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Abstract
Quartic force fields (QFF) are currently the most cost-effective method for the approximation of

potential energy surfaces for the calculation of anharmonic vibrational energies. It is known,

although, that its performance can be less than satisfactory due to limitations related to slow

convergence of the series. In this article, we present a coordinate substitution scheme using a

combination of Morse and sinh coordinates, well adapted for its use with cartesian normal coordi-

nates. We derive expressions for analytical integrals for use in VSCF and VCI calculations and

show that the simultaneous substitution of symmetric and antisymmetric normal coordinates by

Morse and sinh coordinates, respectively, significantly improves the vibrational transition frequen-

cies for these modes in a well-balanced fashion. The accuracy of this substitution scheme is

demonstrated by comparing one and two-dimensional sections of substituted and unsubstituted

QFF with ab initio potential energy grids, as well as with vibrational energy calculations using as

test cases two well-studied benchmark molecules: water and formaldehyde. We conclude that the

coordinate substitution scheme presented constitutes a very attractive alternative to simple QFFs

in the context of cartesian normal coordinates.
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1 | INTRODUCTION

The calculation of accurate potential energy surfaces (PES) is certainly a crucial part of the computation of anharmonic vibrational energies and wave-

functions of molecular systems. Grid representations[1] of the PES are usually the most accurate option, although its high computational cost limits its

application to very small systems, as the number of energy evaluations necessary for a complete grid rises exponentially with the number of normal

modes. This limitation can be reduced somewhat by the use of N-mode coupling representations,[2–4] or more recently, adaptive sparse grid expan-

sions.[5] Grids may be used directly, or converted into an analytical expression either by fitting[6] or interpolation[7] procedures. For example, very high

accuracy have been obtained using reproducing kernel Hilbert space interpolation coupled to a grid representation for triatomic reactive systems.[8]

Grid methods, even the most efficient examples of them, are still limited to small systems, so alternatives are needed for bigger molecules.

Quartic force fields (QFF), this is, fourth order Taylor expansions of the potential with respect to the normal coordinates of the system, cur-

rently represent the best trade-off of accuracy and computational cost for the representation of molecular potential energy surfaces (PES) for anhar-

monic vibrational structure applications. The efficiency of the QFF scheme comes from the possibility of calculating the expansion coefficients by

numerical differentiation of the potential, analytical gradients, or Hessians, if available. Moreover, recently Ramakrishnan and Rauhut presented an

efficient scheme for computing QFFs from multimode expansions.[9] In this way, a complete QFF can be obtained at a small fraction of the cost that

a potential grid would require. QFFs usually show a slow convergence of the Taylor series, which translates in noticeable loss of accuracy, which in

many cases may be insufficient even for the calculation of fundamental vibrational transitions, introducing errors in the order of tens of wavenum-

bers in the vibrational energies compared to grid methods.[1,10–13] Proton stretching modes in particular are very challenging for QFFs. In the case

of symmetric modes, for example, the potential energy tends to an asymptotic limit as the stretch coordinate is displaced toward positive or nega-

tive infinity, depending on the phase of the normal mode, whereas the Taylor series in normal coordinates will always tend to positive or negative
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infinite energies in the limit of infinite displacements of the coordinate. A fourth order expansion often falls short of an accurate representation of

the potential along these modes. Using higher order polynomials is usually out of the question, because of their cost, and numerical accuracy consid-

erations. Modified Shepard Interpolation (MSI) schemes were proposed to improve the performance of QFFs,[14–16] and have since been success-

fully applied to many molecular systems.[1,17–20] Although significant improvements were obtained for vibrational frequencies relative to simple QFF

schemes, this method requires some prior knowledge of the PES to place additional reference points,[21]and although some methods for automatic

selection of those points have been proposed,[22] the scheme still implies a significant increment in computational cost. A very interesting way of

improving QFFs was implemented by Dateo et al.[23] and later by Fortenberry et al.[13,24–26] based on the early work by Watson,[27] Meyer et al.,[28]

