
Epidemiology and Infection

cambridge.org/hyg

Original Paper

Cite this article: Fabricius G, Borzi RA,
Caminos J, Grigera TS (2022). Immunity
acquired by a minority active fraction of the
population could explain COVID-19 spread in
Greater Buenos Aires (June–November 2020).
Epidemiology and Infection 150, e84, 1–10.
https://doi.org/10.1017/S0950268822000656

Received: 3 February 2022
Revised: 24 March 2022
Accepted: 31 March 2022

Key words:
COVID-19; infectious disease epidemiology;
mathematical modelling; notifiable infectious
diseases; spread of disease

Author for correspondence:
Gabriel Fabricius,
E-mail: fabricius@fisica.unlp.edu.ar

© The Author(s), 2022. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution-
NonCommercial-ShareAlike licence (http://
creativecommons.org/licenses/by-nc-sa/4.0/),
which permits non-commercial re-use,
distribution, and reproduction in any medium,
provided the same Creative Commons licence
is used to distribute the re-used or adapted
article and the original article is properly cited.
The written permission of Cambridge
University Press must be obtained prior to any
commercial use.

Immunity acquired by a minority active
fraction of the population could explain
COVID-19 spread in Greater Buenos Aires
(June–November 2020)

Gabriel Fabricius1,2 , R. A. Borzi2,3,4, José Caminos3 and Tomás S. Grigera2,3,4,5

1Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET and Facultad de Ciencias
Exactas, Universidad Nacional de La Plata, La Plata, Argentina; 2CCT CONICET La Plata, Consejo Nacional de
Investigaciones Científicas y Técnicas, La Plata, Argentina; 3Instituto de Física de Líquidos y Sistemas Biológicos
(IFLySiB), CONICET and Universidad Nacional de La Plata, La Plata, Argentina; 4Departamento de Física, Facultad
de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina and 5Istituto dei Sistemi Complessi,
Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy

Abstract

The coronavirus disease 2019 (COVID-19) pandemic had an uneven development in different
countries. In Argentina, the pandemic began in March 2020 and, during the first 3 months,
the vast majority of cases were concentrated in a densely populated region that includes the
city of Buenos Aires (country capital) and the Greater Buenos Aires (GBA) area that sur-
rounds it. This work focuses on the spread of COVID-19 between June and November
2020 in GBA. Within this period of time there was no vaccine, basically only the early wild
strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was present, and
the official restriction and distancing measures in this region remained more or less constant.
Under these particular conditions, the incidences show a sharp rise from June 2020 and begin
to decrease towards the end of August until the end of November 2020. In this work we study,
through mathematical modelling and available epidemiological information, the spread of
COVID-19 in this region and period of time. We show that a coherent explanation of the evo-
lution of incidences can be obtained assuming that only a minority fraction of the population
got involved in the spread process, so that the incidences decreased as this group of people was
becoming immune. The observed evolution of the incidences could then be a consequence at
the population level of lasting immunity conferred by SARS-CoV-2.

Introduction

Since the coronavirus disease 2019 (COVID-19) pandemic began in late 2019 in Wuhan
(China), the disease has become a serious public health problem globally. Understanding
the transmission dynamics of COVID-19 is a matter as complex as it is important, since
any advances facilitate the taking of adequate control measures [1]. Although the transmission
of any infectious disease is complex, in the case of COVID-19, several specific features of the
disease make it difficult to characterise and control the contagion process. The possibility of
contagion before the appearance of symptoms, the existence of asymptomatic individuals,
the diversity in the symptoms and the heterogeneity in the immune response observed in dif-
ferent individuals, are just some of the characteristic elements that have become known as the
pandemic moved along.

One of the most controversial aspects of the disease is the issue of the immunity generated
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in individuals. The
mechanisms of natural immunity and the degree of protection against new infection they even-
tually confer are subject of intense research [2]. At this point, it is quite clear that natural
immunity protects against disease, but the degree of protection obtained against contagion
is not so evident [2–5]. The epidemiological impact of individual immunity is even less
clear. This is difficult to assess because every epidemiological observable (such as e.g. reported
cases or serological studies) is affected by a multiplicity of factors, such as effectiveness of
health system surveillance or uncertainties in antibody test results. In some cases, the study
of the evolution of the pandemic in certain regions at definite times offers the possibility of
exploring the relationship of some of these factors with the temporal evolution of the reported
cases. This is what we set to do here, taking advantage of the particular conditions that
occurred in a region of Argentina during a 6-month period within the pre-vaccination era.

