix with
detailed proofs can be found in the pre-print in arXiv 5 .

2 The calculus Lambda-S
We give a slightly modified presentation of Lambda-S, based on [18]. In particular,
instead of giving a probabilistic rewrite system where t →pk rk means that t reduces
with probability pk to rk, we introduce the notation t −→ p1r1 ‖ · · · ‖ pnrn, this way,
the rewrite system is deterministic and the probabilistic distribution is internalized
in the syntax.

The syntax of terms and types is given in Figure 2. We write Bn for B×· · ·×B n-

times, with the convention that B1 = B, and may write
n�

i=1
piti, for p1t1 ‖ · · · ‖ pntn

with the convention that
1�

i=1
1t = t. We use capital Latin letters (A,B,C, . . .)

for general types and the capital Greek letters Ψ, Φ, Ξ, and Υ for qubit types.
B = {Bn | n ∈ N}, Q is the set of qubit types, and T is the set of types (B � Q � T).
In the same way, Vars is the set of variables, B is the set of basis terms, V the set
of values, Λ the set of terms, and D the set of probabilistic distributions on terms.
We have Vars � B � V � Λ � D.

Ψ := Bn | S(Ψ) | Ψ×Ψ Qubit types (Q)
A := Ψ | Ψ ⇒ A | S(A) Types (T)

b := x | λx:Ψ.t | |0〉 | |1〉 | b× b Basis terms (B)
v := b | (v + v) | 0S(A) | α.v | v × v Values (V)
t := v | tt | (t+ t) | πjt | ?t·t | α.t | t× t | head t | tail t |⇑r t |⇑� t Terms (Λ)
p := p1t1 ‖ · · · ‖ pntn Probabilistic distribution (D)

where α ∈ C and pi ∈ [0, 1] ⊆ R.

Fig. 1: Syntax of types and terms of Lambda-S.

The terms are considered modulo associativity and commutativity of the syn-
tactic symbol +. On the other hand, the symbol ‖ is used to represent a real
probabilistic distribution of terms, not as a syntactic symbol, and so, it is not only
associative and commutative, we also have that pt ‖ qt is the same as (p + q)t and
pt ‖ 0r = pt 6 .

5 http://arxiv.org/abs/1806.09236.
6 As a remark, notice that ‖ can be seen as the + symbol of the algebraic lambda calculus [], where the
equality is confluent since scalars are positive, while our + symbol coincides with the + from Lineal [6]

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100 85

http://arxiv.org/abs/1806.09236

There is one atomic type B, for basis qubits |0〉 and |1〉, and three constructors:
×, for pairs, ⇒, for first-order functions, and S(·) for superpositions.

The syntax of terms contains:

• The three basic terms for first-order lambda-calculus, namely, variables, abstrac-
tions and applications.

• Two basic terms |0〉 and |1〉 to represent qubits, and one test ?r·s on them. We
may write t?r·s for (?r·s)t, see Example 2.1 for a clarification of why to choose
this presentation.

• A product × to represent associative pairs (i.e. lists), with its destructors head
and tail. We may use the notation |b1b2 . . . bn〉 for |b1〉 × |b2〉 × · · · × |bn〉.

• Constructors to write linear combinations of terms, namely + (sum) and . (scalar
multiplication), and its destructor πj measuring the first j qubits written as linear
combinations of lists of qubits, and one null vector 0S(A) for each type S(A).

• Two casting functions ⇑r and ⇑� which allows us to consider lists of superpositions
as superpositions of lists (see Example 2.2).

The rewrite system has not been given yet, however the next examples give some
intuitions and clarify the ?r·s and the casting functions.

Example 2.1 The term ?r·s is meant to test whether the condition is |1〉 or |0〉.
However, defining it as a function, allows us to use the algebraic linearity to imple-
ment the quantum-if [3]:

(?r·s)(α. |1〉+ β. |0〉) = (α. |1〉+ β. |0〉)?r·s −→∗ α.|1〉?r·s+ β.|0〉?r·s −→∗ α.r+ β.s

Example 2.2 The term (1√
2
(|0〉+ |1〉))× |0〉 is the encoding of the qubit 1√

2
(|0〉+

|1〉)⊗|0〉. However, while the qubit 1√
2
(|0〉+|1〉)⊗|0〉 is equal to 1√

2
(|0〉⊗|0〉+|1〉⊗|0〉),

the term will not rewrite to the encoding of it, unless a casting ⇑r is preceding the
term:

⇑r (
1√
2
(|0〉+ |1〉))× |0〉 −→∗ 1√

2
(|0〉 × |0〉+ |1〉 × |0〉)

The reason is that we want the term (1√
2
(|0〉 + |1〉)) × |0〉 to have type S(B) × B,

highlighting the fact that the second qubit is a basis qubit, i.e. duplicable, while the
term 1√

2
(|0〉 × |0〉+ |1〉 × |0〉) will have type S(B×B), showing that the full term is

a superposition where no information can be extracted and hence, non-duplicable.

The rewrite system depends on types. Indeed, λx:S(Ψ).t follows a call-by-name
strategy, while λx:B.t, which can duplicate its argument, must follow a call-by-base
strategy [7], that is, not only the argument must be reduced first, but also it will
distribute over linear combinations. Therefore, we give first the type system and
then the rewrite system.

The typing relation is given in Figure 2. Contexts, identified by the capital Greek
letters Γ, Δ, and Θ, are partial functions from Vars to T . The contexts assigning

(see [7] for a more detailed discussion on different presentations of algebraic lambda calculi).

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–10086

only types in B are identified with the super-index B, e.g. ΘB. Whenever more than
one context appear in a typing rule, their domains are considered pair-wise disjoint.
Observe that all types are linear (as in linear-logic) except on basis types Bn, which
can be weakened and contracted (expressed by the common contexts ΘB).