and Carter and Handy,[29] in the context of internal valence coordinates. The scheme consists of substituting single bond stretching coordinates

with Morse coordinates, which present the correct asymptotic behavior, obtaining excellent fits for the vibrational frequencies to within a few cm21

of experiment. What makes this approach so attractive is the fact that unlike, for example, MSI, there is no increase in the computational cost

relative to that of a simple QFF and is also much simpler to implement and to use. Building on these ideas, Burcl et al.,[10] presented a similar scheme

especially adapted for its use in the context of cartesian normal coordinates. In this case, Morse coordinate substitution can only be performed on

symmetric normal coordinates, which may lead to an imbalance in the representation of stretching modes, as Morse coordinates do not present the

correct limiting behavior for substitution into antisymmetric stretch normal coordinates. For this reason, Burcl et al. proposed the use of Gaussian

coordinates for these, following a previous paper by Carter and Handy[30] proposing the use of hyperbolic tangent coordinates for the same pur-

pose. Gaussian and tanh coordinates, however, should be better adapted for cases when the potential along the normal coordinate to be substituted

shows even parity and a dissociative asymptotic limit. In cases where this is not so, the coordinate substitution may still provide a poor convergence

radii for the potential. Moreover, the integrals involving Gaussian or tanh coordinates for the solution of the variational vibrational structure

equations must be solved numerically, which complicates its implementation in codes that make use of analytic integrals, such as our own.

Following the work by Burcl et al.,[10] we present here a new coordinate substitution scheme, based in a combination of hyperbolic sine and

Morse coordinates, especially adapted for its implementation with cartesian normal coordinates using analytical integrals for the solution of the

variational structure equations.

In section 2, we present a brief introduction on the theory of anharmonic vibrational energy calculations, after which, we present the theoretical

framework for this article. Section 3 is concerned with computational and implementation details. Section 4 is concerned with testing the accuracy

of the proposed schemes Concluding remarks are presented in section 5.

2 | THEORY

We start with a brief introduction to the vibrational self-consistent field and vibrational configuration interaction methods. Further details may be

found in Refs. [31–34].

Briefly, starting from the vibrational Schr€odinger equation and representing the vibrational wavefunction as a Hartree product, (i.e., a product of

one-dimensional, single-mode wavefunctions or “modals,” analogous to orbitals in electronic structure theory), and applying the variational principle

it is possible to obtain the VSCF equations for each modal. Because the solutions (the modals) are necessary to compute the mean field potential

included in the effective Hamiltonian, the VSCF equations must be solved iteratively until self-consistency.

The VSCF method only considers vibrational correlation in an averaged fashion. To account for it more explicitly, we implemented a vibrational

configuration interaction (VCI) algorithm.[35] Correlated vibrational wavefunctions and energies are obtained by diagonalizing the full Hamiltonian

using the virtual VSCF states as a basis set.[32,36,37]

In our implementation, a series of reference states are selected and then VSCF and VCI calculations are performed sequentially for each one, an

algorithm that has been called “state-specific” VSCF/VCI, in contrast to “ground state based” (gs) VSCF/VCI in which a single calculation is performed,

usually with the ground state as a reference. The state-specific (ss) version has the advantage of producing better energies compared to the gs type.

The potential is represented as a QFF in rectilinear mass-weighted normal coordinates, which can be expressed as
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where fii, fijk , and fijkl are the two, three, and four modes-coupling force constants, which can be obtained by numerical differentiation of the

energies, analytic gradients, analytic Hessians or by fitting procedures.

Consider now a molecule in which two bond stretching coordinates are related through symmetry. The resulting normal coordinates will be

linear combinations of these two, producing a symmetric and an antisymmetric mode. The potential along each bond stretching coordinate r1 and r2

will be Morse-like, so it is reasonable to represent each using Morse coordinates.

