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Simple Summary: Pancreatic cancer remains an incurable cancer with a gloomy prognosis and a
median survival of months since the time of diagnosis. Disappointingly, no significant improve-
ment in clinical outcomes has been achieved for the last fifty years. Cancer stem cells (CSCs) are
suggested to be critical and responsible for tumor development, drug resistance and cancer relapse,
therefore, an effective antitumor therapy against pancreatic cancer should deal with pancreatic
CSCs. Here, we found that the alkylphospholipid analog edelfosine induces apoptosis in pancreatic
CD44+CD24+EpCAM+ CSCs through its accumulation in the endoplasmic reticulum, leading to sus-
tained endoplasmic reticulum stress and cell death. Edelfosine was effective against primary cultures
from pancreatic cancer patients and their corresponding pancreatic CSCs. Autophagy inhibition
potentiated the proapoptotic action of edelfosine in pancreatic CSCs. Thus, endoplasmic reticulum
targeting and its combination with autophagy inhibitors could open a new framework in pancreatic
cancer chemotherapy, directly involving pancreatic CSCs.

Abstract: Pancreatic cancer is one of the most lethal malignancies with a poor and gloomy prognosis
and the highest mortality-to-incidence ratio. Pancreatic cancer remains an incurable malignancy,
and current therapies are ineffective. We isolated cancer stem cells (CSCs) from the human PANC-1
pancreatic cancer cell line as CD44+CD24+EpCAM+ cells. These CSCs form pancreatic cancer spheres
or spheroids and develop tumors in SCID mice after subcutaneous injection of as few as 100 cells
per mouse. Here, we found that the alkylphospholipid analog edelfosine inhibited CSC pancreatic
cancer spheroid formation and induced cell death, as assessed by an increase in the percentage
of cells in the sub-G0/G1 region by means of flow cytometry, indicative of DNA breakdown and
apoptosis. This correlated with an increase in caspase-3 activity and PARP breakdown, as a major
substrate of caspase-3, following PANC-1 CSC treatment with edelfosine. The antitumor ether lipid
edelfosine colocalized with the endoplasmic reticulum in both PANC-1 cells as well as PANC-1 CSCs
by using a fluorescent edelfosine analog, and induced an endoplasmic reticulum stress response in
both PANC-1 cells and PANC-1 CSCs, with a potent CHOP/GADD153 upregulation. Edelfosine
elicited a strong autophagy response in both PANC-1 cells and PANC-1 CSCs, and preincubation
of CSCs with autophagy inhibitors, chloroquine or bafilomycin A1, enhanced edelfosine-induced
apoptosis. Primary cultures from pancreatic cancer patients were sensitive to edelfosine, as well as
their respective isolated CSCs. Nontumorigenic pancreatic human cell line HPNE and normal human
fibroblasts were largely spared. These data suggest that pancreatic CSCs isolated from established
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cell lines and pancreatic cancer patients are sensitive to edelfosine through its accumulation in the
endoplasmic reticulum and induction of endoplasmic reticulum stress.

Keywords: pancreatic cancer stem cell; pancreatic cancer spheroid; endoplasmic reticulum; endo-
plasmic reticulum targeting; autophagy; pancreatic cancer; primary cultures from pancreatic cancer
patients; alkylphospholipid analog; antitumor ether lipid; edelfosine

1. Introduction

Pancreatic cancer is one of the most aggressive and lethal types of malignant tu-
mors, with an annual incidence rate almost identical to the mortality rate [1]. In 2020,
~495,000 people worldwide were diagnosed with this fatal disease, and ~466,000 patients
died of this cancer [2]. Pancreatic ductal adenocarcinoma (PDAC) represents the vast
majority (90–95%) of pancreatic cancers and features a dismally poor prognosis, with a
median survival of months and a 5-year survival of less than 10% [3–5]. Pancreatic cancer
remains an incurable cancer, and clinical outcomes have not improved substantially over
the past five decades, with no substantial changes in the survival rate [1,5–7]. Despite
the development of novel treatments, such as FOLFIRINOX, nab-paclitaxel/Abraxane
plus gemcitabine and different drug combinations, including gemcitabine, cisplatin, tem-
sirolimus and bevacizumab, their modest effectiveness leading to very poor clinical out-
comes, development of chemoresistance and occurrence of significant adverse effects have
prevented the achievement of an effective therapy against this grim tumor [1].

There is currently a notion that the capacity of cancer growth and relapse is highly
dependent on the presence of viable cancer stem cells (CSCs), which constitute a small
subset of cells in the tumor (less than 5% of the total tumor cells) and are critical for cancer
initiation, development, invasion, metastasis and drug resistance [8–12]. This CSC popula-
tion represents a reservoir of self-sustaining cells that can regenerate all facets of the tumor,
giving rise to self-renewed CSCs as well as more differentiated cells that comprise the bulk
of the tumor population [13], in part through deregulated RNA processing [14]. CSCs
show an intrinsic resistance against chemotherapy and radiation [15–17], and therefore
these latter treatments could eliminate the bulk of non-CSC differentiated tumor cells, but
not CSCs [18]. Thus, CSCs, due to their endogenous resistance mechanisms and ability to
self-renew and differentiate into heterogeneous lineages of cancer cells, are suggested to un-
derlie drug resistance and cancer relapse, thus leading eventually to more aggressive tumor
recurrence and metastasis, the latter being the cause of more than 90% of cancer-related
deaths [19]. Pancreatic CSCs were first reported by the laboratory of Diane M. Simeone [20],
showing that a CD44+CD24+EpCAM+ (epithelial cell adhesion molecule)/ESA+ (epithelial
specific antigen) subpopulation, accounting for 0.2–0.8% of pancreatic cancer cells from
primary human tumors, was able to display stem cell features of self-renewal, generate
differentiated progeny and exhibited a high potential to form tumors in immunocom-
promised mice (approximately 100-fold increased tumorigenic potential as compared to
non-triple-positive cancer cells).

The antitumor ether lipid edelfosine (1-O-octadecyl-2-O-methoxy-rac-glycero-3-phos
phocholine) is the prototype of a family of synthetic compounds collectively known as
alkylphospholipid analogs (APLs) [21–24], and is able to induce a potent proapoptotic
activity against hematological and solid tumors through a unique mechanism of action
that involves lipid rafts and the endoplasmic reticulum (ER) [25–33]. Edelfosine also dis-
plays in vivo antitumor activity following oral administration in immunodeficient mouse
xenograft models for several hematological and solid tumors [29,31,34,35]. Edelfosine
shows a rather selective proapoptotic action against tumor cells, whereas normal nonma-
lignant cells are spared [21,22,26,27,36,37]. Oral administration of edelfosine in mouse
xenograft models of pancreatic cancer led to tumor regression and apoptosis in cancer
cells [29]. In vitro and in vivo experiments indicated that edelfosine accumulated in the ER
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of pancreatic cancer cells, leading to ER stress and apoptosis [29]. It is worth noting that
pancreatic cells have a very high capacity for protein synthesis because they are specialized
cells for the generation of digestive enzymes and hormones, and accordingly they exhibit
a highly developed ER [1,38]. Thus, we proposed ER targeting as a novel and effective
approach to pancreatic cancer therapy [1,29].