The evolution of the pandemic has produced rising and falling incidence curves in every
region, but the reasons behind this behaviour are often very different. For example, the first
outbreak observed in Italy between March and June 2020 can be explained by assuming
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that at the beginning of March the disease spread freely with a
high R0. Severe restrictions were imposed, causing the value of
R0 to drop violently below 1, and a consequent decrease in
daily cases to values insignificant compared to those at the peak
[6]. The evolution of cases in Greater Buenos Aires (GBA),
Argentina, between June and the end of November 2020
(Fig. 1) is qualitatively similar, but requires a very different
explanation. In Argentina, severe isolation measures were estab-
lished a few days after the appearance of the first cases, when
there was practically no community transmission; these measures
were then gradually relaxed over time, and never hardened again.
At the beginning of June there was a sustained community trans-
mission in all GBA districts, with an average incidence of between
4 and 5 cases per day per 100 000 inhabitants, but no new mea-
sures were taken. Thus, the sustained fall of incidence observed
since the end of August in Argentina must have a different origin
than in the Italian case. Although it is possible that some health
measures, such as the use of the face mask or the protocols in hos-
pitals, had been improving over time, it is difficult to attribute the
drop to these reasons. Indeed, public data [7, 8] (Fig. S1) show
increasing mobility in all spaces, even as the incidence continued
to decrease. A plausible hypothesis is that this sustained decrease
was due to the acquisition of immunity. In this work we explore,
through mathematical modelling, under what conditions the fall
in incidences that occurs between the end of August and
November (which is a phenomenon observed in the 24 GBA dis-
tricts, Fig. S2) can be explained from the acquisition of immunity
by vast sectors of the population. The results of our simulations
show that there are several scenarios compatible with the available
epidemiological information on the spread of COVID-19 in GBA
which account for the observed dynamic evolution of the inci-
dences, as long as it is assumed that the transmission process
was basically caused by a minority but active fraction of the popu-
lation that was acquiring immunity.

Materials and methods

Demographical, epidemiological and mobility data

Located in the Buenos Aires province, the GBA is made up of the
24 districts closest to Buenos Aires city (CABA) with a total popu-
lation of 9 916 715 inhabitants according to the last census carried

out in 2010. Except for La Matanza, which has a population of
1 775 816 inhabitants, all the other districts have less than
650 000 pop. There are four districts (San Fernando, Ezeiza,
Ituzaingó and Hurlingham) with less than 200 000 pop., 10 dis-
tricts (José C. Paz, Vicente López, San Miguel, San Isidro,
Esteban Echeverría, Morón, Malvinas Argentinas, Berazategui,
Tres de Febrero and Avellaneda) that have between 250 000 and
350 000 pop., three districts (Tigre, General San Martín and
Florencio Varela) between 350 000 and 450 000 pop., three dis-
tricts (Moreno, Lanús and Merlo) between 450 000 and 550 000
pop. and three districts (Almirante Brown, Quilmes and Lomas
de Zamora) between 550 000 and 650 000 pop. The projected
GBA population for July 2020 is 11 264 104 [9], therefore, in
order to calculate the incidences, we will correct all the popula-
tions by a multiplicative factor of: 1.136 = 11 264 104/9 916 715.

The first confirmed case of COVID-19 in Argentina was on
3rd March 2020. On 16th March, schools and non-essential activ-
ities were called off in large cities. On 20th March, a lock-down
(preventive and mandatory social isolation or ASPO in Spanish)
was decreed throughout the country, and proceeded from that
moment on, with changes to different phases in different regions.
On 4th June, 18 provinces discontinued their lock-down, but the
GBA was among the regions that did not. Strictly speaking, the
GBA was in lock-down from 20th March to 9th November,
when it was replaced with social distancing measures (preventive
and mandatory social distancing or DiSPO in Spanish). That is,
throughout the period to be studied here a lock-down was offi-
cially in place [10]. However, communication and actual enforce-
ment of the measures was variable through the period, and so was
compliance. Mobility data from Google [7] (Fig. S1a) indicate that
mobility in supermarkets, jobs and transport stations began to
increase sharply just after the ASPO was decreed until the begin-
ning of June. From June, these indices remained constant or
increased at a much slower rate.

Figure 1 shows the incidence in GBA vs. date of onset of symp-
toms (the same data for individual districts are shown in Fig. S2).
From the beginning of June, the incidence in GBA shows a sus-
tained growth (at approximately constant rate) for 2 months,
from between 4 and 5 daily cases/100 000 pop. to 40 daily
cases/100 000 pop. Then, for the next 20 days it oscillates around
35 daily cases/100 000 pop., and finally begins to fall steadily until
the end of November. The rate of decrease is also approximately
constant but lower than the initial increase rate. Although the evo-
lution of incidences shows some peculiarity in each individual
district, the mentioned qualitative features are the same
across the whole GBA region. In most districts the rise and fall
times coincide with the global GBA curve, and in some districts
(such as Almirante Brown, Berazategui or Morón) even the abso-
lute values are very similar to the GBA case throughout the
period.

The incidences estimated from officially reported cases are a
lower bound for the actual incidences of COVID-19. The causes
of under-reporting are varied and most likely originate in cases
that were asymptomatic or with weak symptoms, although there
may be other reasons, such as those concerning the efficiency of
the detection system. It is very difficult to estimate the number
k of actual cases per reported case. The literature estimates vary
widely, according to the criterion adopted and the stage of the
pandemic [11–18]. We discuss under-reporting for GBA in the
Supplementary material (SM: Section I.D) and conclude that a
plausible range for the average value of k in the studied period
is between 3 and 6. However, it is important to keep in mind

Fig. 1. COVID-19 incidences in GBA from March 2020 to February 2021. Data are con-
signed in cases per day per 100 000 inhabitants (red line, left axis). We also show the
fraction of the population reported as confirmed case (grey line, right y-axis). Both
curves are drawn as a function of the symptoms onset date (SOD), estimated from
reported data [30]. Details of the incidences computation are given in the SM
(Section I.B).
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(as we discuss later) that under-reporting could vary somewhat
over time, and also be different in different districts.