R1512exp 2a1 r1ð Þ
R2512exp 2a2 r2ð Þ (2)
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Considering that due to symmetry a15a25a and also that r15r2 for the symmetric linear combination and r152r2 for the antisymmetric linear

combination, it is straightforward to show that the symmetric and antisymmetric normal coordinates can be expressed as

Qs512exp 2a rð Þ
Qa5sinh a rð Þ (3)

So the use of hyperbolic sine coordinates for antisymmetric modes is immediately suggested by the use of Morse coordinates for single bond

stretchings.

For the a factor we adopt the convention of Dateo et al. in the case of Morse coordinates.[23]

Although the symmetry considerations advanced previously are valid in many cases, an independent definition of the a factor for hyperbolic

sine coordinates is more flexible. Following similar considerations as those advanced Ref. [23] and renaming as b the factor for sinh coordinates, it is

simple to derive the following expression

bi5

ffiffiffiffiffiffiffi
fiiii
4fii

s
(4)

The only remaining task is to convert the force constants of Equation 1, which can be easily done by applying the chain rule.

At this point it is worth noticing that the procedure just outlined is not limited to molecules with only two symmetry related bond-stretch coor-

dinates, and can in fact be applied to systems with any number of such of symmetry-related stretch coordinates without modification, as long as

they form a basis for one-dimensional irreducible representations of the point group only. Moreover, it is easily shown that the procedure can also

be straightforwardly generalized to produce a complete representation of bond stretchings including multidimensional irreducible representations

too. This however is outside the scope of the present study and will be further explored in future works.

Our code, QUMVIA,[38,39] uses analytic expressions for the VSCF integrals in a distributed Gaussian (DG) basis set.[40]

More details may be found in Refs 40,41 for the normal coordinate case. Consider first a QFF in a combination of normal, Morse and sinh coor-

dinates, which we call collectively Ri. The force constants Fii; Fijk , and Fijkl are obtained from those in Equation 7 by use of the chain rule,
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Where Rn is a function of Qn, and may be equal to 12exp 2anQnð Þð Þ, sinh bnQnð Þ, or simply Qn. We need analytical expressions for integrals of

the form h/ pð Þ
k jRn

k j/ sð Þ
k i, where p and s are quantum numbers, n 5 1;2;3;4 and the modals /k are linear combinations of distributed Gaussian

functions.
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Where Qkl are scaled Gauss–Hermite quadrature points along the normal mode Qk . Definitions of Akl can be found in Ref. [40]. Expanding the

previous integral in terms of the DG basis functions we obtain the following expression.
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Where Cp
kl and Cs

km are coefficients of the expansions of / pð Þ
k and / sð Þ

k , respectively. In the case of Morse coordinates, the matrix elements of Rn
k

in the DG basis are.
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Expressions for Blm and the overlap matrix elements Slm can be found in Ref. [40]. In a similar fashion, if Rk is defined as a sinh coordinate, the

corresponding analytical expressions for the integrals are
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if n is odd, and
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if n is even. Where
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Analytical expressions for the matrix elements of hgkljQn
k jgkmi can be found in Ref. [41].

3 | COMPUTATIONAL AND IMPLEMENTATION DETAILS

All vibrational structure calculations were performed using QUMVIA (Quantum Mechanical Vibrational Analysis) a recently written vibrational struc-

ture program developed in our group, that implements vibrational self-consistent field (VSCF) and vibrational configuration interaction (VCI) vibra-

tional structure schemes for the calculation of anharmonic vibrational energies and wavefunctions. QUMVIA is written in Fortran 90, and is the first

software package of this kind with GNU GPLv3 license and, therefore, freely available to the community through GitHub website.[42]

Quartic force fields with 3-mode couplings were calculated using Gaussian 03.[43] The structures were optimized with a “very strict” conver-

gence criterion, followed by frequency calculation to obtain normal modes, harmonic frequencies and hessian matrix. With these data, a series of

conformations distorted along each normal mode were generated using QUMVIA, and Hessian matrices were calculated for each of these using

Gaussian. Finally, these Hessian matrices were used to compute 3-mode coupling QFF in QUMVIA. All 3-mode coupled QFF were computed using

analytical Hessians. Quartic force fields calculations were made at the MP2/cc-pVTZ electronic structure level of theory.