Because CSCs are suggested as the origin of cancers and considered to be respon-
sible for drug resistance and cancer relapse, due to their protective mechanisms against
chemotherapy and radiation, they should be the prime targets for therapeutic interven-
tion [39–41]. In this way, targeting and getting rid of CSCs may have the potential to
cure cancer.

Here, we investigated the action of edelfosine on human pancreatic CSCs derived
from the established PANC-1 human pancreatic cancer cell line as well as from primary
cultures of pancreatic cancer patients. We also analyzed the role of ER and autophagy
in the proapoptotic activity of the antitumor ether lipid edelfosine as a novel, selective
and promising anticancer approach against this incurable cancer for which there is no
effective treatment.

2. Materials and Methods
2.1. Reagents

Edelfosine was obtained from R. Berchtold (Biochemisches Labor, Bern, Switzerland),
and stock solutions were prepared as previously described [36]. Edelfosine was dissolved
at 2 mM, as a stock solution, in the culture medium containing 10% (v/v) heat-inactivated
fetal bovine serum (FBS) by heating at 50 ◦C for 45 min. The clear solution was sterilized
by filtration through a 0.22 µm pore size Millipore (Millipore Corporation, Burlington, MA,
USA) sterile filter and stored at 4 ◦C until use. The pan-caspase inhibitor z-VAD-fmk was
from Alexis Biochemicals (San Diego, CA, USA). Chloroquine and bafilomycin A1 were
from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Cell Culture

The human pancreatic cancer cell line PANC-1 was obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA). Monolayer cultures of PANC-1
(approximate doubling time, 32 h) were grown in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% (v/v) heat-inactivated FBS, 2 mM L-glutamine, 100 U/mL
penicillin, and 100 µg/mL streptomycin at 37 ◦C in a humidified atmosphere containing 5%
CO2. Ciprofloxacin (12.5 µg/mL) was added to avoid mycoplasma contamination. The cells
were passaged at 80–90% confluence using Versene solution (GIBCO-BRL, Gaithersburg,
MD, USA). The cells were periodically tested for mycoplasma infection and found to be
negative.

The nontumorigenic hTERT (human telomerase reverse transcriptase)-immortalized
human pancreatic nestin-expressing (HPNE) cell line, developed from human pancreatic
duct by transduction with a retroviral expression vector containing the hTERT gene [42],
was purchased from ATCC. Normal human primary fibroblasts were isolated from hyper-
trophic tonsils as previously described [37]. HPNE and fibroblasts were grown in DMEM
culture medium supplemented with 10% (v/v) heat-inactivated FBS as above.

2.3. Pancreatic Cancer Spheroid Formation

PANC-1 cells were grown in DMEM containing 10% FBS in 75 cm2 cell culture flasks
till 80–90% confluence was reached. Then, after two washes with Dulbecco’s phosphate-
buffered saline (DPBS) (GIBCO, Carlsbad, CA, USA), without calcium and magnesium,
approximately 1.2 × 106 pancreatic cancer cells were seeded in a serum-free stem cell
medium containing DMEM/F12, B27 (2% (v/v) of 50× B27), 20 ng/mL recombinant human
epidermal growth factor (rhEGF) (Invitrogen, Waltham, MA, USA), 20 ng/mL recombinant
human fibroblast growth factor (FGF) (Invitrogen), 2 mM L-glutamine, 100 U/mL penicillin,
100 µg/mL streptomycin, using ultralow attachment 75 cm2 canted cell culture flasks with
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a vent cap (Corning Life Sciences, Tewksbury, MA, USA). The above culture medium was
referred to as the “cancer stem cell medium” (CSM). The cells were cultured at 37 ◦C in
a humidified atmosphere containing 5% CO2. The medium was changed every 4–5 days
until pancreatic cancer spheroids of an appropriate size were obtained. After the primary
pancreatic cancer spheroids reached approximately 100–200 µm in diameter, the spheres
were dissociated and single cells were cultured in CSM to form secondary spheroids.
Pancreatic cancer spheres were subcultured several times for at least seven generations.
After the pancreatic cancer spheroids reached the desired size, cancer sphere cultured
cells were disaggregated to a single-cell suspension using the StemPro® Accutase® Cell
Dissociation Reagent (GIBCO) according to the manufacturer’s specifications.

2.4. Sorting of Cancer Stem Cells by Means of Flow Cytometry

Pancreatic cancer spheroids (usually approximately 100–200 µm in size) were collected
with a 40 µm BD Falcon cell strainer. Then, pancreatic cancer spheroids were disaggregated
using the StemPro® Accutase® Cell Dissociation Reagent (GIBCO), washed twice with
DPBS and suspended in DPBS at 1 × 106 cells/100 µL. Then, the cells were sorted for
CD44+CD24+EpCAM+ pancreatic CSCs using anti-CD44-APC (1:40 dilution), anti-CD24-PE
(1:40 dilution) and anti-EpCAM-FITC (1:40 dilution) antibodies (Becton Dickinson, Franklin
Lakes, NJ, USA) and a FACSAria cell sorter (Becton Dickinson) equipped with 488 nm
(blue) and 633 nm (red) emitting lasers. Side-scatter and forward-scatter profiles were used
to eliminate cell doublets. The data were analyzed with the BD FACSDiva software.

2.5. Soft Agar Colony Assay

Cell suspensions (5 × 103 cells) from disaggregated pancreatic cancer spheroids
suspended in CSM were prepared at 1.5 mL/well with 0.3% agarose (Becton Dickinson)
in the presence or absence of edelfosine, and overlaid onto each well of a six-well plate
containing a solidified bottom layer of 0.6% agarose in the medium (2 mL/well). Once
the top layer solidified, 1 mL of CSM was placed on top of the cell layer, and the plates
were incubated for 3 weeks, and the colonies were counted using a stereo microscope
Leica MZ16F (Wetzlar, Germany). The colony size was evaluated by measuring the colony
perimeter using the ImageJ software (NIH, Bethesda, MD, USA). Vehicle-treated control
cells were run in parallel. The results are expressed as the mean arbitrary units ± SD from
three independent experiments in two replicates.

2.6. Xenograft Mouse Models

Animal procedures were approved by the institutional research commission of the
University of Salamanca and the Ethics Committee of the University of Salamanca. Ani-
mal procedures complied with the Spanish (Real Decreto RD1201/05) and the European
Union’s (European Directive 2010/63/EU) guidelines on animal experimentation for the
protection and humane use of laboratory animals, and were conducted at the accredited
Animal Experimentation Facility (Servicio de Experimentación Animal) of the University
of Salamanca (register No. PAE/SA/001). Female CB17 severe combined immunodeficient
(SCID) mice (8-week-old) (Charles River Laboratories, Lyon, France), kept and handled
according to the institutional guidelines complying with the Spanish legislation under the
12/12 h light/dark cycle at a temperature of 22 ◦C, received a standard diet and acidified
water ad libitum. Different numbers of sorted CD44+CD24+EpCAM+ pancreatic CSCs
(102, 103 and 104) were suspended in the serum-free CSM/Matrigel mixture (1:1 volume)
followed by subcutaneous injection into the right flank of each mouse. For comparison,
similar amounts of PANC-1 cells were also injected in immunodeficient mice as previously
described [29]. The animals were monitored for body weight and any signs of morbidity
daily. The animals were sacrificed 4 months after cancer cell implantation; the tumors were
then carefully removed, and tumor weight and volume were measured.
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2.7. Apoptosis Analysis by Means of Flow Cytometry

Quantification of apoptotic cells was determined by means of flow cytometry with a
Becton Dickinson FACSCalibur and a Beckman-Coulter (Brea, CA, USA) FC500-MPL flow
cytometers as the percentage of cells in the sub-G0/G1 region (hypodiploid cells) in cell
cycle analysis as previously described [37,43,44].