ΘB, x : Ψ
 x : Ψ
Ax

ΘB
 0S(A) : S(A)
Ax0

ΘB
 |0〉 : B
Ax|0〉

ΘB
 |1〉 : B
Ax|1〉

Γ
 t : S(A)

Γ
 α.t : S(A)
αI

Γ,ΘB
 t : S(A) Δ,ΘB
 u : S(A)

Γ,Δ,ΘB
 (t+ u) : S(A)
+I

Γ
 t : A

Γ
 t : S(A)
SI

Γ
 t : Sk(Bn) k>0

Γ
 πjt : B
j × S(Bn−j)

SE

Γ
 t : A Γ
 r : A
Γ
 ?t·r : B ⇒ A

If
Γ, x : Ψ
 t : A

Γ
 λx:Ψ.t : Ψ ⇒ A
⇒I

Δ,ΘB
 u : Ψ Γ,ΘB
 t : Ψ ⇒ A

Δ,Γ,ΘB
 tu : A
⇒E

Δ,ΘB
 u : S(Ψ) Γ,ΘB
 t : S(Ψ ⇒ A)

Δ,Γ,ΘB
 tu : S(A)
⇒ES

Γ,ΘB
 t : Ψ Δ,ΘB
 u : Φ

Γ,Δ,ΘB
 t× u : Ψ× Φ
×I

Γ
 t : Bn n>1

Γ
 head t : B
×Er

Γ
 t : Bn n>1

Γ
 tail t : Bn−1
×El

Γ
 t : S(S(Ψ)× Φ)

Γ
⇑r t : S(Ψ× Φ)
⇑r

Γ
 t : S(Ψ× S(Φ))

Γ
⇑� t : S(Ψ× Φ)
⇑�

Γ
 ti : A
∑

i pi = 1

Γ
 p1t1 ‖ · · · ‖ pntn : A
‖

Fig. 2: Typing relation

The rewrite relation is given in Figures 3 to 10.
The two beta rules (Figure 3) are applied according to the type of the argument.

If the abstraction expects an argument with a superposed type, then the reduction
follows a call-by-name strategy (rule (βn)), while if the abstraction expects a basis
type, the reduction is call-by-base (rule (βb)): it β-reduces only when its argument
is a basis term. However, typing rules also allow to type an abstraction expecting an
argument with basis type, applied to a term with superposed type (cf. Example 2.3).
In this case, the beta reduction cannot occur and, instead, the application must
distribute using the rules from Figure 4: the linear distribution rules.

Figure 5 gives the two rules for the conditional construction. Together with
the linear distribution rules (cf. Figure 4), these rules implement the quantum-if

If b has type Bn and b ∈ B, (λx:Bn.t)b −→ (b/x)t (βb)

If u has type S(Ψ), (λx:S(Ψ).t)u −→ (u/x)t (βn)

Fig. 3: Beta rules

If t has type Bn ⇒ A, t(u+ v) −→ (tu+ tv) (lin+r)

If t has type Bn ⇒ A, t(α.u) −→ α.tu (linαr)

If t has type Bn ⇒ A, t0S(Bn) −→ 0S(A) (lin0r)

(t+ u)v −→ (tv + uv) (lin+l)

(α.t)u −→ α.tu (linαl)

0S(Bn⇒A)t −→ 0S(A) (lin0l)

Fig. 4: Linear distribution rules

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100 87

|1〉?t·r −→ t (if1) |0〉?t·r −→ r (if0)

Fig. 5: Rules of the conditional construction

If h �= u× v and h ∈ B, head h× t −→ h (head)

If h �= u× v and h ∈ B, tail h× t −→ t (tail)

Fig. 6: Rules for lists

(0S(A) + t) −→ t (neutral)

1.t −→ t (unit)

If t has type A, 0.t −→ 0S(A) (zeroα)

α.0S(A) −→ 0S(A) (zero)

α.(β.t) −→ (αβ).t (prod)

α.(t+ u) −→ (α.t+ α.u) (αdist)

(α.t+ β.t) −→ (α+ β).t (fact)

(α.t+ t) −→ (α+ 1).t (fact1)

(t+ t) −→ 2.t (fact2)

Fig. 7: Rules implementing the vector space axioms

(cf. Example 2.1).
Figure 6 gives the rules for lists, (head) and (tail).
Figure 7 deals with the vector space structure implementing a directed version

of the vector space axioms. The direction is chosen in order to yield a canonical
form [6].

Figure 8 are the rules to implement the castings. The idea is that × does not
distribute with respect to +, unless a casting allows such a distribution. This way,
the types B × S(B) and S(B × B) are different. Indeed, |0〉 × (|0〉 + |1〉) have the
first type but not the second, while |0〉× |0〉+ |0〉× |1〉 have the second type but not
the first. This way, the first type give us the information that the state is separable,
while the second type do not. We can choose to take the first state as a pair of
qubits forgetting the separability information, by casting its type, in the same way
as in certain programming languages an integer can be casted to a float (and so,
forgetting the information that it was indeed an integer and not any float).