Mathematical modelling

In a subject with the complexity of the spread of COVID-19, it is
impossible to consider a mathematical model that takes into
account all the elements and the heterogeneity present in the
problem. Nonetheless, a great diversity of models has been pro-
posed since the very beginning of the pandemic, each aiming at
different purposes, from evaluating the global impact of a control
measure, to attempting to predict the spatio-temporal behaviour
of the disease spread [1, 19–21]. These attempts at modelling
COVID-19 involve different assumptions and techniques, some
of them involving a large number of parameters that are deter-
mined by data fitting, using sophisticated algorithms. Here, we
follow a very different approach: the spirit of our modelling is
to take into account the central ingredients, assume certain
hypotheses (based on a set of evidences) and then use the
model as an exploration tool. In particular, we are interested in
exploring under what conditions the model reproduces the
increase in incidences by a factor of approximately 8 after
approximately 70 days and the subsequent decrease by a similar
factor in a slightly longer time, both observed in the dynamic evo-
lution of the reported incidences (Figs 1 and S2). Given the
uncertainties in the knowledge of the transmission process and
the ignorance of the cases of COVID-19 that really existed in
the analysed period (of which the reported cases are only a frac-
tion), we do not seek to obtain the set of model parameters that
best fits the reported cases, but to evaluate the degree of plausibil-
ity of different scenarios.

Assumed hypotheses
To build our model we assume the following:

(1) All infected individuals go through a latency period after
which they become contagious. We do not distinguish
between the contagion capacity of symptomatic and asymp-
tomatic individuals, nor will we take into account whether
some were isolated and others not: all infected individuals
infect equally but the time each individual is contagious
can vary and is described by a probability distribution.

(2) When infected individuals recover, they acquire immunity
lasting at least 6 months (the period we attempt to model1).

(3) The structure of social contacts through which contagions
occur stayed the same in GBA between June and November
2020. This is probably not strictly true, but nevertheless a rea-
sonable working hypothesis.

(4) Only a fraction fC of the individuals participated in the con-
tagion process. This hypothesis is based on the situation
that occurred in Argentina, where some individuals were
very little exposed to contagion (because they performed vir-
tual tasks, and when they went out they took care of them-
selves using face mask and respecting the decreed social
distancing) while others suffered a much higher degree of
exposure (because they did not comply with the standards
of care in force, or due to their work situation). There were
probably several intermediate behaviours but we will assume
as a working hypothesis that the population is divided into

two types of individuals: those who participate in the conta-
gion process and those who do not.

(5) In the period studied here (June–November 2020), the stron-
gest contacts occurred at home, the next strongest among
groups of close families, then among the neighbourhood
and so on, decreasing as the spatial scale increases. This is jus-
tified given that there were still serious restrictions on allowed
activities.

(6) The epidemic ‘ran by itself’ within each district of GBA from
June on, when community transmission was already occur-
ring in most neighbourhoods. That is, we neglect effects
due to cases imported from other districts or from abroad.
This would not be justified in the previous months, in
which the influence of imported cases from abroad or from
the city of Buenos Aires may have played an important
role. The simulations we have carried out to validate this
hypothesis are shown in the SM (Section III.B.2).

Model description
We consider a stochastic epidemiological model where a suscep-
tible individual, once infected, goes through the chain of states
S→ E1→ E2→ I1→ I2→ R, corresponding respectively to
susceptible, two stages of exposed and two stages of infected
individuals (see Fig. 2).

The population is made up of N individuals where the
individual j is in the epidemiological state Xj. The state of
the system at a given instant is defined by X = (X1, X2,…,…XN).
X(t) is a stochastic variable that evolves in time according
to the Markov process defined by the transitions indicated in
Figure 2.

The probability of contagion per unit of time of individual j,
Wj

inf is determined by the assumed social structure. We use a
hierarchical contact structure like the one schematised in
Figure 3. This allows considering a certain spatial heterogeneity
in the spread of the disease compatible with the mobility restric-
tions in force in the period studied. Each individual is associated
with a group of a given level. Within each level l (household,
building, neighbourhood and so on) an individual interacts
homogeneously with the other individuals in the same group
with the same effective rate of contacts per unit of time. We indi-
cate with l = 1, 2, …, L the level in the group hierarchy. An indi-
vidual j belongs to group νl,j at level l, which has Nnl,j members.
The probability of transition per unit of time for the infectious

Fig. 2. Epidemiological model used in this work. A given individual is described by its
epidemiological state X. A susceptible individual (X = S ) may became infected in con-
tact with an infectious individual (I1 or I2, which represent two stages at which the
individual can infect) with a probability rate Winf. E1 and E2 are latency states (the
exposed individual is infected but cannot yet infect). The transitions from E1 to the
successive states occur randomly with constant probability rates σ1,2 and γ1,2. The
final state (X = R) represents a recovered, immune individual. We assume that there
is no conversion from R to S during the period of our study (possible effects of
this not being true are discussed in the SM: Section III.B.1). Two epidemiological
states have been chosen to describe the latency phase and another two for the infec-
tious phase so that the model reproduces distributions of latency and infection times
compatible with those reported in literature and available epidemiological data, see
SM (Section II.B). Using more than one state for the same epidemiological phase is
known to produce more realistic transition dynamics [44], in particular two classes
have also been used to model COVID-19 by other authors [45]. Winf is not constant,
but depends on the instantaneous configuration of infected individuals (see text).