2.8. Confocal Microscopy of Pancreatic Cancer Spheroids

Pancreatic cancer spheroid cells were attached to slides via cytospin at low speed
(Shandon Cytospin 3; Shandon Scientific, Runcorn, Cheshire, UK) and then fixed in 4%
formaldehyde using a Coplin jar as previously described [45]. The presence of CD44, CD24
and EpCAM was examined by means of confocal microscopy using mouse anti-human
CD44 conjugated to phycoerythrin, mouse anti-human CD24 conjugated to APC and mouse
anti-human EpCAM conjugated to FITC monoclonal antibodies (1:10 dilution) (Becton
Dickinson) as previously described [45,46]. To examine the presence of PAX6 and PDX1,
the cells were incubated with the rabbit polyclonal antibody to PAX6 (Abcam, Cambridge,
UK) and the mouse monoclonal antibody to PDX1 (Abcam) as the primary antibodies (1:10
dilution) and the goat anti-rabbit IgG Cy3-conjugated and anti-mouse IgG FITC-conjugated
secondary antibodies, respectively. Fluorescence was visualized with a Zeiss LSM 310
confocal laser scanning microscope (Zeiss, Oberkochen, Germany).

2.9. Analysis of Subcellular Edelfosine Localization by Confocal Microscopy

The subcellular localization of edelfosine in pancreatic cancer spheroids was examined
with the edelfosine fluorescent analog 1-O-[11′-(6′′-ethyl-1′′,3′′,5′′,7′′-tetramethyl-4′′,4′′-
difluoro-4′′-bora-3a′′,4a′′-diaza-s-indacen-2′′-yl)undecyl]-2-O-methyl-rac-glycero-3-phosph
ocholine (Et-BDP-ET) [47], which contains a boron-dipyrromethene (BODIPY) molecule,
a kind gift from F. Amat-Guerri and A.U. Acuña (Consejo Superior de Investigaciones
Científicas, Madrid, Spain). ER was visualized using the CellLight™ ER red fluorescent
protein (RFP) BacMam 2.0 reagent (ThermoFisher, Waltham, MA, USA), following the
manufacturer’s specifications. This CellLight™ ER-RFP BacMam 2.0 reagent includes a
fusion construct of the ER signal sequence of calreticulin and KDEL (ER retention signal)
and TagRFP, providing accurate and specific targeting to cellular ER-RFP, with minimal
cellular disruption. Colocalization of both signals (RFP; excitation: 555 nm, emission:
574–627 nm; BODIPY; excitation: 498 nm, emission: 510–549 nm) was analyzed by excita-
tion of both fluorochromes in the same section. Fluorescence was visualized with a confocal
laser scanning microscope Leica TCS SP8 STED 3X fitted with a 405 nm UV laser and a
white-light laser with freely tunable excitation (470–670 nm).

2.10. Western Blotting

The cells were harvested in a lysis buffer containing 25 mM HEPES (pH 7.7), 0.3 M
NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.1% Triton X-100, 20 mM β-glycerophosphate, 0.1
mM sodium orthovanadate, supplemented with protease inhibitors (1 mM phenylmethyl-
sulfonyl fluoride, 20 µg/mL aprotinin, 20 µg/mL leupeptin) or a protease inhibitor cocktail
(Roche, Basel, Switzerland). Protein concentration was determined using a Bradford assay.
Proteins (30–40 µg) were run on SDS-PAGE (8%, 10% or 14%) and analyzed by means of
immunoblotting. The separated proteins were transferred to Immobilon-P polyvinylidene
difluoride (PVDF) or nitrocellulose membranes, and then the blots were blocked with
5% (w/v) dried skimmed milk powder in 50 mM Tris HCl (pH 8.0), 150 mM NaCl and
0.1% Tween 20 (TBST) for 60 min at room temperature, and incubated for 1 h at room
temperature or overnight at 4 ◦C with specific antibodies. The following primary anti-
bodies used for protein immunodetection in this study are listed below: anti-116 kDa
poly(ADP-ribose) polymerase (PARP) (1:1000 dilution) mouse monoclonal antibody that
also detects the p85 cleavage fragment (BD Biosciences Pharmingen, San Diego, CA, USA);
anti-32 kDa caspase-3 (1:1000 dilution) rabbit monoclonal antibody that also detects the
p20 and p17 subunits (BD Biosciences Pharmingen); anti-16–14 kDa LC3 (1:1000 dilution)
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rabbit polyclonal antibody (Cell Signaling Technology, Danvers, MA, USA); anti-30 kDa
CHOP/GADD153 (1:250 dilution) rabbit polyclonal antibody (Santa Cruz Biotechnology);
anti-125 kDa PERK (1:500 dilution) rabbit polyclonal antibody (Santa Cruz Biotechnol-
ogy); anti-125 kDa phosho-PERK (1:500 dilution) rabbit polyclonal antibody (Santa Cruz
Biotechnology); anti-78 kDa GRP78/BiP (1:1000 dilution) rabbit polyclonal antibody (Santa
Cruz Biotechnology); anti-42/44 kD p-ERK1/2 (1:1000 dilution) mouse monoclonal anti-
body (Cell Signaling Technology); anti-42 kDa β-actin (1:5000 dilution) mouse monoclonal
antibody (Sigma). After three 5 min TBST washes, the membranes were incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies (1:1000 dilution) for 1 h at
room temperature. Then, the protein bands were visualized with a ChemiDocTM Imaging
System (Bio-Rad, Hercules, CA, USA), or by means of autoradiography, using an enhanced
chemiluminescence detection kit Amersham ECL (GE Healthcare, Chicago, IL, USA).

Images of the immunoblots were captured using the ChemiDoc Imaging System or
after scanning developed autoradiography films, and then quantification of the relative
level of the protein bands with reference to the internal control β-actin was calculated using
the ImageJ software [48] as previously described [49]. Data were acquired as arbitrary
units, which were then normalized against the internal control β-actin and expressed as
values relative to the untreated control. Original blots are shown in the Supplementary
Materials (Figure S1).

2.11. Primary Cultures from Pancreatic Cancer Patients

Fresh tumor samples from patients included under the PaCaOmics clinical trial
(ClinicalTrials.gov: NCT01692873) were used to generate patient-derived xenografts (PDX),
from which primary cell cultures were derived as described [50]. This study was ap-
proved by the Paoli-Calmettes hospital ethics committee following informed consent of
the patients.