Figure 9 gives the rule for the projective measurement with respect to the basis
{|0〉 , |1〉}. In this rule, we use the following notations:

[α.]t may be either t or α.t

j ≤ m

|k〉 = |b1〉 × · · · × |bj〉 where b1 . . . bj is the binary representation of k

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–10088

⇑r (r + s)× u −→ (⇑r r × u+ ⇑r s× u) (dist+r)

⇑� u× (r + s) −→ (⇑� u× r + ⇑� u× s) (dist+l)

⇑r (α.r)× u −→ α. ⇑r r × u (distαr)

⇑� u× (α.r) −→ α. ⇑r u× r (distαl)

If u has type Ψ, ⇑r 0S(Φ) × u −→ 0S(Φ×Ψ) (dist0r)

If u has type Ψ, ⇑� u× 0S(Φ) −→ 0S(Ψ×Φ) (dist0l)

⇑ (t+ u) −→ (⇑ t+ ⇑ u) (dist+⇑)

⇑ (α.t) −→ α. ⇑ t (distα⇑)

⇑r 0S(S(S(Ψ))×Φ) −→⇑r 0S(S(Ψ)×Φ) (dist0⇑r
)

⇑r 0S(S(Bn)×Φ) −→ 0S(Bn×Φ) (neut⇑0r)

⇑� 0S(Ψ×S(S(Φ))) −→⇑� 0S(Ψ×S(Φ)) (dist0⇑�
)

⇑� 0S(Ψ×S(Bn)) −→ 0S(Ψ×Bn) (neut⇑0�)

If u ∈ B, ⇑r u× v −→ u× v (neut⇑r)

If v ∈ B, ⇑� u× v −→ u× v (neut⇑l)

Fig. 8: Rules for castings ⇑r and ⇑�

πj(
n∑

i=1

[αi.]
m∏

h=1

|bhi〉) −→
2j−1�
k=0

pk(|k〉 × |φk〉) (proj)

Fig. 9: Rule for the projection

|φk〉 =
∑
i∈Tk

⎛
⎝ αi√∑

r∈Tk
|αr|2

⎞
⎠ m∏

h=j+1

|bhi〉

pk =
∑
i∈Tk

(
|αi|2∑n
r=1 |αr|2

)

Tk = {i ≤ n | |b1i〉 × · · · × |bji〉 = |k〉}

This way, pk |k〉 × |φk〉 is the normalized k-th projection of the term.
Finally, Figure 10 give the contextual rules implementing the call-by-value and

call-by-name strategies.

Example 2.3 The term λx:B.x × x does not represent a cloning
machine, but a CNOT with an ancillary qubit |0〉. Indeed,

(λx:B.x× x) 1√
2
.(|0〉+ |1〉) (linαr)−→ 1√

2
.(λx:B.x× x)(|0〉+ |1〉)

(lin+r)−→ 1√
2
.((λx:B.x× x) |0〉+ (λx:B.x× x) |1〉)

βb−→ 1√
2
.(|0〉 × |0〉+ (λx:B.x× x) |1〉)

βb−→ 1√
2
.(|0〉 × |0〉+ |1〉 × |1〉)

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100 89

If t −→ u, then

tv −→ uv (λxB
n
.v)t −→ (λxB

n
.v)u (t+ v) −→ (u+ v)

α.t −→ α.u πjt −→ πju t× v −→ u× v

v × t −→ v × u ⇑r t −→⇑r u ⇑� t −→⇑� u

head t −→ head u tail t −→ tail u t?r·s −→ u?r·s

(p1t1 ‖ · · · ‖ pkt ‖ · · · ‖ pntn) −→ (p1t1 ‖ · · · ‖ pku ‖ · · · ‖ pntn)

Fig. 10: Contextual rules

The type derivation is as follows:

x : B
 x : B
Ax

x : B
 x : B
Ax

x : B
 x× x : B2
×I

 λx:B.x× x : B ⇒ B2
⇒I

 λx:B.x× x : S(B ⇒ B2)
SI

 |0〉 : B
Ax|0〉

 |0〉 : S(B)
SI

 |1〉 : B
Ax|1〉

 |1〉 : S(B)
SI

 |0〉+ |1〉 : S(B)
+I

 1√
2
.(|0〉+ |1〉) : S(B)

αI

 (λx:B.x× x) 1√
2
.(|0〉+ |1〉) : S(B2)

⇒ES

Example 2.4 The term π2 measures the first two qubits of its argument (in Ex-
ample 3.7 we give a more detailed explanation of its reduction):

π2(|001〉+ 2. |110〉+ 3. |000〉) (proj)−→ 10
14 |00〉 × (1√

10
. |1〉+ 3√

10
. |0〉) ‖ 4

14 |11〉 × (1. |0〉)

The typing derivation is the following:

 |0〉 : B
 |0〉 : B
 |1〉 : B

 |001〉 : B3

×I

 |001〉 : S(B3)
αI

 |1〉 : B
 |1〉 : B
 |0〉 : B

 |110〉 : B3

×I

 |110〉 : S(B3)
SI

 2. |110〉 : S(B3)
αI

 |0〉 : B
 |0〉 : B
 |0〉 : B

 |000〉 : B3

×I

 |000〉 : S(B3)
SI

 3. |000〉 : S(B3)
αI

 2. |110〉+ 3. |001〉 : S(B3)
+I

 |001〉+ 2. |110〉+ 3. |001〉 : S(B3)
+I

 π2(|001〉+ 2. |110〉+ 3. |001〉) : B2 × S(B)
SE

Example 2.5 A Hadamard gate can be implemented by H = λx : B.x?|−〉·|+〉,
where |+〉 = 1√

2
. |0〉+ 1√

2
. |1〉 and |−〉 = 1√

2
. |0〉 − 1√

2
. |1〉. Therefore, H : B ⇒ S(B)

and we have H |0〉 −→∗ |+〉 and H |1〉 −→∗ |−〉.

Correctness has been established in previous works for slightly different versions
of Lambda-S, except for the case of confluence, which have only been proved for
Lineal. Lineal can be seen as an untyped fragment without several constructions
(in particular, without πj). The proof of confluence for Lambda-S is delayed to
future work, using the development of probabilistic confluence from [10]. The proof

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–10090

of Subject Reduction and Strong Normalization are straightforward modifications
from the proofs of the different presentations of Lambda-S.