1In the SM (Section III.B.1), we explore the consequences of assuming that only a frac-
tion of individuals acquires immunity.
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process is given by

Wj
inf =

∑L

l=1

bl

Nnl,j(I1)+ Nnl,j(I2)

Nnl,j − 1
(1)

where Nnl,j(I1) and Nnl,j(I2) are the numbers of individuals of
group νl,j in states I1 and I2 respectively. The parameters βl are
associated with the probability of contacts per unit of time
between individuals within the level l. In addition, according to
hypothesis 4 above, some families (groups with l = 1, level ‘house-
hold’) are randomly marked ‘inactive’ (i.e. they have no social
contact) and do not participate in the contagion dynamics even
if they are in state S. These families can eventually become active
at a later stage of the dynamics.

We will take Nnl,j = Nl depending only on the level (i.e. all
families, neighbourhoods etc. are of the same size). Note however
that since the choice of which families will be inactive is random,
the number of active individuals will be different for different
groups at the same level for l > 1, and therefore the effective con-
tact rates will fluctuate around a mean value βeff≈ fCβl for Nl≫ 1,
where fC is the fraction of active individuals, see SM (Section II.A).
To simplify matters, we will generally refer to a given level using
the number of individuals in a given group of this level rather
than the index l. For instance, a level with groups of Nl = 20 000
individuals will be indicated as a ‘n2E4 neighbourhood’. A
group of the first level is usually mentioned as a family or
household.

Stochastic simulations are performed with the Gillespie algo-
rithm [22]. Simulation software is available for download at the
GitHub repository (see Data availability section). The incidence

Inc(t) (in cases per day) is computed as the number of individuals
whose state changes from exposed to infected (E2→ I1) during
day t, and the reproductive ratio, R(t), at day t as

R(t) = tinf
N[S � E1]
NI(t − 1)

where tinf is the mean duration of infection, N[S→ E1] is the
number of individuals whose state changes from susceptible to
exposed between day t− 1 and day t and NI(t− 1) is the total
number of infected individuals (in states I1 or I2) at day t− 1.

Results

For the results presented in this section, we take σ1 = σ2 = 0.66667
1/day which corresponds to an average latency time of 3 days, γ1
= γ2 = 2γ = 0.28571 1/day, which corresponds to a mean time of
infection tinf = 1/γ = 7 days, and β1 = 0.214 1/day for the rate of
household contacts. In the SM (Section II.B) we provide a justifi-
cation for the choice of these values based on several studies and
GBA-epidemiological data [23–30]. For an analysis of the robust-
ness of the results under changes in the parameters within a
plausible range of values, see SM (Section III.A).

To motivate the need for the spatial model we have introduced,
we begin by studying the evolution of the incidences using the
much simpler uniform mixing approach. Figure 4 shows the inci-
dence as a function of time under uniform mixing for two values
of R0. What we observe is that for R0 = 1.45, the incidence grows
by a factor of 8 until reaching the maximum in a time of 70 days
(as observed in the incidences obtained from reported cases of the
GBA, Fig. 1). However, the absolute values obtained are almost
20 times greater than those reported, resulting in 55.0% of the
population infected at the end of the epidemic (a much higher
proportion than the 11.6% obtained from serological studies
[31]). On the other hand, for R0 = 1.17 the incidence obtained
from the model takes values around 3 times those reported

Fig. 3. Schematic representation of our hierarchical model. Individuals (coloured cir-
cles representing states as in Fig. 2) are hierarchically grouped in families which
belong to buildings, neighbourhoods, etc. Black circles are either recovered (red
edge) or inactive. In either case they are inert as regards their capacity to infect or
become infected. Recovered individuals remain in this state for the whole simulated
period, while some of the inactive may be activated (turning them to susceptible) in
order to simulate a behavioural change in those individuals. The fraction, fC, of
inactive individuals is a parameter of the model and fixed at the beginning.
Inactive individuals always belong to isolated families (marked by black borders
and fully occupied by inactive individuals), chosen randomly within the different
neighbourhoods and towns. Some spatial structure is taken into account by the hier-
archical nature of the model. The contact rate for individuals of the same household
(β1, marked in blue) is assumed stronger than for individuals from different house-
holds (β2, brown). Individuals from different neighbourhoods interact with an even
smaller rate (β3, yellow), while people from different towns (the next hierarchical
level) interact with β4 (light blue).

Fig. 4. Incidences within the uniform mixing approximation for two values of R0. In
each case the circles indicate the position of the maximum of the curve and another
point with an incidence value eight times lower. The violet and light-blue curves inte-
grate to 55.0% and 27.6% of the population, respectively. Either this percentage or
the time at which the peak occurs misses those observed in reported data by
much more than can be reasonably expected, pointing to a failure within this
simple approach. The uniform mixing approximation is achieved in our model by tak-
ing: β1 = β2 =⋯ = βk− 1 = 0, βk = R0⋅γ, fC = 1. These curves were obtained by solving the
deterministic equations (which correspond to the limit N→∞) starting from an initial
condition where 99.99% of the population is susceptible and 0.01% is in the infec-
tious state I1.
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(which are within the plausible range), but the development time
of the epidemic turns out to be greater than one year (more than
twice the observed time). It is clear that the homogeneous mixing
approach gives a description of the development of the epidemic
that does not even approximate the orders of magnitude involved,
pointing that a drastic change in this approach is necessary. One
possibility (and one of the key points in this work) is to assume
that only a small fraction of the population participates in the
contagion process; this could explain how a maximum in the
incidence curve could be attained in a relatively short time without
a huge fraction of the population getting the disease. Instead, the
peak would occur when a relevant fraction of the most active
(regarding their chances of getting and spreading the illness)
population is infected. For example, assuming that 25% of the
population is active and contacting each other homogeneously
while the rest remain inactive, for a value of R0 = 1.45, the number
of cases would be reduced to 25% and the same would happen with
the incidences (since the total population does not change). This
produces incidences only about of the order of 5 times larger
than those in Figure 1, compatible with expectations, see SM
(Section I.D).

