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A B S T R A C T

A brief review is made of the birth and evolution of the ‘‘nonequilibrium potential’’ (NEP) concept. As if
providing a landscape for qualitative reasoning were not helpful enough, the NEP adds a quantitative dimension
to the qualitative theory of differential equations and provides a global Lyapunov function for the deterministic
dynamics. Here we illustrate the usefulness of the NEP to draw results on stochastic thermodynamics: the
Jarzynski equality in the Wilson–Cowan model (a population-competition model of the neocortex) and a
‘‘thermodynamic uncertainty relation’’ (TUR) in the KPZ equation (the stochastic field theory of kinetic
interface roughening). Additionally, we discuss system-size stochastic resonance in the Wilson–Cowan model
and relevant aspects of KPZ phenomenology like the EW–KPZ crossover and the memory of initial conditions.
1. Introduction

Potential landscapes are a standard tool, taught in basic Physics
courses, for qualitative and even some quantitative reasoning. They
determine the extent of trajectories in deterministic conservative sys-
tems and in 1D, the potential 𝛷(𝑥) even determines by quadrature
their analytic expression. Not less important are potential landscapes
for stochastic dissipative systems: yet whereas some important infor-
mation (attractors and repellers, local bifurcations) can be retrieved
from sheer linearization, some phenomena require the full potential
landscape for their description (an instance being excitable behav-
ior). Energy landscapes not only help visualize the systems’ phase
space and its structural changes as parameters are varied, but allow
to predict the rates of activated processes [1–3]. Some fields that
benefit from the energy landscape approach are optimization prob-
lems [4], neural networks [5], protein folding [6], cell nets [7], gene
regulatory networks [8,9], ecology [10], and evolution [11]. The fact
that deterministic dissipative systems relax toward their attractors has
an expression (known as the ‘‘Lyapunov property’’) in terms of the
potential 𝛷(𝐱): �̇� < 0 outside the attractors; 𝛷(𝐱) is said to be a
‘‘Lyapunov function’’. Moreover, the framework can also be applied to
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nonautonomous flows, as far as their explicit time-dependence can be
regarded as slow in comparison with the relaxation times toward the
system’s attractors (adiabatic approximation).

What is less known about potential landscapes in stochastic dissi-
pative systems is that noise can help meet integrability conditions in non-
integrable deterministic systems. This was shown by Robert Graham
and collaborators in a series of works, several of them communicated
in successive editions of the International Workshop on Instabilities
and Nonequilibrium Structures. They coined the name ‘‘nonequilibrium
potential’’ (hereafter, NEP). A convenient classification of dynamical
systems is into potential and non-potential ones, i.e. those which admit
a potential and those which do not (this includes systems for which a
potential may exist, but it is not known; Hamiltonian systems belong
to this class) [12,13]. Graham’s finding can thus be restated as follows:

‘‘Langevin systems whose Fokker–Planck equation admits a stationary
solution are potential’’.

Potential systems can in turn be classified into non-relaxational and
relaxational, according to whether a drift component normal to the
potential gradient exists or not. A further classification of relaxational
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systems into gradient and non-gradient ones is still admitted, according
to whether an attractor’s basin is locally a revolution paraboloid or a
generic one.

In Section 2, we briefly sketch Graham’s theory of the NEP [14–33],
including short discussions and relevant bibliography on some by now
‘‘classic’’ systems admitting a NEP: the complex Ginzburg–Landau equa-
tion (CGLE) [13,34–40], the FitzHugh–Nagumo (FHN) model [41–46]
and one-component reaction–diffusion systems with field-dependent
diffusivity [1,2,47–54]. In Section 3 we introduce two more systems
admitting a NEP: (1) The KPZ equation—the stochastic field theory of
kinetic interface roughening—has been shown to be a stochastic gradi-
ent system [55–62]: the functional it stems from displays the Lyapunov
property, even though it is unbound from below and keeps memory of
the process. We then understand that an interface’s kinetic roughening
is a phenomenon akin to that of escape through a barrier (thus losing
lower boundedness, although not the Lyapunov property). Among its
virtues, it yields a visual criterion for the EW–KPZ crossover. (2) The
Wilson–Cowan model of the neocortex—describing the competition
between excitatory and inhibitory neural populations—is generically
a non-relaxational potential system admitting a bona-fide NEP [63].
In Section 4, we illustrate the usefulness of the NEP concept to draw
results on stochastic thermodynamics by deriving a Jarzynski equal-
ity [64] in the Wilson–Cowan model and a thermodynamic uncertainty
relation (TUR) [65] in the KPZ equation. In Section 5, we further
illustrate the usefulness of the NEP concept by analyzing the memory
of initial conditions in KPZ and system-size stochastic resonance [66]
in the Wilson–Cowan model. We close by summarizing our conclusions
in Section 6.