Theorem 2.6 (Confluence of Lineal, [6, Thm. 7.25]) Lineal, an untyped frag-
ment of Lambda-S, is confluent. �

Theorem 2.7 (Subject reduction on closed terms, [9, Thm. 2]) For any
closed terms t and u and type A, if t −→

�
i piui and
 t : A, then

�
i piui : A. �

Theorem 2.8 (Strong normalization, [18, Thm. 5.16]) If Γ
 t : A then t is
strongly normalizing. �

3 Denotational semantics

Even though the semantic of this article is about particular categories i.e. the cat-
egory of sets and the category of vector spaces, from the start our approach is
categorical in an abstract way. The idea is that the concrete situation exposed in
this article will pave the way to a more abstract formulation, and that is why we
give the constructions as abstract as general as possible. A more general treatment,
using a monoidal adjunction between a Cartesian closed category and a monoidal
category with some extra conditions, remains a topic for future publication.

Definition 3.1 A concrete categorical model for Lambda-S is given by the following
data:

• A monoidal adjunction

(Vec,⊗, I)

�

(Set,×, 1)

(U,n)(S,m)

where
· Set is the category of sets with 1 as a terminal object.
· Vec is the category of vector spaces over C, in which
I = C.

· S is the functor such that for each set A, S(A) is the
vector space whose vectors are the formal finite linear
combinations of the elements of A with coefficients in
C, and given a function f : A → B we define S(f) :

S(A) → S(B) by evaluating f in A.
· U is the forgetful functor such that for each vector space
V , U(V) is the underlying set of vectors in V and for
each linear map f , U(f) forgets of its linear property.

· m is a natural isomorphism defined by

mAB : S(A)⊗ S(B)→ S(A×B)

(
∑
a∈A

αaa)⊗ (
∑
b∈B

βbb)
→
∑

(a,b)∈A×B

αaβb(a, b)

· n is a natural transformation defined by nAB : U(V)×
U(W) → U(V ⊗W) such that (v, w) �→ v ⊗ w.

• There is a subcategory of Vec such that for every morphism f : V → W one
associates a morphism f † : W → V , called the dagger of f , such that for all

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100 91

f : V → W and g : W → U we have

Id†V = IdV (g ◦ f)† = f † ◦ g† f †† = f

• A Kleisli category defined with the following monad, called the distribution
monad, (D, η̂, μ̂):

D : Set → Set D(A) = {
n∑

i=1

piχai |
n∑

i=1

pi = 1, ai ∈ A, n ∈ N}

where χa is the characteristic function of a, and η̂ and μ̂ are defined as follows:

η̂ : A → D(A) μ̂ : D(D(A)) → D(A)

a �→ 1χa

n∑
i=1

piχ
(
mi∑
j=1

qijχaij)
�→

n∑
i=1

mi∑
j=1

piqijχaij

Remark 3.2

• For dealing with the probabilistic effect of the measurement our semantics requires
the notion of a distribution monad (see [13,16]). In order to give a more abstract
categorical description we consider the Kleisli category given by this monad where
a morphism f : A → B in the Kleisli category is really a morphism f : A → D(B)

in the category Set and corresponds to a computation of type B.
• There exists an object B and maps i1, i2 in Set such that for every t : 1 −→ A

and r : 1 −→ A, here exists a unique map [t, r] such that the following diagram
commutes

1 B 1

A

i1

t

[t,r]

i2

r

This object B is the Boolean set, and such
a map will allow us to interpret the if con-
struction (Definition 3.5).

• There exists a map + : US(A)×US(A) → US(A) in Set, given by (a, b) �→ a+ b

in which we use the sum defined in S(A).
• To have an adjunction means that each function g : A → U(V) extends to a unique

linear transformation f : S(A) → V , given explicitly by f(
∑

i αixi) =
∑

i αig(xi),
that is, formal linear combinations in S(A) to actual linear combinations in V

(see [15] for details).
• For every A ∈ |Set|, Vec(I, S(A)) is an abelian group with the sum defined

point-wise.
• Set is a Cartesian closed category where ηA is the unit and εA is the counit

of − × A � [A,−], from which we can define the curryfication (curry) and un-
curryfication (uncurry) of any map.

• The adjunction in Definition 3.1 gives rise to a monad (T, η, μ) in the category
Set, where T = US, η : Id → T is the unit of the adjunction, and using the counit
ε, we obtain μ = UεS : TT → T , satisfying unity and associativity laws (see [15]).

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–10092

Definition 3.3 Types are interpreted in the category Set, as follows:

�B� = B �Ψ ⇒ A� = �Ψ� ⇒ �A� �S(A)� = US �A� �Ψ× Φ� = �Ψ� × �Φ�
Remark 3.4 To avoid cumbersome notation, we will use the following convention:
We write directly US(A) for �S(A)� = US(�A�) and A for �A�, when there is no
ambiguity.

Before giving the interpretation of typing derivation trees in the model, we need
to define certain maps which will serve to implement some of the constructions in
the language.

To implement the if construction we define the following map.

Definition 3.5 Given t, r ∈ [Γ, A] there exists a map B
ft,r−→ [Γ, A] in Set defined

by ft,r = [t̂, r̂] where t̂ : 1 → [Γ, A] and r̂ : 1 → [Γ, A] are given by t̂ = λx.t and
ŝ = λx.s. Concretely this means that i1(
) �→ t and i2(
) �→ r.

Example 3.6 Consider t = i1 and r = i2, with t, r ∈ [1,B], where B =

{i1(
), i2(
)}. To make the example more clear, let us consider i1(
) = |0〉 and

i2(
) = |1〉, hence B = {|0〉 , |1〉}. The map B
ft,r−→ [1,B] in Set is defined by

ft,r = [λx.i1, λx.i2], where λx.ik : 1 → [1,B], for k = 1, 2. Therefore, we have the
following commuting diagram

1 B 1

[1,B]

i1

λx.i1

ft,r

i2

λx.i2

Hence, we have
ft,r |0〉 = ft,r(ii(�)) = (ii ◦ ft,r)� = (λx.i1)� = i1 = t

ft,r |1〉 = ft,r(i2(�)) = (i2 ◦ ft,r)� = (λx.i2)� = i2 = r

Therefore, ft,r is the map |0〉 �→ t and
|1〉 �→ r.