To explore this idea in more realistic situations, we considered
various plausible structures corresponding to the hierarchical
model in Figure 3 that reproduce the central features of the
dynamic evolution of the incidences observed in Figure 1. We
consider a system of 300 000 inhabitants (size of a typical GBA
district), starting from a state in which a fraction fC of individuals
participates in the dynamics of the epidemic (active) and the rest
is inactive. In the initial condition t = tini, all active individuals are
susceptible except for Iini individuals that are in state I1. We are
not concerned here with how those initially infected entered
GBA; we briefly discuss this in the SM (Section III.B.2). The sys-
tem is allowed to evolve freely and, in order to compare with data,
reported incidences are multiplied by a factor k and the origin of
the time axes adjusted so as to obtain the best agreement in each
case.

The parameters of the five scenarios discussed in the present
section are presented in Table 1 (more scenarios are considered
in Section III.A of the SM). Top panels of Figure 5a show the inci-
dences obtained from scenarios 1 and 2. In scenario 1, the indi-
viduals interact within the family and with any other individual
in the district while in scenario 2 there is a higher hierarchy of
interactions that decrease in magnitude with the spatial scale
(β1 > β2 > β3≫ β4≫ β5). In both cases, incidence values are
obtained that are compatible with those reported with k = 4.5,
which is within what it is expected. In scenario 1, where there
are only two hierarchical levels (i.e. the scenario where the active
individuals interact almost homogeneously), the incidence shows
a faster fall than in scenario 2, in which the interactions between
individuals from different neighbourhoods are very low.

The slower fall in incidences in scenario 2 can be understood
by observing the evolution of those infected in the different neigh-
bourhoods that make up the district (Figs 5b and c). Although in
both cases there are stochastic fluctuations at the different levels,
in this case such fluctuations are stronger, and there is a signifi-
cant lag in the beginning of the epidemic within each neighbour-
hood as well. In addition to this lag, there is also a marked
heterogeneity in the way in which the epidemic develops in the
different neighbourhoods. These differences are the origin of
the slower decrease of incidence found in scenario 2 (Fig. 5a).
These two scenarios have been chosen just to exemplify cases of

Ta
b
le

1.
Pa

ra
m
et
er
s
th
at

de
fin

e
th
e
fiv
e
sc
en

ar
io
s
co
ns
id
er
ed

Sc
en

ar
io

L
N
1

n 2
n 3

n 4
n 5

β 1
f C

β 2
f C

β 3
f C

β 4
f C

β 5
f C

I in
i

t in
i

k

1
2

4
75

00
0

–
–

–
0.
21
4

0.
10

–
–

–
0.
25

15
0

20
4.
5

2
5

4
5

10
0

10
15

0.
21
4

0.
10

0.
05

0.
00
87
5

0.
00
05

0.
25

15
0

10
4.
5

3
5

4
5

10
0

10
15

0.
21
4

0.
11

0.
05
5

0.
01

0.
00
05

0.
25

60
25

5.
0

4
5

4
5

10
0

10
15

0.
21
4

0.
10

0.
05
5

0.
00
4

0.
00
05

0.
50

15
0

25
10
.0

5
5

4
5

10
0

10
15

0.
21
4

0.
13

0.
05

0.
00
2

0.
00
02
5

1.
00

15
0

35
22
.0

N
um

be
r
of

le
ve
ls
(L
),
nu

m
be

r
of

in
di
vi
du

al
s
in

le
ve
l1

(N
1)
,n

um
be

r
of

gr
ou

ps
of

si
ze

N
l−
1
in
di
vi
du

al
s
th
at

m
ak
e
up

le
ve
ll

(n
l,
l>

1)
,h

ou
se
ho

ld
co
nt
ac
t
ra
te

(β
1)
,a

ve
ra
ge

ef
fe
ct
iv
e
co
nt
ac
t
ra
te

be
tw

ee
n
in
di
vi
du

al
s
of

th
e
sa
m
e
gr
ou

p
in

le
ve
ll

(f C
β l
)
an

d
m
ea
n
fr
ac
ti
on

of
ac
ti
ve

in
di
vi
du

al
s
(f C
)
de

fin
in
g
th
e
m
od

el
.N

ot
e
th
at

th
e
nu

m
be

r
of

in
di
vi
du

al
s
in

a
gr
ou

p
in

le
ve
ll

ca
n
be

ca
lc
ul
at
ed

as
N
l
=
N
1
n 2

…
n l
,l
>
1.