All the experiments on mice were performed after approval by the ethics committee
for animal experimentation and the French Ministry of Higher Education and Research
(APAFIS No. 9562-2016051914513578, version 4). The samples were mixed with 100 µL
Matrigel and implanted subcutaneously in immunodeficient mice. The mice were sacri-
ficed when PDX reached a volume of 1 cm3. Xenografts were minced and treated with
collagenase type V (Sigma-Aldrich) and trypsin/EDTA (GIBCO). The cells were suspended
in DMEM supplemented with 1% w/w penicillin/streptomycin (GIBCO, Life Technologies)
and 10% heat-inactivated FBS (Lonza Inc., Walkersville, MD, USA). After centrifugation, the
cells were seeded in a serum-free ductal medium (SFDM), adapted from Schreiber et al. [51],
and incubated at 37 ◦C in a 5% CO2 incubator. The final concentrations of SFDM included:
1.22 mg/mL nicotinamide, 5 mg/mL glucose, 5% insulin–transferrin–selenium (ITS+ con-
taining bovine serum albumin and linoleic acid), 100 µg/mL gentamicin, 5% NuSerum IV,
25 µg/mL bovine pituitary extract (BPE), 20 ng/mL EGF, 50 nM 3,3′,5-triiodo-L-thyronine
(T3), 1 µM dexamethasone, 100 ng/mL cholera toxin, 1× penicillin/streptomycin and
1× antibiotic–antimycotic (anti/anti) (GIBCO) (the latter only during the first week of
culture from PDX). The differences from Schreiber’s experimental conditions [51] included
a higher concentration of T3 (50 nM instead of 5 nM), use of penicillin/streptomycin and
anti/anti solutions.

2.12. Chemograms

Chemograms with edelfosine were performed as described in [50]. Briefly, five thou-
sand cells were plated per well in 96-well plates in SFDM [51]. Twenty-four hours later,
increasing concentrations of edelfosine ranging from 1 nM to 50 µM were added. Each
experiment was performed twice in triplicate. After a 72 h treatment, cell viability was
estimated with the addition of the PrestoBlue Reagent (Thermo Fisher, Waltham, MA, USA)
for 3 h according to the protocol provided by the supplier and quantified using plate reader
Tristar LB941 (Berthold Technologies, Bad Wildbad, Germany). In the case of CSCs, colori-
metric assays using XTT were carried out as previously described [52], incubating growing
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cells in 96-well flat-bottomed microtiter plates at 37 ◦C in a humidified atmosphere of 5%
CO2/95% air for 72 h, with different concentrations of the assayed compounds. Measures
to quantify the cell response to drugs were processed using the GRmetrics R package [53]
to calculate the growth rate (GR) inhibition metrics and obtain the fitted curves for each
cell culture. The GR metric is defined as the ratio between the growth rates of the treated
cell and the untreated cell in a base-2 exponential function minus one, which falls between
−1 and 1, where the GR values in the range from 1 and 0 are partially cytostatic and those
below 0 are cytotoxic, whereas the values above 1 indicate a higher growth rate in the
treated cells than in the untreated cells. GR50 is defined as the concentration of a drug
that reduces cell growth by half [54], and measures the effect of a perturbation on the
growth rate of a cell population. Each GR50 value represents the mean of three independent
determinations performed in triplicate.

2.13. Statistical Analysis

The data are shown as the means ± SD of the number of experiments indicated.
Statistical evaluation was performed using Student’s t-test. A p-value < 0.05 was considered
to be statistically significant.

3. Results
3.1. Isolation and Characterization of Human Pancreatic CSCs from the PANC-1 Cell Line

Because pancreatic CSCs can form pancreatic cancer spheroids and express CD44,
CD24 and EpCAM/ESA [20,55,56], we first isolated pancreatic CSCs from the human
PANC-1 pancreatic cancer cell line, based on their ability to generate pancreatic cancer
spheroids in a serum-free medium containing well-defined growth factors and their enrich-
ment in CD44, CD24 and EpCAM (Figure 1a). PANC-1 cells generated pancreatic cancer
spheroids of approximately 100–200 µm in diameter after approximately 3–4 weeks under
specific culture conditions, and grew throughout the incubation time. Pancreatic cancer
spheres were mechanically dissociated into single cells in a special cell disaggregation
medium and sorted for CD44+CD24+EpCAM+ cells by means of flow cytometry (Figure 1a).
Triple-positive CSCs were enriched to >85% from an approximately 3% triple-positive CSC
population before presorting (Figure 1a). Following the sorting, different amounts of the
sorted CD44+CD24+EpCAM+ cells were assayed for their capability to generate tumors in
immunodeficient mice, and compared to the corresponding tumorigenic activity exerted by
the same amounts of unsorted PANC-1 cells. Sorted cells were suspended in the Matrigel
mixture (1:1, v/v) and injected subcutaneously into the right flank of SCID mice. Tumor
growth was monitored every week for 17 weeks, and then the animals were sacrificed
and tumor weight and volume were measured (Figure 1b). The number of mice that
generated tumors is shown in Table 1. Tumors developed in 6 out of 10 animals following
injection of 100 CD44+CD24+EpCAM+ cells and in 10 out of 10 animals after injection of
103 or 104 CD44+CD24+EpCAM+ cells (Table 1). However, no tumors developed after
injection of 100 parental PANC-1 cells (Table 1). CD44+CD24+EpCAM+ CSCs were able to
generate tumors when as few as 100 cells were transplanted in approximately 60% of the
immunocompromised mice (Table 1 and Figure 1b), whereas an injection of 104 PANC-1
cells was required to form tumors in immunodeficient mice in a similar percentage (Table 1),
suggesting that PANC-1 CSCs had a 100-fold increased tumorigenic potential as compared
to the parental PANC-1 cells. The size of the tumors was always significantly higher in
the mice injected with PANC-1 CSCs than in the animals injected with parental PANC-1
cells (Figure 1b).
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Figure 1. Sorting of pancreatic cancer stem cells and tumorigenic activity. (a) Following disaggregation of PANC-1-derived
pancreatic cancer spheres, CD44+CD24+EpCAM+ CSCs were purified by means of flow cytometry sorting as described
in the Section 2. The percentage of the cells corresponding to the CSC population is indicated in the pre-sorting (Presort)
and post-sorting (Postsort) histograms. (b) In immunodeficient mice, 102, 103 and 104 PANC-1 cells and freshly sorted
CD44+CD24+EpCAM+ PANC-1 CSCs were injected, and tumor development was analyzed after 4 months. Following
17 weeks, the animals were sacrificed and the weight and volume of each tumor generated in the animals were determined,
and the corresponding average values were presented. The data are the means ± SD (n = 10); p values represent the
statistically significant difference in the generated tumor size and weight between the mice injected with PANC-1 cells and
CD44+CD24+EpCAM+ PANC-1 CSCs; *, p < 0.05; **, p < 0.01.

Table 1. Tumor formation ability of sorted CD44+CD24+EpCAM+ pancreatic CSCs isolated from the human PANC-1
pancreatic cell line.

Marker
Number of Cells

102 103 104

Unsorted PANC-1 0/6 (0%) 2/6 (33.3%) 4/6 (66.6%)

CD44+CD24+EpCAM+ PANC-1 CSCs 6/10 (60%) 10/10 (100%) 10/10 (100%)

The cells were isolated by means of flow cytometry and sorted for CD44+CD24+EpCAM+ cells. Sorted triple-positive cells were assayed
for the ability to generate tumors after a subcutaneous injection into the flank of SCID mice at 102, 103 and 104 cells per injection. The
mice were examined for tumor formation by palpation and subsequent autopsy during the following 17 weeks after injection. The data
are shown as the number of mice that developed tumors/number of animals undergoing cell injection. The percentage of the mice that
developed tumors is indicated in parentheses.