Sixteen distributed Gaussian basis functions positioned at sixteen scaled Gauss–Hermite quadrature points were used for each normal mode. A

VSCF energy convergence criterion of 1029 Hartrees was used.

Following VSCF, a VCI computation was performed for each normal mode. Single, double, triple and quadruple modal excited VSCF virtual

states were included in the VCI basis set, except in the case of water, for which only up to triple excitations were included. The maximum number

of energy quanta in each excited modal was set to 6 for singles, 6 for doubles, 4 for triples, and 3 for quadruples.

4 | RESULTS AND DISCUSSION

4.1 | Accuracy of model potentials

We begin our study with a comparison between the model potentials, QFF, Morse-substituted QFF (MQFF), where Morse coordinates are used for the

symmetric proton stretching normal mode and the antisymmetric normal mode is left in normal coordinates, sinh-substituted QFF (SQFF), where sinh

coordinates are used for the antisymmetric proton stretching normal mode and normal coordinates are used for the rest of the potential, a Morse/sinh

substituted QFF (hereon referred to as MSQFF),where both substitutions are applied simultaneously, and the actual ab initio potential energy surface

obtained by potential energy scans along the symmetric and antisymmetric normal modes of water and formaldehyde molecules. The objective of such

analysis is to assess the accuracy of substituted model potentials relative to unsubstituted QFFs and ab initio potential energy surfaces.

In Figure 1, we show potential energy scans, QFF and MSQFF along symmetric and antisymmetric normal modes at the MP2/cc-pVTZ electronic

structure level of theory. In the case of symmetric modes (panels a and c) QFFs begin to diverge from the ab initio potential at low energies, while the

MQFF along this mode shows a significantly improved fit to the potential energy scan. Similarly to the symmetric modes, the potential along the antisym-

metric modes (panels b and d) follows a similar trend, with the SQFF (full magenta lines) showing an improved fit to the actual potential compared to QFF.

The error reduction of the MQFF relative unsubstituted QFF along the symmetric mode is 87% for formaldehyde and 82% for water. While in

the case of sinh-substituted QFF along the antisymmetric mode is 94% for both formaldehyde and water. Hyperbolic sine coordinates provide,

thus, an even better approximation of the potential along antisymmetric modes, than Morse coordinates do for symmetric modes for the particular

cases presented here.

This kind of analysis, although undoubtedly relevant, does not guarantee that the improvement observed in these potential sections will trans-

late into a similar one in the calculated frequencies using VSCF/VCI vibrational structure methods. Indeed, the data discussed so far only suggests

similar improvements in diagonal potential matrix elements. Coupling potential matrix elements do have a strong influence in the calculated vibra-

tional frequencies, however. We consider then, that in order to produce a more meaningful estimation of the accuracy of QFFs, it is necessary to

include at least two-dimensional sections of the potential, whenever strong coupling terms arise, such as is the case for symmetric and antisymmet-

ric modes of the test molecules at hand. Moreover, there are no published studies on the effectiveness of coordinate substitutions to model cou-

pling regions of the potential, especially for the sinh coordinate substitution that we present in this work. It would be interesting to evaluate the

accuracy of the MSQFF compared to that of QFF and ab initio grids in these important PES sections.
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In Figure 2, we compare QFF and MSQFF model potentials with ab initio bidimensional grids over CAH symmetric and antisymmetric stretching

modes for formaldehyde (panels A–C) and water (panels D–F).

Comparing the ab initio grid (top panels a and d) with QFF (middle b and e) and MSQFF (bottom panels c and f) we can see that MSQFF pro-

duces a surface in better accordance with the actual ab initio potential than QFF for our test cases. Differences only begin to be noticeable for dis-

placements in both coordinates of more than 20 bohr emu1/2, where the sinh coordinate rises more steeply at the borders of the plot than the ab

initio grid. This shows as a greater curvature of contour lines at upper and lower right borders of the plot, an effect of the truncation of the MSQFF

at fourth order. QFF potential surface, on the other hand differs considerably at regions well within the 20 bohr emu1/2 mark.