I in
i
is
th
e
in
it
ia
ln

um
be

r
of

in
fe
ct
ed

in
tr
od

uc
ed

at
ti
m
e
−
t in

i.
Th

e
co
ns
ta
nt

k
is
no

t
a
m
od

el
pa

ra
m
et
er
:i
t
is
th
e
fa
ct
or

w
e
us
ed

to
m
ul
ti
pl
y
th
e
re
po

rt
ed

in
ci
de

nc
es

so
th
at

th
ey

ap
pr
oa

ch
th
e
in
ci
de

nc
e
cu
rv
e
ob

ta
in
ed

fo
r
ea
ch

sc
en

ar
io

(s
ee

Fi
gs

5–
7)
.I
n
a
si
m
ila
r
w
ay
,t

in
i
(in

da
ys
)
is
de

te
rm

in
ed

af
te
r
th
e
si
m
ul
at
io
ns
,s
o
th
at

it
m
ax
im

is
es

th
e

ag
re
em

en
t
w
it
h
th
e
ep

id
em

io
lo
gi
ca
l
da

ta
.
W
e
ha

ve
ex
pl
or
ed

m
an

y
m
or
e
sc
en

ar
io
s,
pa

rt
of

w
hi
ch

is
de

sc
ri
be

d
in

Se
ct
io
n
III
.A

of
th
e
SM

an
d
Re

f.
[4
6]
.
Al
l
co
nt
ac
t
ra
te
s
ar
e
sp
ec
ifi
ed

in
un

it
s
of

1/
da

y.

Epidemiology and Infection 5

https://doi.org/10.1017/S0950268822000656 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268822000656


high or low coupling between neighbourhoods. We consider other
cases in the SM (Section III.A).

The differences in incidences that have been observed between
different GBA districts (Fig. S2) can be reproduced by simulating
different systems with slightly different values of the parameters
βl, Nl and fC (which would imply attributing them to different
individual behaviour in different districts). However, they can
also be obtained from different simulations of a system with the
same set of parameters (i.e. they are a consequence of the stochas-
tic nature of the model, which is more evident for certain sets of
parameters, as we will see in the following). Figure 6 shows four

realisations of a scenario 3 system, with parameters similar to
scenario 2, but where initially there are Iini = 60 infected (instead
of 150). The lower number of initially infected distributed in the
system in this case increases its initial heterogeneity, which trans-
lates into differences at the district level that were not observed in
the different realisations of scenario 2 (not shown).

In Figure 7 we show the results of scenarios 4 and 5 (see
Table 1) which have structures similar to those of scenario 2,
but also the fraction of active individuals is higher. It is seen
that it is possible to reproduce the observed dynamics, but with
k factors that are too large and incompatible with the available
epidemiological information. Therefore we conclude that to
obtain results compatible with the data, fC must be lower than
0.50.

This picture, in which there is a relatively small fraction of
active individuals, implies a potential risk regarding public health

Fig. 5. Model simulations and scaled data for two different scenarios. (a) Simulated
(blue) daily cases per 100 000 inhabitants as a function of time for a total population
of 300 000 for two different structures: scenario 1 (left panel) and scenario 2 (right
panel); Iini = 150 infected were introduced at an initial time. The green curve (right
y-axes) shows that after a short transitory the simulated R(t) starts near 1.5, and
decreases smoothly as the epidemic progresses. Simulations are compared with
reported cases (red) in Argentina’s GBA, where t = 0 corresponds to the 1st June
2020. In order to approach the simulation incidences, the data were multiplied by
a constant factor k = 4.5. The idea of having only a 25% active fraction of the popu-
lation leads to results comparable with reported data for a plausible value of under-
reporting, and are robust regarding variations in the hierarchical structures and
choice of parameters. We only show one stochastic realisation of each scenario,
since for these scenarios the variations between different realisations are not signifi-
cant. The robustness of the idea has been tested in a greater number of hierarchies
and sets of parameters, see SM (Section III). (b) Infected individuals (NI) in each one
of the 15 neighbourhoods of 20 000 inhabitants (n2E4 neighbourhoods) that make up
the systems shown in (a). The thick line is the average number of infected individuals
in an n2E4 neighbourhood. Note: in scenario 1, where there is no explicit separation
in neighbourhoods, an arbitrary (random) aggregate of houses was made to define
the corresponding neighbourhoods. (c) Infected individuals in each one of the 10
neighbourhoods of 2000 inhabitants (n2E3 neighbourhoods) that make up two par-
ticular n2E4 neighbourhoods shown in (b). The thick line is the average number of
infected individuals in each case.

Fig. 6. Less initially infected agents: more fluctuations. Simulated (blue) and reported
(red) daily cases per 100 000 inhabitants as a function of time for a total population
of 300 000, for the hierarchical model of scenario 3, similar to scenario 2 (shown in
Fig. 5a, right panel) but for Iini = 60. Panels a to d show different realisations of the
same model with the same number of initially infected individuals that are randomly
assigned in a different way into the system. We observe marked fluctuations in the
behaviour, based on the stochasticity of the model and supported by its intrinsic
non-homogeneous structure. Similar fluctuations have been observed on data corre-
sponding to different districts within GBA (Fig. S2). One of our points is to show that
these fluctuations can be based in real differences in the district connective structure,
or simply in the stochastic nature of the processes under way. In this case the data
were multiplied by a constant factor k = 5 (also compatible with a plausible under-
reporting) in order to approach the simulation results.