A projection πjk acts in the following way: first it projects the first j components
of its argument, an n-dimensional vector, to the basis vector |k〉 in the vector space
of dimension j, then it renormalizes it, and finally it factorizes the first j compo-
nents. Then, the projection πj takes the probabilistic distribution between the 2j

projectors πjk, each of these probabilities, calculates from the normalized vector to
be projected.

Example 3.7 Let us analyse the Example 2.4:

π2(|001〉+ 2. |110〉+ 3. |000〉) (proj)−→ 10
14 |00〉 × (1√

10
. |1〉+ 3√

10
. |0〉) ‖ 4

14 |11〉 × (1. |0〉)

We can divide this in four projectors (since j = 2, we have 22 projectors), which
are taken in parallel (with the symbol ‖). The four projectors are: π2,00, π2,01, π2,10
and π2,11. In this case, the probability for the projectors π2,01 and π2,10 are 0, and
hence these do not appear in the final term.

The projector π2,00 acts as described before: first it projects the first 2 compo-
nents of |ψ〉 to the basis vector |00〉, obtaining |001〉+3. |000〉. Then it renormalizes
it, by dividing it by its norm, obtaining 1√

10
. |001〉+ 3√

10
. |000〉. Finally, it factorizes

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100 93

the vector, obtaining |00〉 × (1√
10
. |1〉+ 3√

10
. |0〉). Similarly, the projector π2,11 gives

|11〉 × (1. |0〉).
Finally, the probabilities to assemble the final term are calculated by p0 =

|1|2+|3|2
|1|2+|2|2+|3|2 = 10

14 and p1 =
|2|2

|1|2+|2|2+|3|2 = 4
14 .

Categorically, we can describe the operator πjk (Definition 3.11) by the compo-
sition of three arrows: a normalizing arrow Norm (Definition 3.8), a projector arrow
to the |k〉 basis vector, and a factorizing arrow ϕj (Definition 3.9). Then, the pro-
jection πj (Definition 3.14) maps a vector to the probabilistic distribution between
the 2j basis vectors |k〉, using a distribution map (Definition 3.12).

In the following definitions, if |ψ〉 is a vector of dimension n, we write |ψ〉 : I →
S(Bn) to the map 1 �→ |ψ〉.

Definition 3.8 The normalizing arrow Norm is defined as follows:

Norm : US(Bn) → US(Bn) |ψ〉 �→

⎧⎪⎨
⎪⎩

|ψ〉√
(|ψ〉†◦|ψ〉)(�)

if |ψ〉 �= 0

|0〉 otherwise

Definition 3.9 The factorizing arrow ϕj is defined as any arrow making the fol-
lowing diagram commute:

Bj × US(Bn−j) US(Bj)× US(Bn−j) U(S(Bj)⊗ S(Bn−j))

Bj × US(Bn−j) US(Bn) = US(Bj × Bn−j)

η×Id

Id

n

U(m)

ϕj

Example 3.10 For example, take ϕj as the following map:

ϕj : US(Bn) → Bj × US(Bj−n)

a �→

⎧⎪⎪⎨
⎪⎪⎩

j∏
h=1

|bh〉 ×
n∑

i=1
αi.

(
n∏

h=j+1

|bih〉
)

if a =
n∑

i=1
αi.

(
j∏

h=1

|bh〉 ×
n∏

h=j+1

|bih〉
)

|0〉n otherwise

Definition 3.11 For each k = 0, . . . , 2j − 1, the projection to the |k〉 basis vector,
πjk, is defined as any arrow making the following diagram commute:

US(Bn) ∼= U(S(B)⊗n) U(S(B)⊗n) ∼= US(Bn)

Bj × US(Bn−j) US(Bn)

πjk

U((|k〉◦|k〉†)⊗I)

Norm

ϕj

where the isomorphism US(Bn) ∼= U(S(B)⊗n) is obtained by composing n−1 times
the mediating arrow m and then applying the functior U .

The following distribution map will allow to assemble the final distribution of
projections in Definition 3.14.

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–10094

Definition 3.12 Let {pi}ni=1 be a set with pi ∈ [0, 1], and
∑n

i=1 pi = 1. Then, we
define d{pi}i as the arrow d{pi}i : A

n → D(A) such that (a1, . . . , an) �→
∑n

i=1 piχai .

Example 3.13 Consider d{ 1
2
, 1
3
, 1
6
} : B

3 → D(B3) defined by d{ 1
2
, 1
3
, 1
6
}(b1× b2× b3) =

1
2χb1 +

1
3χb2 +

1
6χb3 .

Then, for example, d{ 1
2
, 1
3
, 1
6
} |101〉 = 1

2χ|1〉 +
1
3χ|0〉 +

1
6χ|1〉.

Definition 3.14 πj is the arrow πj : US(Bn) → D(Bj×US(Bn−j)) such that |ψ〉 �→∑2j−1
k=0 pkχπjk|ψ〉, where pk = Norm(|ψ〉)† ◦Pk ◦Norm(|ψ〉) with Pk = (|k〉 ◦ |k〉†)⊗ Id

and πjk is the arrow given in Definition 3.11.

Example 3.15 Consider the set B2 and the vector space S(B2). We can describe
the projection π1 as the map π1 : US(B2) → D(B × US(B)) such that |ψ〉 �→
p0χπ10|ψ〉 + p1χπ11|ψ〉, where, if |ψ〉 = α1. |00〉 + α2. |01〉 + α3. |10〉 + α4. |11〉, then

p0 =
|α1|2+|α2|2√∑4

i=1 |αi|2
and p1 =

|α3|2+|α4|2√∑4
i=1 |αi|2

.