Figure 3 shows the absolute values of percentage errors for the surfaces of Figure 2 relative to the ab initio grid. We can see that QFF concen-

trates its accuracy along straight orthogonal directions (Qs,0) and (0,Qa) in both molecules. MSQFF on the other hand shows not only a much

expanded range of validity, but, very interestingly, low error sections well inside the coupling regions in the potential energy surfaces of both mole-

cules, most clearly seen in the case of formaldehyde (Figure 2B) along directions (Qs,Qa)5(1,1) and (1,2).

A similar feature can be observed in the case of water, where the low error region is curved along the symmetric mode (Qs) direction toward

positive antisymmetric mode (Qa) values. MSQFF produces a much better representation of the coupling regions between symmetric and antisym-

metric CAH stretching normal modes, when compared with a simple QFF representation for the test cases presented here. Potential surfaces of

SQFF and MQFF, as well as error surfaces for water and formaldehyde are shown in Supporting Information, Figures S1 and S2, respectively. Com-

paring error surfaces in Figure 1 with Supporting Information S1 and S2 we can see that the former is not a simple superposition of the later. A syn-

ergic effect appears to exist in the simultaneous use of sinh and Morse.

4.2 | Vibrational frequencies

We now turn our attention to the accuracy of vibrational frequencies. With the intention of comparing the performances of QFF, MQFF, SQFF,

and MSQFF for vibrational structure computations, we performed VSCF/VCI calculations using all four of the model potentials at the MP2/cc-

pVTZ level of electronic structure theory for water and formaldehyde as described in the computational details section.

Table 1 shows VCI frequencies (in wavenumbers) for the fundamentals, first overtones and combination bands of water.

FIGURE 1 Comparison of ab initio potential energy scans (dark gray full circles) with standard QFF (light blue discontinuous lines) and
MSQFF (magenta full lines) along symmetric (left-hand panels) and antisymmetric (right-hand panels) normal modes of water (panels A and
B) and formaldehyde (panels C and D) at the MP2/cc-pVTZ electronic structure level of theory
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Fundamental bands show significant improvements in all three coordinate-substituted potentials relative to QFF for the test cases presented.

MSQFF produces the best results, with a mean absolute deviation (MAD) of only 11 cm21 compared to 47 cm21 for QFF, a 76% reduction. The

Morse-substituted QFF, on the other hand, produces fundamental transition frequencies with a MAD reduction of only 51%, while SQFF shows a

25% improvement.

FIGURE 2 Bi-dimensional potential energy surfaces for formaldehyde (A–C) and water (D–F) showing the coupling region between the
symmetric (horizontal axis, Qs) and antisymmetric (vertical axis, Qa) CAH stretching normal modes. Upper panels are ab initio grids (A and
D), middle panels are QFF (B and E) and bottom panels are MSQFF PES (C and F) representations. The energy scale is shown at the top
and has dimensions of Hartrees, while the normal mode displacements, bohr emu1/2. White sections in panels a and d are points where the
potential energy could not be evaluated due to convergence problems in the electronic structure software

FIGURE 3 QFF (top panels a and c) andMSQFF (bottom panels b and d) relative error (%) surfaces (only absolute values are shown for the errors,
for the sake of simplicity) relative to ab initio grid for formaldehyde (left) and water (right) for the respective V(Qs,Qa) surfaces of Figure 2
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Interestingly, symmetric and antisymmetric transitions show simultaneous improvements in both singly-substituted quartic force fields, suggest-

ing that each coordinate substitution by itself produces an improved representation of the coupling zones of the potential than the simple QFF

model for the presented test cases.

This can be corroborated by comparing the bidimensional potential surfaces for both singly-substituted potentials, with the unsubstituted QFF

(Figure S1, in Supporting Information[47]). As expected, the bending mode shows little change in all four potentials. In the case of overtone bands,

MSQFF produces an 85% reduction in mean absolute deviation, with a MAD of 133 cm21 for QFF compared with only 20 cm21 for MSQFF.