The sorted PANC-1 CSCs generated pancreatic cancer spheres of approximately
100–200 µm in diameter rapidly following only ~5-day incubation under specific culture
conditions in a serum-free cancer stem cell medium (Figure 2a), and grew throughout the
incubation time. Confocal microscopy revealed that these PANC-1 CSC pancreatic cancer
spheroids were labeled with antibodies against CD44, CD24, EpCAM (Figure 2b,c). PANC-
1 CSC pancreatic cancer spheroids also expressed PAX6, a transcription factor involved in
pancreatic cancer and the maintenance of stem cells [57–59], and pancreatic and duodenal
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homeobox 1 (PDX1), also known as insulin promoter factor 1 (IPF1), a key transcription
factor in pancreatic embryogenesis and pancreatic cell differentiation [60,61], as assessed
by confocal microscopy (Figure 2d). CSC pancreatic cancer spheres were sorted by CD44–
CD24–EpCAM both before plating and after sphere formation for the different assays
shown in this study. Interestingly, the PANC-1 CSC pancreatic cancer spheroids could be
subcultured several times for at least seven generations, and these CSC pancreatic cancer
spheres, again, contained only 2.8–7.5% of CD44+CD24+EpCAM+ cells after prolonged
culture. This supports and highlights the stemness of the herein generated pancreatic
CSCs, because they are able to self-renew in triple-positive CSCs and differentiate into
more heterogeneous and mature cancer cells.
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Figure 2. CSC pancreatic cancer spheroids and expression of pancreatic CSC markers. Pancreatic cancer spheroids were
generated from human pancreatic PANC-1 cancer cells as described in the Section 2, and the corresponding differential
interference contrast (DIC) microscopy images are shown (a). Pancreatic cancer spheroids were analyzed for the expression
of CD44 (b), CD24 (b,c), EpCAM (c), PAX (d) and PDX1 (d) by confocal microscopy as described in the Section 2. DIC
images are also shown. The cells were also stained for nuclei with 4′,6-diamidino-2-phenylindole (DAPI) (blue fluorescence).
Bar, 25 µm. Data are representative of at least three independent experiments.

3.2. Edelfosine Inhibits Formation of CSC Pancreatic Cancer Spheroids

We next examined the effect of edelfosine on pancreatic cancer spheroid formation.
To this aim, pancreatic PANC-1 CSCs, after being sorted by CD44–CD24–EpCAM as
above, were grown in soft agar using stem cell culture conditions and treated with various
concentrations of edelfosine for 21–28 days. As shown in Figure 3 and Table 2, edelfosine
effectively and significantly inhibited pancreatic cancer spheroid formation at 5 µM, and
the inhibition was very potent when the antitumor ether lipid was used at 10 or 20 µM.



Cancers 2021, 13, 6124 10 of 22

Likewise, the number of PANC-1 CSC spheroid colonies was highly reduced following
incubation with ≥ 5 µM edelfosine (Figure 3 and Table 2), suggesting that edelfosine was
able to affect spheroid formation at the low micromolar range by significantly impairing
the self-renewal ability of CSCs.
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Figure 3. Effect of edelfosine on the formation of PANC-1 CSC pancreatic cancer spheroids. Disaggre-
gated CSCs from PANC-1 CSC pancreatic cancer spheroids were assayed for the formation of colonies
in soft agar analysis in the absence and in the presence of different concentrations of edelfosine
(EDLF). Bar, 600 µm. The data are representative of at least three independent experiments.
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Table 2. Effect of edelfosine on the formation of pancreatic CSC spheroid colonies.

Treatment Perimeter (AU) p Spheroid Colony Numbers p

Control 5.46 ± 2.58 145 ± 18

1 µM EDLF 4.01 ± 2.20 0.25 127 ± 6 0.1013

5 µM EDLF 1.95 ± 0.73 0.0005 70 ± 12 0.0004

10 µM EDLF 1.46 ± 0.70 0.0001 46 ± 13 0.0001

20 µM EDLF 1.44 ± 0.60 0.0002 32 ± 7 <0.0001

Data are from the experiments similar to those depicted in Figure 3. Statistical significance is relative to untreated controls. Perimeter is
measured in arbitrary units. The number of tumor spheres in each plate was counted under a stereo microscope. The results are shown as
the means ± SD of at least three independent experiments. EDLF, edelfosine; AU, arbitrary units.

3.3. Edelfosine Induces Apoptosis in PANC-1 CSCs

We previously found in animal models that the pharmacologically relevant and effec-
tive concentration of edelfosine in plasma ranges between 10 and 20 µM [34,35,62]. After
incubating PANC-1 CSC pancreatic cancer spheroids with 20 µM edelfosine for 5 days, we
found induction of an apoptotic response (~38% apoptosis), as assessed by an increase in
the percentage of cells in the sub-G0/G1 region, indicative of DNA breakdown (Figure 4a).
Parental PANC-1 cells were also sensitive to edelfosine under similar experimental con-
ditions (~47% apoptosis, after 5-day incubation). This apoptotic response was inhibited
(~90% inhibition) by the pan-caspase inhibitor z-VAD-fmk (37.6 ± 9.2% and 46.7 ± 8.3%
apoptosis following treatment of PANC-1 CSCs and PANC-1 cells with 20 µM edelfosine
for 5 days in the absence of the caspase inhibitor versus 5.1± 2.1% and 4.9± 1.8% apoptosis
in the presence of 50 µM z-VAD-fmk, respectively). Further biochemical confirmation of
the induction of apoptosis by edelfosine was obtained through the cleavage of the intact
116 kDa poly(ADP-ribose) polymerase (PARP) into the 85 kDa PARP fragment follow-
ing incubation of PANC-1 and PANC-1 CSCs with different concentrations of edelfosine
(Figure 4b), as an early marker of apoptosis [29].

Cancers 2021, 13, x  11 of 23 
 

 

Table 2. Effect of edelfosine on the formation of pancreatic CSC spheroid colonies. 

Treatment Perimeter (AU) P Spheroid colony numbers p 
Control 5.46 ± 2.58  145 ± 18  

1 μM EDLF 4.01 ± 2.20 0.25 127 ± 6 0.1013 
5 μM EDLF 1.95 ± 0.73 0.0005 70 ± 12 0.0004 

10 μM EDLF 1.46 ± 0.70 0.0001 46 ± 13 0.0001 
20 μM EDLF 1.44 ± 0.60 0.0002 32 ± 7 < 0.0001 

Data are from the experiments similar to those depicted in Figure 3. Statistical significance is relative to untreated con-
trols. Perimeter is measured in arbitrary units. The number of tumor spheres in each plate was counted under a stereo 
microscope. The results are shown as the means ± SD of at least three independent experiments. EDLF, edelfosine; AU, 
arbitrary units. 