The Norm arrow is the arrow Norm : US(B2) → US(B2) such that

α1. |00〉+α2. |01〉+α3. |10〉+α4. |11〉
→ α1√∑4
i=1 |αi|2

. |00〉+ α2√∑4
i=1 |αi|2

. |01〉+ α3√∑4
i=1 |αi|2

. |10〉+ α4√∑4
i=1 |αi|2

. |11〉

The factorisation arrow is the arrow ϕ1 : US(B2) → B× US(B) such that

α1. |00〉+ α2. |01〉+ α3. |10〉+ α4. |11〉 �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|0〉 × (α1. |0〉+ α2. |1〉) if α3 = α4 = 0

|1〉 × (α3. |0〉+ α4. |1〉) if α1 = α2 = 0

|00〉 otherwise

Finally, π10 and π11 are defined as π10 : US(B2) → B × US(B) and π11 :

US(B2) → B× US(B) such that

π10 = ϕ1 ◦Norm ◦U(|0〉 ◦ |0〉†⊗ Id) π11 = ϕ1 ◦Norm ◦U(|1〉 ◦ |1〉†⊗ Id)

We write (US)m(A) for US(. . . US(A)), where m > 0 and A �= US(B). The
arrow sum on (US)m(A) will use the underlying sum in the vector space S(A).
Therefore, in order to implement this sum, we need the following map.

Definition 3.16 The map gk : (US)k+1(A) × (US)k+1(A) → (US)k(US(A) ×
US(A)) is defined by

gk = (US)k−1U(m) ◦ (US)k−1(n) ◦ (US)k−2U(m) ◦ (US)k−2(n) ◦ · · · ◦ U(m) ◦ n
Example 3.17 We can define the sum on (US)3(A)× (US)3(A) by using the sum
on S(A) as g2 ◦ (US)2(+), where g2 = USU(m) ◦US(n) ◦U(m) ◦ n. This gives the
following diagram

USUSUS(A)× USUSUS(A) U(SUSUS(A)⊗ SUSUS(A)) US(USUS(A)× USUS(A))

USUSUS(A) USUS(US(A)× US(A)) USU(SUS(A)⊗ SUS(A))

n

sum

U(m)

US(n)

USUS(+) USU(m)

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100 95

Using all the previous definitions, we can finally give the interpretation of a type
derivation tree in our model. If Γ
 t : A with a derivation T , we write it generically
�T � as Γ t−→ A. On the following definition, we write Sm(A) for S(. . . S(A)), where
m > 0 and A �= S(B).

Definition 3.18 If T is a type derivation tree, we define �T � inductively as follows,
�
ΓB, x : Ψ
 x : Ψ

Ax
�
= ΓB ×Ψ

!×Id−→ 1×Ψ ≈ Ψ where Id is the identity in Set�
ΓB
 0S(A) : S(A)

Ax0
�
= ΓB !−→ 1

λx.0−→ US(A)�
ΓB
 |0〉 : B

Ax|0〉
�
= ΓB !−→ 1

λx.|0〉−→ B�
ΓB
 |1〉 : B

Ax|1〉
�
= ΓB !−→ 1

λx.|1〉−→ B�
Γ
 t : Sm(A)

Γ
 α.t : Sm(A)
αI

�
= Γ

t−→ (US)m(A)
(US)m−1U(λ)−→ (US)m−1U(S(A)⊗ I)

(US)m−1U(Id⊗α)−→ (US)m−1U(S(A)⊗ I)
(US)m−1U(λ−1)−→ (US)m(A)�

Γ,ΞB
 t : Sm(A) Δ,ΞB
 r : Sm(A)

Γ,Δ,ΞB
 t+ r : Sm(A)
+I

�
= Γ×Δ× ΞB Id×δ−→ Γ×Δ× ΞB × ΞB Id×σ×Id−→ Γ× ΞB ×Δ× ΞB

t×r−→ (US)m(A)× (US)m(A)
gm−1−→ (US)m−1(US(A)× US(A))

(US)m−1(+)−→ (US)m(A)�
Γ
 t : A

Γ
 t : S(A)
SI

�
= Γ

t−→ A
η−→ US(A)�

Γ
 t : Sk (Bn)

Γ
 πjt : B
j × S

(
Bn−j

) SE

�
= Γ

t−→ (US)k (Bn)
μk−1

−→ US(Bn)
πj−→ D(Bj × S

(
Bn−j

)
)

�
Γ
 t : A Γ
 r : A
Γ
 ?t·r : B ⇒ A

If

�
= Γ

curry(uncurry(ft,r) ◦ swap)−→ [B, A]�
Γ, x : Ψ
 t : A

Γ
 λx:Ψ.t : Ψ ⇒ A
⇒I

�
= Γ

ηΨ

−→ [Ψ,Γ×Ψ]
[Id,t]−→ [Ψ, A]�

Δ,ΞB
 u : Ψ Γ,ΞB
 t : Ψ ⇒ A

Δ,Γ,ΞB
 tu : A
⇒E

�
= Δ× Γ× ΞB Id×δ−→ Δ× Γ× ΞB × ΞB Id×σ×Id−→ Δ× ΞB × Γ× ΞB

u×t−→ Ψ× [Ψ, A]
εΨ−→ A�

Δ,ΞB
 u : S(Ψ) Γ,ΞB
 t : S(Ψ ⇒ A)

Δ,Γ,ΞB
 tu : S(A)
⇒ES

�
= Δ× Γ× ΞB Id×δ−→ Δ× Γ× ΞB × ΞB Id×σ×Id−→ Δ×ΞB×Γ×ΞB

u×t−→ US(Ψ)× US([Ψ, A])
n−→ U(S(Ψ)⊗ S([Ψ, A]))