Singly-substituted potentials again show enhanced frequencies for both symmetric and antisymmetric modes, with a clear preference for the mode

being substituted. MAD reductions are 56% and 34% for MQFF and SQFF, respectively.

The overall MAD reductions in the case of combination bands are 62%, 54%, and 13% for MSQFF, MQFF, and SQFF respectively. As expected,

the best results are obtained for the 1131 band, where the deviations are 11 cm21 for MSQFF, 87 cm21 for MQFF, and 182 cm21 in the case of

SQFF, compared with the hefty 249 cm21 of QFF. The reduction of 96% in the deviation of the 1131 band in the case of MSQFF (65% for MQFF

and 27% for SQFF), is balanced with a strong decrement in the accuracy of the 2131 combination band, which shows a very low deviation (6 cm21)

when the QFF potential representation is used, and steadily worsens in going through MQFF, SQFF, and MSQFF, with deviations of 34, 51, and

74 cm21, respectively.

Table 2 shows vibrational frequencies in wavenumbers for the fundamental bands, overtones and combination bands of formaldehyde using

unsubstituted QFF as well as three kinds of substituted QFFs.

Fundamental band frequencies greatly improve in going from QFF to MQFF, SQFF, and MSQFF with substituted potentials showing 26, 32,

and 52% improvement, respectively, compared with the unsubstituted force field.

Regarding individual deviations in fundamental transitions we find a similar pattern as in water. Unsubstituted mode frequencies are almost not

affected, while symmetric and antisymmetric stretch modes transitions show significant improvements in their frequencies. We again find that the

substitution of the symmetric mode by Morse coordinates produces a noticeable improvement in antisymmetric mode transition, and vice versa,

which is caused by the substituted potentials producing a better representation of the strongly coupled regions between these two modes for our

test cases.

Overtone bands again show a steady improvement relative to QFF in going from MQFF to SQFF and to MSQFF, although somewhat less

so than for the fundamental bands (2, 24, and 33%, respectively). Unsubstituted modes frequencies are, again, little affected, and substituted

bands show all better accordance with experiment, with the sole exception of the antisymmetric mode overtone frequency in MQFF which worsens

significantly, and counterweights the 37 cm21 cut on the deviation of the symmetric mode with respect to experiment.

TABLE 1 VCI frequencies (cm21) of fundamental, overtone, and combination bands for water using QFF, MQFF, SQFF, and MSQFF model
PES at the MP2/cc-pVTZ electronic structure level of theory

Model potential

States QFF MQFF SQFF MSQFF Experimentala

m1 3719 (62) 3683 (26) 3711 (54) 3674 (17) 3657

m2 1579 (16) 1582 (13) 1577 (18) 1580 (15) 1595

m3 3820 (64) 3787 (31) 3788 (32) 3758 (2) 3756

12 7409 (208) 7268 (67) 7384 (183) 7220 (19) 7201

22 3126 (26) 3124 (28) 3120 (32) 3121 (31) 3152

32 7611 (166) 7524 (79) 7494 (49) 7435 (10) 7445

1121 5251 (16) 5231 (4) 5236 (1) 5217 (18) 5235

2131 5325 (6) 5297 (34) 5280 (51) 5257 (74) 5331

1131 7499 (249) 7337 (87) 7432 (182) 7261 (11) 7250

MAD Fundamentals 47 23 35 11

Overtones 133 58 88 20

Comb. Bands 90 41 78 34

Overall 90 41 67 22

Experimental values are also given for reference. Absolute deviations from experimental values are shown in parentheses. Mean absolute deviations
(MAD) for various groups of transitions are presented at the bottom of the table.
aReferences [44–56].
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Interestingly, combination bands show an average trend contrary to the rest of the spectrum, as the MAD increases noticeably for substituted

relative to unsubstituted force fields. Analyzing individual deviations we see that combination bands that do not include substituted modes show

very little change in any of the substituted force fields, relative to QFF. Moreover, bands including the symmetric mode, show some improvement

in their frequencies.