3.3. Edelfosine Induces Apoptosis in PANC-1 CSCs 
We previously found in animal models that the pharmacologically relevant and ef-

fective concentration of edelfosine in plasma ranges between 10 and 20 μM [34,35,62]. 
After incubating PANC-1 CSC pancreatic cancer spheroids with 20 μM edelfosine for 5 
days, we found induction of an apoptotic response (~38% apoptosis), as assessed by an 
increase in the percentage of cells in the sub-G0/G1 region, indicative of DNA breakdown 
(Figure 4a). Parental PANC-1 cells were also sensitive to edelfosine under similar ex-
perimental conditions (~47% apoptosis, after 5-day incubation). This apoptotic response 
was inhibited (~90% inhibition) by the pan-caspase inhibitor z-VAD-fmk (37.6 ± 9.2% and 
46.7 ± 8.3% apoptosis following treatment of PANC-1 CSCs and PANC-1 cells with 20 μM 
edelfosine for 5 days in the absence of the caspase inhibitor versus 5.1 ± 2.1% and 4.9 ± 
1.8% apoptosis in the presence of 50 μM z-VAD-fmk, respectively). Further biochemical 
confirmation of the induction of apoptosis by edelfosine was obtained through the 
cleavage of the intact 116 kDa poly(ADP-ribose) polymerase (PARP) into the 85 kDa 
PARP fragment following incubation of PANC-1 and PANC-1 CSCs with different con-
centrations of edelfosine (Figure 4b), as an early marker of apoptosis [29]. 

 
Figure 4. Induction of apoptosis in PANC-1 CSCs by edelfosine. (a) PANC-1 CSCs were incubated in the absence (con-
trol) or presence of 20 μM edelfosine (EDLF) for 5 days, and then apoptosis was analyzed by means of flow cytometry. 
The different cell cycle stages are indicated. The percentage of apoptotic cells in the sub-G0/G1 region is shown. The data 
are representative of at least three independent experiments. (b) PANC-1 cells and PANC-1 CSCs were untreated (C) or 
treated with edelfosine (EDLF) at the indicated concentrations for 48 h and analyzed by means of Western blotting using 
specific antibodies for PARP; β-actin was used as the loading control. Molecular weights (in kilodaltons) of every protein 
are indicated at the right side of each panel. The gels were cropped to show the relevant sections. The Western blot im-
ages are representative of three independent experiments. 

Figure 4. Induction of apoptosis in PANC-1 CSCs by edelfosine. (a) PANC-1 CSCs were incubated in the
absence (control) or presence of 20 µM edelfosine (EDLF) for 5 days, and then apoptosis was analyzed
by means of flow cytometry. The different cell cycle stages are indicated. The percentage of apoptotic
cells in the sub-G0/G1 region is shown. The data are representative of at least three independent
experiments. (b) PANC-1 cells and PANC-1 CSCs were untreated (C) or treated with edelfosine (EDLF)
at the indicated concentrations for 48 h and analyzed by means of Western blotting using specific
antibodies for PARP; β-actin was used as the loading control. Molecular weights (in kilodaltons) of
every protein are indicated at the right side of each panel. The gels were cropped to show the relevant
sections. The Western blot images are representative of three independent experiments.
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3.4. Edelfosine Accumulates in the ER of Parental PANC-1 and PANC-1 CSCs and Induces an ER
Stress Response

Our previous data indicated that edelfosine was taken up by distinct pancreatic cancer
cells, including HuP-T4 and Capan-2 human pancreatic cancer cell lines, and accumulated
in the ER [29]. Here, we found that parental PANC-1 cancer cells as well as PANC-1 CSCs
accumulated the fluorescent edelfosine analog Et-BDP-ET [1-O-[11′-(6′′-ethyl-1′′,3′′,5′′,7′′-
tetramethyl-4′′,4′′-difluoro-4′′-bora-3a′′,4a′′-diaza-s-indacen-2′′-yl)undecyl]-2-O-methyl-rac-
glycero-3-phosphocholine] [47] in the ER (Figure 5a), labeled with a baculovirus-based
reagent using the ER signal sequence of calreticulin and KDEL (see Materials and Methods).
This fluorescent edelfosine analog has previously behaved as a reliable reagent to visualize
the subcellular location of the drug in situ [29,47,63], and its cell incorporation was blocked
by adding higher amounts of the parent and unlabeled drug edelfosine.
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Figure 5. Subcellular localization of edelfosine in the ER of PANC-1 cells and PANC-1 CSC pancreatic cancer spheroids,
and induction of an ER stress response. (a) Live PANC-1 cells and PANC-1 CSC pancreatic cancer spheroids were labeled
overnight at 37 ◦C for the ER in red using the CellLight ER-RFP BacMam 2.0 reagent, and then the samples were incubated
with 20 µM Et-BDP-ET (green fluorescence) for 3 h at 37 ◦C. Areas of colocalization between the ER and Et-BDP-ET in
the merge panels are yellow. The cells were also stained for nuclei with DAPI (blue fluorescence). The corresponding
differential interference contrast (DIC) microscopy images are also shown. Bar, 25 µm. The data are representative of three
independent experiments. (b) PANC-1 cells and PANC-1 CSCs were untreated (C) or treated with 20 µM edelfosine for
the indicated times and analyzed by means of Western blotting using specific antibodies for the denoted proteins; β-actin
was used as the loading control. Molecular weights (in kilodaltons) of every protein are indicated at the right side of each
panel. The gels were cropped to show the relevant sections. Relative protein level quantification after normalization to the
internal control β-actin is included below each Western blot panel. The Western blot images are representative of three
independent experiments.
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Edelfosine also induced ER stress in both parental PANC-1 cells and PANC-1 CSCs,
as assessed by the phosphorylation of the ER stress marker PERK and the potent up-
regulation of the C/EBP-homologous protein (CHOP) (also known as growth arrest and
DNA damage-inducible gene 153, GADD153, or DNA damage-inducible transcript 3,
DDIT3), which activates transcription of the genes potentiating apoptosis as a result of
ER stress [64] (Figure 5b). In contrast, edelfosine did not upregulate the ER chaperone
78 kDa glucose-regulated protein (GRP78; also known as BiP, binding immunoglobulin
protein) (Figure 5b), which is linked to cell survival during an ER stress response [65].
Interestingly, a potent autophagic response was also triggered upon edelfosine treatment,
as assessed by an increase in the level of microtubule-associated protein 1 light chain 3
(LC3)-II form (Figure 5b). The modification of LC3 from the unconjugated form (LC3-I),
which is in the cytosol, to the phosphatidylethanolamine-conjugated form (LC3-II), which
targets the autophagosomal membrane, is a major marker of autophagy activation [66]. The
induction of apoptosis by edelfosine in both PANC-1 and PANC-1 CSCs is biochemically
determined by the activation of caspase-3 through the cleavage of pro-caspase-3 into the
p20 active caspase-3 fragment (Figure 5b), and the proteolysis of the caspase-3 substrate
PARP (Figure 5b). In addition, edelfosine treatment inhibited high basal phosphorylation of
the cell survival extracellular signal-regulated kinase 1/2 (ERK1/2) (Figure 5b) without any
apparent change in the total ERK1/2 protein level (Supplementary Materials, Figure S1).