U(m)−→ US(Ψ× [Ψ, A])
US(εΨ)−→ US(A)�

Γ,ΞB
 t : Ψ Δ,ΞB
 u : Φ

Γ,Δ,ΞB
 t× u : Ψ× Φ
×I

�
= Γ×Δ× ΞB Id×δ−→ Γ×Δ× ΞB × ΞB Id×σ×Id−→ Γ× ΞB ×Δ× ΞB t×u−→ Ψ× Φ

�
Γ
 t : Bn

Γ
 head t : B
×Er

�
= Γ

t−→ Bn head−→ B where head is the projector of the first component in Set�
Γ
 t : Bn

Γ
 tail t : Bn−1
×El

�
= Γ

t−→ Bn tail−→ Bn−1 where tail is the projector of the n− 1 last components�
Γ
 t : S(S(Ψ)× Φ)

Γ
⇑r t : S(Ψ× Φ)
⇑r

�
= Γ

t−→ US(US(Ψ)× Φ)
U(Id×η)−→ US(US(Ψ)× US(Φ))

US(n)−→ US(U(S(Ψ)⊗ S(Φ)))

USU(m)−→ USUS(Ψ× Φ)
μ−→ US(Ψ× Φ)�

Γ
 t : S(Ψ× S(Φ))

Γ
⇑� t : S(Ψ× Φ)
⇑l

�
= Γ

t−→ US(Ψ× US(Φ))
U(η×Id)−→ US(US(Ψ)× US(Φ))

US(n)−→ US(U(S(Ψ)⊗ S(Φ)))

USU(m)−→ USUS(Ψ× Φ)
μ−→ US(Ψ× Φ)�

Γ
 ti : A
∑

i pi = 1

Γ
 p1t1 ‖ · · · ‖ pntn : A
‖
�
= Γ

δ−→ Γn t1×···×tn−→ An
d{pi}i−→ D(A)

Proposition 3.19 (Independence of derivation) If Γ
 t : A can be derived
with two different derivations T and T ′, then �T � = �T ′�

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–10096

Proof. Without taking into account rules ⇒E , ⇒ES and SI , the typing system is
syntax directed. In the case of the application (rules ⇒E and ⇒ES), they can be
interchanged only in few specific cases.

Hence, we give a rewrite system on trees such that each time a rule SI can be
applied before or after another rule, we chose a direction to rewrite the three to
one of these forms. Similarly, we chose a direction for rules ⇒E and ⇒ES . Then
we prove that every rule preserves the semantics of the tree. This rewrite system is
clearly confluent and normalizing, hence for each tree T we can take the semantics
of its normal form, and so every sequent will have one way to calculate its semantics:
as the semantics of the normal tree. �

Remark 3.20 Proposition 3.19 allows us to write the semantics of a sequent, in-
dependently of its derivation. Hence, from now on, we will use �Γ
 t : A�, without
ambiguity.

Lemma 3.21 (Substitution) If Γ′, x : Ψ,Γ
 t : A and
 r : Ψ, then the following
diagram commutes:

Γ′ × Γ A

Γ′ × 1× Γ Γ′ ×Ψ× Γ

(r/x)t

≈
Id×r×Id

t

That is, �Γ′,Γ
 (r/x)t : A� = �Γ′, x : Ψ,Γ
 t : A� ◦ (�
 r : Ψ� × Id).

Proof. By induction on the derivation of Γ′, x : Ψ,Γ
 t : A. �

Theorem 3.22 (Soundness) If
 t : A, and t −→ r, then �
 t : A� = �
 r : A�.
Proof. By induction on the rewrite relation, using the first derivable type for each
term. �

In order to prove adequacy (Theorem 3.26), we use an adaptation to Lambda-S
of Tait’s proof for strong normalization.

Definition 3.23 Let A,B be sets of closed terms. We define the following operators
on them:

• Closure by antireduction: A = {t | t −→∗ r, with r ∈ A and FV (t) = ∅}.
• Closure by parallelism: A‖ = {

�
i piti | ti ∈ A and

∑
i pi = 1}

• Product: A×B = {t× u | t ∈ A and u ∈ B}.
• Arrow: A ⇒ B = {t | ∀u ∈ A, tu ∈ B}.
• Span: SA = {

∑
i αiri | ri ∈ A} where αr is a notation for α.r when α �= 1, or 1.r

or just r when α = 1. Also, we use the convention that
∑1

i=1 αiri = αiri.
• Error: EA = A ∪ {error}, where error is any term containing a subterm πj0S(Bn).

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100 97

The set of computational closed terms of type A (denoted CA), is defined by

CB = {|0〉 , |1〉 , error}‖

CA×B = E(CA × CB)
‖

CΨ⇒A = E(CΨ ⇒ CA)
‖

CS(A) = ESCA ∪ {0S(B) | S(B) � S(A)}‖

Where � is defined as S(S(A)) � S(A) and A � S(A).
A substitution σ is valid with respect to a context Γ (notation σ � Γ) if for each

x : A ∈ Γ, σx ∈ CA.

Lemma 3.24 For any type A, we have error ∈ CA.

Proof. By induction on A. �

Lemma 3.25 If Γ
 t : A and σ � Γ, then σt ∈ CA.

Proof. By induction on the derivation of Γ
 t : A. �

Theorem 3.26 (Adequacy) If �
 t : B� = �
 v : B�, where v ∈ {|0〉 , |1〉}, then
either t −→∗ v or t −→∗ error.