TABLE 2 VCI frequencies (cm21) of fundamental, overtone, and combination bands for formaldehyde using QFF, MQFF, SQFF, and MSQFF
model PES at the MP2/cc-pVTZ electronic structure level of theory

Model potential

States QFF MQFF SQFF MSQFF Experimentala

m1 2833 (51) 2820 (38) 2825 (43) 2811 (29) 2782

m2 1739 (7) 1739 (7) 1739 (7) 1739 (7) 1746

m3 1515 (15) 1515 (15) 1513 (13) 1514 (14) 1500

m4 1170 (3) 1171 (4) 1169 (2) 1170 (3) 1167

m5 2882 (39) 2861 (18) 2855 (12) 2845 (2) 2843

m6 1250 (0) 1251 (1) 1249 (1) 1250 (0) 1250

12 5628 (165) 5591 (128) 5607 (144) 5581 (118) 5463

22 3461 (11) 3463 (9) 3462 (10) 3462 (10) 3472

32 3028 (30) 3027 (29) 3023 (25) 3025 (27) 2998

42 2336 (8) 2333 (5) 2334 (6) 2331 (3) 2328

52 5741 (90) 5522 (129) 5700 (49) 5692 (41) 5651

62 2498 (2) 2496 (0) 2495 (1) 2494 (2) 2496

11 21 4572 (43) 4561 (32) 4564 (35) 4552 (23) 4529

11 31 4326 (72) 4316 (62) 4313 (59) 4306 (52) 4254

11 41 3978 (38) 3980 (40) 3968 (28) 3968 (28) 3940

(11 51:11 31 61)L 5361 (72) 5464 (31) 5465 (32) 5415 (18) 5433

(11 51:11 31 61)H 5671 (140) 5606 (75) 5616 (85) 5575 (44) 5531

11 61 4057 4054 4044 4041

21 31 3246 (7) 3246 (7) 3244 (5) 3245 (6) 3239

21 41 2901 (5) 2902 (4) 2900 (6) 2901 (5) 2906

21 51 4593 (21) 4484 (88) 4474 (98) 4466 (106) 4572

21 61 3011 (10) 3012 (11) 3010 (9) 3008 (7) 3001

31 41 2684 (17) 2684 (17) 2680 (13) 2682 (15) 2667

31 51 4326 4374 4365 4360

31 61 2724 (5) 2726 (7) 2718 (1) 2714 (5) 2719

41 51 3978 (18) 3890 (106) 3873 (123) 3868 (128) 3996

41 61 2423 (1) 2423 (1) 2420 (2) 2421 (1) 2422

51 61 4057 (26) 4084 (1) 3911 (172) 3905 (178) 4083

MAD Fundamentals 19 14 13 9

Overtones 51 50 39 34

Comb. Bands 34 34 48 44

Overall 34 33 38 34

Experimental values are also given for reference. Absolute deviations from experimental values are shown in parentheses. Mean absolute deviation
(MAD) values are given at the bottom for fundamental, overtone, and combination bands separately, as well as for the whole set.
aReferences [44, 47].
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We consider 1151 and 113161 combination bands separately, as they present us with a good test case to see if the seemingly good quality of

the substituted force fields between the symmetric and antisymmetric proton stretch modes, as depicted in Figures 2 and 3, translate into better

frequencies. These bands are particularly difficult to model, as they are involved in a strong Fermi resonance. Indeed the assignment of this couple

of bands has been the subject of some controversy in the past.[6,47–51] These two states are strongly coupled, resulting in VCI states almost evenly

mixed, so the usual method of assignment consisting in naming a state by its dominant contribution is rendered meaningless as their composition is

extremely sensitive to small changes in the potential representation. Here, we adopt the naming convention of Yagi et al.[51] and simply call them

(1151:113161)L and (1151:113161)H for the lower and higher energy states disregarding their exact VCI coefficients composition.