3.5. Autophagy Inhibitors Potentiate Edelfosine-Induced Apoptosis in PANC-1 and PANC-1 CSCs

Because edelfosine induced a potent autophagy response (Figure 5b), and autophagy
protects cells against apoptosis induced by different stimuli [67–69], being cytoprotective
against an ER stress response [70], we examined the effect of autophagy inhibitors on the
proapoptotic activity of the antitumor ether lipid. A time course and dose response of the
effect of edelfosine on autophagy showed that the alkylphospholipid analog behaved as a
potent inducer of autophagy in both PANC-1 and PANC-1 CSCs, with a remarkable and
high increase in the level of the LC3-II protein (Figure 6a,b). The incubation of PANC-1
CSCs with the autophagy inhibitor bafilomycin A1, which disrupts the autophagy flux by
inhibiting both V-ATPase and autophagosome-lysosome fusion [71], increased dramatically
the level of LC3-II following edelfosine treatment (Figure 6c), thus confirming the potent
induction of autophagy in CSCs upon edelfosine treatment. Quantification by the ImageJ
software of the LC3-II protein band in the Western blot shown in Figure 6c indicated that the
LC3-II levels, normalized using the β-actin levels, were increased 15.5, 23.7 and 65.2-fold in
relation to the untreated control following incubation with edelfosine, bafilomycin A1 and
bafilomycin A1 + edelfosine, respectively. Preincubation with the autophagy inhibitors
chloroquine and bafilomycin A1 [71,72] further potentiated edelfosine-induced apoptosis,
and this increase was more easily detected in PANC CSCs (Figure 6d). The apoptotic
response was inhibited by the pan-caspase inhibitor z-VAD-fmk in ~90% of all the cases,
either in the presence or absence of autophagy inhibitors.
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of cell killing by autophagy inhibition. Autophagy induction was monitored by an increase in the LC3-II band following
drug treatment at the indicated drug concentrations and incubation times in both PANC-1 cells (a) and PANC-1 CSCs (b).
(c) PANC-1 CSCs were incubated for 48 h in the absence or presence of 20 µM edelfosine (EDLF), 25 nM bafilomycin A1
(BA1) or 25 nM BA1 (1 h preincubation) + 20 µM EDLF; β-actin was used as the loading control in panels (a–c). The gels
were cropped to show the relevant sections. The data are representative of three performed experiments. (d) The cells
were preincubated for 1 h in the presence or absence of the indicated inhibitors of the autophagic–lysosomal route, and
then the cells were incubated in the absence or presence of edelfosine for 72 h. Untreated controls were run in parallel.
Apoptosis was then determined by means of flow cytometry as the percentage of cells in the sub-G0/G1 region. Asterisks
indicate significant differences * p < 0.05; ** p < 0.01. The data shown are the means ± SD of three independent experiments.
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3.6. Edelfosine Inhibits Cell Proliferation and Induces Cell Death in Patient-Derived Primary
Pancreatic Cancer Cell Cultures

To further validate the effect of edelfosine on PDAC, we performed a growth inhibition
assay in four PDAC primary cell cultures. Previously, and in order to validate that primary
cell cultures are PDAC transformed epithelial cells, 5× 106 primary cultured cells were sub-
cutaneously implanted in nude mice to obtain PDX. PDX tumors were paraffin-embedded
and analyzed by means of hematoxylin–eosin staining and cytokeratin 19 immunostaining
(monoclonal rabbit anti-human cytokeratin 19 antibody, Abcam) (Supplementary Materials,
Figure S2). Photomicrographs of each primary cell culture used in this study are also
shown in the Supplementary Materials (Figure S3). The growth of primary cultured cells
as PDX tumors showed that those cells were transformed, and the positive specific stain-
ing with anti-human cytokeratin 19 antibodies indicated that those cells were of human
epithelial origin.

A dose response curve was analyzed in the above PDAC-derived primary cell cultures,
calculating the cell division rate by applying the growth rate inhibition (GR) metrics algo-
rithm [53]. Interestingly, we observed a cell-dependent behavior, which was represented by
the range of response to edelfosine (Figure 7a). PDAC082T was the most sensitive primary
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cell culture and displayed 50% growth inhibition (GR50) at ~0.1 µM, whereas PDAC076T
showed the most resistant profile with a GR50 of 2.59 µM. PDAC087T and PDAC089T
showed similar intermediate profiles with GR50 of 1.36 × 10−6 and 8.06 × 10−7 M, respec-
tively (Figure 7a).
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values are shown. The results shown are the means ± SD of three independent experiments performed in triplicate.

Edelfosine treatment also induced apoptosis in the patient-derived primary pancreatic
cancer cell cultures, as assessed by an increase in the percentage of hypodiploid cells
(sub-G0/G1 region), as a result of DNA breakage, measured by means of cell cycle analysis
through flow cytometry (Figure 7b). The intensity of this proapoptotic activity of edelfosine
on these primary cell cultures was cell-dependent, but, interestingly, it was not correlated
with its capacity to affect cell proliferation (cf. Figure 7a,b). The data from Figure 7a
indicated that PDAC082T cells were more sensitive than PDAC087T cells to inhibition of
their cell proliferation and to undergoing cell death upon edelfosine treatment, whereas
a higher apoptotic response was achieved in the latter cells (Figure 7b). This could be
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explained, at least in part, by the suggestion that edelfosine could promote an additional
type of cell death different from apoptosis in PDAC082T cells. In this regard, we previously
found that edelfosine induces necroptosis in apoptosis-reluctant glioblastoma cells [73].
Furthermore, the kind of cell death induced by edelfosine in different tumor cells highly
depends on the cell type, the relative endogenous presence of different cell death-promoting
molecules, as well as the activation of certain signal transduction pathways [73–75].

CSCs isolated from the above patient-derived primary pancreatic cancer cell cultures
(~0.8 and ~0.3% CSCs in the PDAC082T and PDAC087T patient-derived primary pan-
creatic cancer cells), as mentioned above for PANC-1 cells, were sensitive to edelfosine,
with GR50 values in the micromolar range (Figure 7c), being slightly more sensitive than
the corresponding PANC-1 CSCs. Interestingly, CSCs generated from PDAC082T and
PDAC087T rendered GR50 values that were rather similar to each other, although the GR50
value of the PDAC082T primary cell culture was 16 times lower than the corresponding
value of the PDAC087T primary cell culture.

Unlike pancreatic cancer cells, nontumorigenic pancreatic HPNE cells as well as
normal fibroblasts were rather resistant to the apoptotic action of edelfosine when used at
10 and 20 µM (Figure 8).
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nontumorigenic cells. Human PANC-1 pancreatic cancer cells, nontumorigenic HPNE and normal
fibroblasts show a different sensitivity to undergo apoptosis following treatment with edelfosine for
the indicated incubation times and drug concentrations. The data are shown as the means ± SD of
three independent experiments.

4. Discussion

We succeeded in isolating pancreatic CSCs from well-established human pancreatic
cancer cell lines, such as the PANC-1 cell line, as well as from primary cultures of pancreatic
cancer patients. These pancreatic CSCs show the following features: (a) cells are triple-
positive for CD44, CD24 and EpCAM; (b) they have a high tumorigenic activity, developing
tumors from implants of as few as 100 CSCs, displaying a 100-fold enhanced tumorigenic
potential as compared to the parental pancreatic cancer population from which they derive;
(c) they form CSC pancreatic cancer spheroids rapidly under a serum-free special cancer
stem culture medium. Because the above pancreatic CSCs in culture keep approximately
3–7% triple-positive cells with time, it could be envisaged that these pancreatic CSCs
are capable of undergoing both the processes of self-renewal and generation of a more
differentiated progeny, thus having the ability to recapitulate the phenotype of the original
tumor from which they are derived.