Fig. 7. Other fractions of active individuals. Panels a and b correspond to scenarios 4
and 5, with fC = 0.50 and fC = 1.0, respectively. It is seen that the dynamics of the curve
can also be reproduced as in scenario 2 (Fig. 5, right panel) but the required k-factors
(10 for case 4 and 22 for case 5) are not compatible with the epidemiological infor-
mation available.
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issues: that the majority fraction who remained inactive would
join the arena – either because they stop taking care of themselves
or because they get involved in activities in which they did not
participate. This may have been at the bottom of what happened
in Argentina at the beginning of December, when there was a sig-
nificant increase in cases that had its maximum near the new-year
celebrations. It is possible that this rise was the result of two
effects: more people becoming active, and an increase of infec-
tious contacts. In order to illustrate the consequences of the
first of these effects, two simulations (f25 and f50 in Fig. 8)
were performed where additional fractions of 25% and 50% of
individuals were set active by the end of November, preserving
the same effective contact rates as the previous active individuals
(same values of β1 and fC βl, for l > 1). The results are shown in
Fig. 8. Panel a2 shows that freeing an additional 50% of the popu-
lation produces a curve compatible with the rate of rise of inci-
dences observed in the reported data. There were many changes

in the epidemiological situation beyond the end of November
2020; this accounts for the structure observed in the data shown
in Figure 8, which is beyond what we are trying to model here.
The main purpose of including dates after November 2020 is to
show that the huge increase in cases that was observed at the
end of 2020, and later in 2021 (Fig. 8) is compatible with a signifi-
cant number of individuals who remained susceptible and began
to interact.

Discussion

Before drawing conclusions, some considerations regarding the
hypotheses and the results must be made, given the uncertainties
concerning the epidemiological data, as well as those that still exist
about the characteristics of the disease.

In order to compare the results of the simulations (which pro-
vide with the number of all the ‘real’ cases once a model and a
given realisation of randomness are assumed) with the epidemio-
logical data (which suffers from under-reporting) we have multi-
plied the latter by a time-independent factor k. Based on previous
works [31–36] we estimate the value of k between 3 and 6 (see
SM: Section I.D). A first remark is that, as we noted at the end
of Section IIA, the factor k might not be constant over time;
this can affect the shape of the curve of real cases in a way that
is difficult to predict. At this point it is then very important to dif-
ferentiate what may be considered an artificial feature, and what a
solid fact. For example, it is not so straightforward to conclude
from the comparison of the red and blue curves in panels
a1 and a2 of Figure 5, that scenario 2 (highly heterogeneous)
describes the spread of COVID-19 in GBA better than scenario
1. On the other hand, given that the definition of a suspect case
became more inclusive over time [37], and that there is no reason
to think that the vigilance has been greatly relaxed, the massive
drop in cases observed in Figure 1 from September onwards
remains a basic feature that any reasonable proposal should try
to explain.

A second remark is that the slow decline of reported cases
(panels a) in Figure 5 could be the consequence of an increase
in the values of the contagion rates (which we have assumed
constant) since September, rather than due to the stochastic
heterogeneity among different neighbourhoods proposed within
scenario 2. Although a hypothetical increase in rates could be
attributed to the slight observed increase in mobility or a relax-
ation of preventive measures, this could have been compensated
by the fact that more activities were carried out in open
spaces (due to increasing temperatures) which would lower
those rates.

However, there is independent epidemiological evidence that
points in the direction of a heterogeneous scenario in the spread
of COVID-19 in the GBA. In a seroprevalence study carried out
in neighbourhoods of different districts of the GBA [35], a high
heterogeneity was found without a clear explanation, sometimes
finding very different values for seroprevalence in nearby neigh-
bourhoods with similar characteristics. According to our simula-
tions, stochasticity in weakly coupled neighbourhoods could
account for this phenomenon. For example, looking at two of
the n2E4 neighbourhoods of panel b2 of Figure 5, we see that
the fraction of individuals recovered up to t = 150 (October 18)
in the neighbourhood indicated with pink circles is 18%, while
it is only 11% for that with green circles. Moreover, for that
same date, the fraction of individuals recovered in each of the
n2E3 neighbourhoods of panel d2 of Figure 5 fluctuates between

Fig. 8. Instability: explosion of cases when the inactive become epidemiologically
active. The panel structure is the same as in Figure 5, now exploring scenario 2
beyond the end of November. Panels a show the simulated (blue) and reported
(red) daily cases per 100 000 inhabitants as a function of time for a total population
of 300 000, for Iini= 150 initially infected. As shown in Figure 5 (right panel), the simu-
lations were performed with 75% of the population remaining inactive regarding the
infection or transmission of the virus. However, at day 180 (in correspondence with
end of November) this fraction was reduced by freeing (changing its state from
inactive to active) a fraction of the population of 25% (f25, left panel) and 50%
(f50, right panel). There is a clear correspondence with a minor ‘second wave’,
shown as a peak in the data. Our simulations clearly signal the potential risks of
this highly metastable situations (particularly in the second huge peak seen in
panel a2, blue curve). Panels b explore the different n2E4 neighbourhoods, and
panels c and d what happened for different n2E3 within two n2E4 neighbourhoods.
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4% and 19%. Since only 25% of individuals on average can get
sick ( fC = 0.25), this spread of values is markedly heterogeneous.