As shown in Table 2, the frequencies obtained by using the doubly substituted force field (MSQFF) are in much better agreement with experi-

ment than those obtained with simple normal coordinates, with an error recovery of 75% and 68% for (1151:113161)L and (1151:113161)H, respec-

tively. Singly substituted force fields MQFF and SQFF both produce intermediate results for these states.

These results contrast with those of combination bands 2151, 4151, and 5161 which frequencies are in fairly good agreement with experiment

within the QFF representation, but show large errors in substituted force fields. The reason for this can be found by analyzing the corresponding

bidimensional slices of the potential in substituted and unsubstituted QFF representations, and comparing them to the ab initio potential energy

grid in the same coordinate range.

Figure S5 and S6 in the Supporting Information[47] show such bi dimensional energy surfaces and Supporting Information Figures S7 and S8,

the corresponding percentage error surfaces, respectively, for additional pairs of modes including symmetric or antisymmetric stretching modes. For

all the states in question it can be seen that although in the ab initio potential grid the energy rises smoothly in all directions, the QFF approximation

produces surfaces where the potential tends rapidly to negative infinity at some or all the corners of the plots (i.e., V(1,1), V(1,-), V(-,1), and V(-,-)) .

Comparing the QFF with the SQFF surface it is possible to infer that the use of sinh substitution exacerbates this artifact, effectively shrinking the

usable region along the unsubstituted coordinate. This produces surfaces that plunge faster into negative infinity than its unsubstituted version. The

fact that the region of potential surface directly along the substituted coordinate actually shows lower error than its unsubstituted counterpart sup-

ports this reasoning.

5 | CONCLUSIONS

In the present study, we have presented a novel QFF substitution scheme using a combination of sinh and Morse coordinates for the calculation of

anharmonic vibrational energies using variational methods, that is well suited for the use of cartesian normal coordinates as the base coordinate

system.

We showed that the use of sinh coordinates is suggested by assuming that the potential is Morse-like along individual bond stretching degrees

of freedom. Moreover, the scheme is easily applicable to molecules with more than two equivalent hydrogen atoms, by using a similar procedure as

the one outlined in section 2.

We implemented this scheme in a new program recently developed by us called QUMVIA (Quantum mechanical vibrational analysis), which

also implements VSCF and VCI variational vibrational structure methodologies for the calculation of anharmonic vibrational energies, and is freely

available to the community under GNU GPLv3 license.

Formulas for the analytical integrals using sinh, as well as Morse coordinates, necessary for VSCF/VCI calculations as implemented in QUMVIA

are also derived and presented in this work.

The accuracy of the sinh-Morse coordinate substitution scheme is tested by comparing one and two-dimensional sections of the substituted

QFFs with unsubstituted QFF and ab initio grids using two well-studied benchmark molecules as test cases, water and formaldehyde.

We also calculated VSCF/VCI vibrational transition frequencies for unsubstituted as well as substituted QFFs. We found a very promising error

reduction in the frequencies of fundamental and overtone transitions of symmetric and antisymmetric modes, with little change in the frequencies

of transitions associated with other modes.

We found, however, that care should be taken in the case of combination bands including only one sinh-substituted mode, as these show an

increase in the error. This problem is not observed in any other case, although it does highlight the importance of analyzing the effect of new coordi-

nate substitution schemes over more than one dimension to characterize the limits of its validity.

Overall, sinh-Morse coordinate substitution scheme is found to constitute a promising alternative to QFFs based fully on simple cartesian

normal coordinates, given the fact that QFF substitution schemes in general do not require any extra computational effort above that necessary for

building the normal QFF.

Also, the use of sinh-Morse scheme is especially advantageous when the underlying code uses analytical integrals, as other proposed coordinate

substitution schemes for normal coordinates[10] require numerical methods for their calculation, and is specifically adapted for its use with normal

coordinates as the base coordinate system for the QFF. A more throughout testing of the proposed scheme is underway to establish its accuracy

using a greater variety of molecular symmetries and sizes.
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