Proof. By Lemma 3.25, t ∈ CB = {|0〉 , |1〉 , error}‖, therefore, t −→∗ �n
i=1 piri where

ri ∈ {|0〉 , |1〉 , error}.
Since �
 t : B� = �
 v : B� = λx. |0〉 or λx. |1〉, we have that n = p1 = 1 and so

t −→∗ v, or t −→∗ error. �

4 Conclusion

In this paper we have given a concrete categorical semantics of Lambda-S and
proved that it is sound (Theorem 3.22) and adequate (Theorem 3.26). Such a
semantics highlights the dynamics of the calculus: The algebraic rewriting (linear
distribution, vector space axioms, and typing casts rules) emphasize the standard
behaviour of vector spaces, and the natural transformation n takes these arrows from
the Cartesian category Set to the tensorial category Vec, where such a behaviour
occur naturally, and then are taken back to the Cartesian realm with the natural
transformation m. This way, rules such as (lin+r): t(u + v) −→ tu + tv, are simply
considered as U(m)◦n producing (u+v, t) �→ (u, t)+(v, t) in two steps: (u+v, t) �→
(u+v)⊗t = u⊗t+v⊗t �→ (u, t)+(v, t), using the fact that (u+v)⊗t = u⊗t+v⊗t

in Vec.
We have constructed a concrete mathematical semantic model of Lambda-S

based on a monoidal adjunction with some extra conditions. However, the con-
struction depends crucially on inherent properties of the categories of set and vector
spaces. In a future work we will study the semantics from a more abstract point of
view. Our approach will be based on recasting the concrete model at a more ab-
stract categorical level of monoidal categories with some axiomatic properties that
are now veiled in the concrete model. Some of these properties, such as to consider
an abstract dagger instead of an inner product, were introduced in the concrete

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–10098

model from the very beginning, but others are described in Remark 3.2 and Defi-
nitions 3.5, 3.8, 3.9, 3.11, 3.12, and 3.14. Another question we hope to address in
future work is the exact categorical relationship between the notion of amplitude
and probability in the context of the abstract semantics. While some research has
been done in this topic (see, for example, [2,19]) it differs from our point of view in
some important aspects: for example to consider a notion of abstract normalization
as primitive.

References

[1] Abramsky, S., Computational interpretations of linear logic, Theoretical Computer Science 111 (1993),
pp. 3–57.

[2] Abramsky, S. and B. Coecke, A categorical semantics of quantum protocols, in: Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science (LICS) (2004), pp. 415–425.

[3] Altenkirch, T. and J. Grattage, A functional quantum programming language, in: Proceedings of the
20th Annual IEEE Symposium on Logic in Computer Science (LICS) (2005), pp. 249–258.

[4] Arrighi, P. and A. Díaz-Caro, A System F accounting for scalars, Logical Methods in Computer Science
8(1:11) (2012).

[5] Arrighi, P., A. Díaz-Caro and B. Valiron, The vectorial lambda-calculus, Information and Computation
254 (2017), pp. 105–139.

[6] Arrighi, P. and G. Dowek, Lineal: a linear-algebraic lambda-calculus, Logical Methods in Computer
Science 13(1:8) (2017).

[7] Assaf, A., A. Díaz-Caro, S. Perdrix, C. Tasson and B. Valiron, Call-by-value, call-by-name and the
vectorial behaviour of the algebraic λ-calculus, Logical Methods in Computer Science 10(4:8) (2014).

[8] Benton, N., A mixed linear and non-linear logic: Proofs, terms and models, in: L. Pacholski and
J. Tiuryn, editors, Computer Science Logic (CSL 1994), Lecture Notes in Computer Science 933
(1994), pp. 121–135.

[9] Díaz-Caro, A. and G. Dowek, Typing quantum superpositions and measurement, in: Theory and Practice
of Natural Computing (TPNC 2017), Lecture Notes in Computer Science 10687 (2017), pp. 281–293.

[10] Díaz-Caro, A. and G. Martínez, Confluence in probabilistic rewriting, Preproceedings of LSFA 2017.
To appear in ENTCS. Preprint at arXiv:1708.03536. (2017).

[11] Díaz-Caro, A. and B. Petit, Linearity in the non-deterministic call-by-value setting, in: L. Ong and
R. de Queiroz, editors, Logic, Language, Information and Computation, Lecture Notes in Computer
Science 7456 (2012), pp. 216–231.

[12] Girard, J.-Y., Linear logic, Theoretical Compututer Science 50 (1987), pp. 1–102.

[13] Giry, M., A categorical approach to probability theory, in: Categorical Aspects of Topology and Analysis,
Lecture Notes in Mathematics 915 (1982), pp. 68–85.

[14] Green, A. S., P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron, Quipper: a scalable quantum
programming language, ACM SIGPLAN Notices (PLDI’13) 48 (2013), pp. 333–342.

[15] Lane, S. M., “Categories for the Working Mathematician,” Springer, 1998, 2 edition.

[16] Moggi, E., Computational lambda-calculus and monads, Technical Report ECS-LFCS-88-66, Lab. for
Foundations of Computer Science, University of Edinburgh (1988).

[17] Pagani, M., P. Selinger and B. Valiron, Applying quantitative semantics to higher-order quantum
computing, ACM SIGPLAN Notices (POPL’14) 49 (2014), pp. 647–658.

[18] Rinaldi, J. P., “Demostrando normalización fuerte sobre una extensión cuántica del lambda cálculo,”
Master’s thesis, Universidad Nacional de Rosario (2018).

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100 99

[19] Selinger, P., Dagger compact closed categories and completely positive maps, in: 3rd International
Workshop on Quantum Programming Languages (QPL 2005), Electronic Notes in Theoretical
Computer Science 170, 2007, pp. 139–163.

[20] Selinger, P. and B. Valiron, A lambda calculus for quantum computation with classical control,
Mathematical Structures in Computer Science 16 (2006), pp. 527–552.

[21] Vaux, L., The algebraic lambda calculus, Mathematical Structures in Computer Science 19 (2009),
pp. 1029–1059.

[22] Zorzi, M., On quantum lambda calculi: a foundational perspective, Mathematical Structures in
Computer Science 26 (2016), pp. 1107–1195.

A. Díaz-Caro, O. Malherbe / Electronic Notes in Theoretical Computer Science 344 (2019) 83–100100

	Introduction
	The calculus Lambda-S
	Denotational semantics
	Conclusion
	References