An important point is that the description that emerges from
scenario 2 is not the consequence of a particular choice of
model parameters. We check in the SM that the results are
robust under changes within plausible values of these para-
meters (Section III.A), under the consideration of the distribu-
tion of household sizes corresponding to GBA (Section
III.B.3) and also under the possibility of an increasing income
of infections originated in CABA, where many GBA residents
work (Section III.B.2).

A third remark concerns natural immunity. Even though the
mechanisms that generate natural immunity are not fully under-
stood and are subject of research, several studies estimated that
infection with SARS-CoV-2 provided 80–90% protection from
reinfection for up to 7 months [2, 3, 5]. Natural immunity
would confer protection against symptomatic and also asymp-
tomatic reinfections. Reinfection is rare but has also been
reported. In order to simplify the approach, we have not consid-
ered this possibility here, but we explore the issue in the SM
(Section III). Using a deterministic model and assuming that
20% of the population does not acquire immunity after infection,
we find that the impact of the effect is low: the rate of increase in
incidence is basically unchanged, and the peak is reached for a
value 18% higher. We therefore expect that the inclusion of this
effect in the hierarchical model will not produce qualitative
changes beyond a moderate increase in the value of k necessary
to approximate the data.

It is important to acknowledge that there exist previous works
discussing the possible reduction of the disease-induced herd
immunity level as a consequence of the fact that social contacts
in the population can be very inhomogeneous [38, 39]. The
idea is that the better connected individuals tend to become
infected (and then, recovered and immune) before the less con-
nected ones. The latter, with a much lower potential to infect
or become infected, become increasingly predominating within
the active population; this naturally lowers the immunity fraction
needed to stop the propagation of the disease. In a way, our
assumption that only a minority fraction participates in the con-
tagion process takes this idea of heterogeneity to an extreme. In
spite of this, it is important to realise (as exemplified in Fig. 8)
that in our case it is not a real herd immunity, since inactive indi-
viduals constitute a pool of susceptible with the potential to
become active.

The fourth remark regards pre-existing immunity to SARS-
CoV-2. Detection of SARS-CoV-2-reactive CD4+ T cells in unex-
posed individuals, suggests cross-reactive T cell memory between
circulating ‘common cold’ coronaviruses and SARS-CoV-2 [40].
However, it has been argued that pre-existing SARS-CoV-
2-specific T cells are unlikely to provide sterilising or herd
immunity, and it is unclear whether it even affects the severity
of the disease [41, 42]. So, it does not appear that pre-existing
immunity affects the results of this study.

Finally, weather may play a role that is not trivial to analyse.
Low temperatures are usually associated with less ventilation
and more transmission. This was probably not a great influence,
since the curve stops growing and starts to go down during
August when it is still relatively cold in this region (mean tem-
peratures vary from ≈11°C in July to ≈13°C in August [43]).
On the other hand, at the beginning of the southern summer
the curve was in full rise but, as mentioned, the leading effect
at that time was probably from the social new-year gatherings.

In any case, it cannot be ruled out that the weather may have
had some influence.

Summary and conclusions

The evolution of incidences in GBA presents certain characteris-
tics shared by the 24 districts that comprise it. The incidence
curve goes through a peak with a fast increase during June and
July, and a somewhat slower downward slope encompassing
September, October and November. This evolution occurred
under very particular conditions. The 6-month period between
June and the end of November 2020 was before the massive appli-
cation of vaccines; also – and in contrast to other peaks observed
during the COVID-19 pandemic in other places – the important
social and hygienic measures had been taken before the fast inci-
dence increase, and remained fixed during the curve develop-
ment. Here, we have shown that a coherent explanation of this
evolution can be obtained if it is assumed that a minority fraction
of the population participated in the contacts, so that the inci-
dences decreased as this group of people was becoming immune.
This picture is compatible with the strong outbreaks seen later,
which point to the existence of a considerable pool of susceptible
individuals. Our explanation implies that the evolution of the
incidences in GBA would be the epidemiological manifestation
of immunity conferred by SARS-CoV-2 infection.

The hypotheses assumed account for the observed behaviour
without the need to fine-tune the set of parameters. This is one
of the strengths of our model, which – although it could be
tuned to match closely the available data – we use to explain
the curve drop and to analyse a number of alternatives consistent
with the several factors that may have influenced the dynamics
within the epidemiological uncertainties.

Taking as true the rate of rise of reported incidences in June and
July 2020, our model predicts a basic reproduction number R0
around 1.5 during epidemic spread. On the other hand, the fraction
of active population fC cannot be accurately determined, since it
depends on the actual number of cases that (due to under-reporting)
can only be estimated roughly. One of our hypotheses is that indi-
viduals interact with markedly decreasing strength as one considers
wider circles of contacts. This is compatible with the fact, supported
by epidemiological evidence, of great heterogeneity in the transmis-
sion process in GBA. This heterogeneity, plus the intrinsically sto-
chastic nature of the transmission process means that, even under
the same conditions, results of the transmission at local levels can
be very different in different districts. This constitutes a difficulty
when trying to evaluate the effects of a public health policy, because
it may be implemented in the same way in two places but results in a
very different number of cases.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268822000656
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at the following site: https://datos.gob.ar/dataset/salud-covid-19-casos-registrados-
republica-argentina/archivo/salud_fd657d02-a33a-498b-a91b-2ef1a68b8d16 and
the rest can be requested at https://www.argentina.gob.ar/solicitar-informacion-
publica.
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