CSCs are rather refractory to most therapies and current drugs in clinical use [17,76,77],
while most of the non-stem cell components of tumors could be eradicated. Thus, relapses



Cancers 2021, 13, 6124 17 of 22

and metastasis would be expected to occur if the drug-resistant CSC population remained
intact, the latter being able to self-renew themselves and differentiate into heterogeneous
lineages of cancer cells [17]. Here, we found for the first time that the antitumor ether lipid
and alkylphosphocholine analog edelfosine, which shows a potent and selective antitu-
mor activity in vitro and in vivo [26,27,31,34,35,37], including in pancreatic cancer [29], is
effective in getting rid of pancreatic CSCs. PANC-1 CSCs, as well as the CSCs derived from
pancreatic cancer patients, were sensitive to edelfosine. Furthermore, edelfosine dramati-
cally reduces the number and size of CSC colonies and pancreatic cancer spheroids, making
them smaller, inhibiting their formation and proliferation, and inducing CSC apoptosis.

Regarding patient-derived primary pancreatic cancer cell cultures, there was a high
variability in their sensitivity to edelfosine, but this variability was highly reduced when
CSCs from each primary cell culture were isolated. Thus, PDAC082T cells showed a 16-fold
lower GR50 than PDAC087T cells, but the corresponding GR50 values in the isolated CSCs
from both primary cultures became similar each other, and resulted higher than those
values corresponding to the primary cultures. Apparently, one could envisage that cells
become more resistant to the antitumor ether lipid when a higher percentage of CSCs
is present.

Interestingly, our results clearly reveal that edelfosine treatment elicits autophagy
in pancreatic CSCs, likely as a protective and survival signal, and pretreatment with
autophagy inhibitors highly potentiates the proapoptotic activity of this ether lipid against
pancreatic CSCs.

Pancreatic cancer remains an incurable cancer for which no treatment is yet effective,
and the survival rate has not improved in the last fifty years. Different approaches have
been undertaken, including FOLFIRINOX and different combinations of gemcitabine,
Abraxane, cisplatin, temsirolimus and bevacizumab [1,78], as well as synthesis of novel
antitumor drugs, such as amphiphilic pyrrolidine derivatives [79] and isoprenylcysteine
carboxyl methyltransferase inhibitors [80], but none has rendered significant outcomes
in a clinical context so far. Here, we found that the alkylphospholipid analog edelfosine
accumulates in the ER of different human pancreatic cancer cell lines [29] (this work) and in
human pancreatic CSCs (this work), mounting a persistent ER stress response, as assessed
by a dramatic and sustained CHOP upregulation, that eventually leads to apoptosis. Our
data showed remarkable colocalization between fluorescent edelfosine and an ER marker,
indicating that edelfosine accumulated in the ER of PANC-1 cells and PANC-1 CSCs.
However, not all the cells underwent apoptosis after 3 or 5 days of drug treatment. This
could be due to the fact that the induction of apoptosis would require the involvement
of additional processes that need time to be triggered and completed, probably to exceed
a certain drug concentration threshold in the subcellular organelle to initiate the next
proapoptotic signaling, and/or the onset of a series of events that, once initiated in the
ER, should be transmitted to mitochondria and other subcellular organelles before the
eventual manifestation of the apoptotic response. In this regard, we previously found
that edelfosine-induced apoptosis involves ER, mitochondria and intracellular trafficking
to promote cell death [1,29,31,63,81,82], and there is a kind of connection between these
processes [47,63,83] for the onset of cell death.

Interestingly, edelfosine also inhibits pERK survival signaling, which seems to play a
major role in the triggering of autophagy as a protective response. In this regard, inhibition
of the ERK/MAPK (mitogen-activated protein kinase) signaling downstream of KRAS
in pancreatic cancer cells elicits autophagy as a survival response, in order to protect
pancreatic cancer cells from the cytotoxic effects of ERK signaling inhibition [84]. This
identifies autophagy as a promising Achilles heel for pancreatic cancer, and therefore novel
approaches for the treatment of pancreatic cancer could involve the combined targeting of
ERK signaling and autophagy [84–86].

The induction of apoptosis in pancreatic cancer cells, including pancreatic CSCs,
through the onset of a persistent ER response opens up a new avenue for the treatment
of pancreatic cancer, and highlights the ER as a major target in pancreatic cancer and
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pancreatic CSCs. On the other hand, a novel framework in cancer implies the involvement
of neutrophils in cancer development and therapy [87]. In this context, recent data by our
group indicate that pancreatic cancer cells are particularly sensitive to human neutrophil
arginase-mediated arginine deprivation, which leads to a strong ER stress response and
potentiates the antitumor activity of the ER-targeting alkylphospholipid analog edelfos-
ine [49].

On the other hand, a major problem in the treatment of pancreatic cancer is the
overly high toxicity and adverse effects of the current therapeutic regimens [1]. However,
edelfosine lacks significant toxicity, and histologic studies in rats showed no damage in the
kidneys, liver, heart and stomach following edelfosine treatment [88].

It has been suggested that targeting CSCs can result in tumor elimination and pre-
vention of tumor relapse [89]. Several recent reports have shown a number of drugs that
affect the formation of pancreatic CSC spheres, such as doxycycline [90], bufalin [91],
resveratrol [92] and the small anticancer molecule FL118 [93], but the data reported here
provide novel aspects that could lead to the elimination of CSCs, thus favoring a new
framework in the search of a cure for this dismal cancer. The ether lipid edelfosine ac-
cumulates in the ER of pancreatic CSCs, which constitutes a hallmark in pancreatic cells,
and therefore could be a promising therapeutic target to be used to mount a persistent ER
stress response, leading eventually to apoptosis [1]. Edelfosine can induce apoptosis in
pancreatic CSCs, and this tumor-killing activity is potentiated by autophagy inhibitors,
such as chloroquine. Its oral administration, lack of significant toxicity and ease of handling
make this alkylphospholipid analog a promising drug candidate for further development
and clinical studies.

5. Conclusions

The antitumor ether lipid edelfosine induces apoptosis in CD44+CD24+EpCAM+

pancreatic cancer stem cells (CSCs) and blocks the formation of pancreatic CSC spheroids,
derived from the established human pancreatic cancer cell lines as well as from pancreatic
cancer patient-derived primary cultures. Edelfosine accumulates in the endoplasmic
reticulum (ER) of pancreatic CSCs, leading to persistent ER stress and eventually to cell
death. Autophagy is triggered in CSCs as a protective signal to ER stress following
edelfosine treatment, and thereby the combination of endoplasmic reticulum targeting with
the action of autophagy inhibitors potentiates the proapoptotic activity of edelfosine against
CSCs, and represents a promising approach to pancreatic cancer therapy. In addition, orally
administered edelfosine lacks significant toxicity, and hence further studies are warranted
to unveil its potential as a promising new approach in pancreatic cancer chemotherapy.
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