2. Graham’s theory

2.1. Univariate systems

It is well known that the conditional probability density function
(pdf) 𝑃 (𝑥, 𝑡|𝑥0, 0) of an univariate stochastic process 𝑥(𝑡) (𝑡 ≥ 0, 𝑥 ∈
⊂ R) that obeys a generalized Langevin equation

̇ = 𝑓 (𝑥) + 𝑔(𝑥) 𝜉(𝑡), 𝑥(0) = 𝑥0 (2.1)

when submitted parametrically—via 𝑔(𝑥)—to a centered Gaussian
white noise 𝜉(𝑡), ⟨𝜉(𝑡)⟩ = 0, ⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 2𝐷𝛿(𝑡 − 𝑡′), obeys in turn a
Fokker–Planck equation (FPE)

𝜕𝑡𝑃 + 𝜕𝑥𝐽 = 0 (2.2)

with

𝐽 (𝑥, 𝑡|𝑥0, 0) ∶=

{

𝑓𝑃 +𝐷𝑔2 𝜕𝑥𝑃

(𝑓 + 𝑔𝑔′)𝑃 +𝐷𝑔2 𝜕𝑥𝑃

according to whether ∫ 𝑡+d𝑡𝑡 d𝜏 𝑔(𝑥(𝜏))𝜉(𝜏) is interpreted in prepoint (Itô)
or in midpoint (Stratonovich) sense. The standard proof relies on
Doob’s theorem [3,67], according to which the Kramers–Moyal expan-
sion terminates at the second order if 𝜉(𝑡) is Gaussian. An alternative
and very elegant proof [12,68] resorts to Novikov’s theorem [69].
Also, everybody knows that the FPE is an eigenvalue equation 𝜕𝑡𝑃 =
𝜆𝑃 , 𝜆 ≤ 0. Now, the FPE may or may not saturate the 𝜆 = 0 bound. A
known instance of the first case is pure diffusion, where the asymptotic
normalization of 𝑃 still depends on 𝑡. If it does, then there exists a
stationary pdf (spdf) 𝑃 st (𝑥), independent of 𝑥0. It stems from Eq. (2.2)
by setting 𝐽 (𝑥, 𝑡|𝑥0, 0) = 𝐽 , a constant which for Dirichlet or natural
boundary conditions will be zero.2 In such a case, we may write

𝑃 st (𝑥) =
exp[−𝛷(𝑥)∕𝐷]

∫𝛺 d𝑥 exp[−𝛷(𝑥)∕𝐷]
, (2.3)

2 In the case of periodic boundary conditions (ratchets), 𝐽 may be a nonzero
constant and Eq. (2.3) will become a bit more involved.
2

with

𝛷(𝑥) ∶= −∫

𝑥

𝑥0
d𝑦

{

𝑓∕𝑔2

(𝑓 + 𝑔𝑔′)∕𝑔2
. (2.4)

q. (2.4) assumes that 𝑔2 > 0 or at least, that any singularity of
he integrand is a removable one. In such a case, we might have
erformed the (possibly piecewise) one-to-one transformation 𝑧 =
𝑥
𝑥0

d𝑦∕𝑔(𝑦) to retrieve a conventional Langevin equation in the field
(𝑧) ∶ − ∫ 𝑧𝑧0 d𝑦 𝑓 (𝑦)∕𝑔(𝑦). We then recover Eq. (2.4) by transforming
ack. Hence in the following, we can assume that 𝑔(𝑥) = 1. Then
(𝑥) turns out to be a global Lyapunov function of the deterministic
ynamics: �̇� = −𝛷′�̇� = −𝛷′2 < 0. In each attractor’s basin, the latter
volves toward the attractor which on the other hand, is a relative
aximum of 𝑃 st (𝑥).

.2. Multivariate systems

Regarding multivariate processes, there is a simple case where
(𝑥𝑗 ) = 𝑓 (𝑥), 1 ≤ 𝑗 ≤ 𝑛. As far as the 𝑥𝑗 are coupled linearly—

.e., through a symmetric ‘‘adjacency matrix’’ (in fact, a quadratic form
r tensor)—these so-called gradient systems admit a potential, no matter
ow large 𝑛 be (this fact is widely known for arrays of harmonic
scillators and linear circuits). Of special interest is the case of reaction–
iffusion systems (even with density-dependent diffusion) to be addressed
n Section 3.2.

For nongradient systems, integrability conditions are not granted for
he deterministic system. Nonetheless—as Graham and Haken first no-
iced [14]—some nongradient systems behave as stemming from a NEP.
he clue to this puzzle was unveiled by Graham et al. along a series of
orks [20–31]: a properly conditioned noise correlation matrix (again,
tensor) can eventually help the system meet integrability conditions.
hat Graham et al. realized more than thirty years ago is that even in

he deterministic limit, this space enlargement can eventually help meet
he integrability conditions.

For an 𝑛–component dynamic flow3

̇ = 𝐟 (𝐱) + 𝜎 𝛯(𝑡), (2.5)

ubmitted via a constant mobility tensor 𝜎 to 𝑛 Gaussian, centered and
ncorrelated white noises 𝜉𝑖(𝑡) with common variance 𝐷, i.e. ⟨𝛯(𝑡)⟩ = 0
nd ⟨𝛯(𝑡)𝛯𝑇 (𝑡′)⟩ = 2𝐷𝐼 𝛿(𝑡 − 𝑡′), the nonequilibrium potential (NEP) has
een thus defined [27] as

(𝐱) = − lim
𝐷→0

𝐷 ln𝑃st (𝐱;𝐷). (2.6)

hat implies 𝑃st (𝐱;𝐷) ∝ exp[−𝛷(𝐱;𝐷)∕𝐷] + (𝐷), which replaced into
he stationary 𝑛–variable FPE ∇ ⋅ [𝐟 (𝐱)𝑃st (𝐱) − 𝐷𝑄∇𝑃st (𝐱)] = 0 (with
∶= 𝜎𝜎T = 𝑄T) yields in the lim𝐷→0 the equation

T(𝐱)∇𝛷 + (∇𝛷)T𝑄∇𝛷 = 0, (2.7)

rom which 𝛷(𝐱) can in principle be found. In an attractor’s basin,
symptotic stability imposes det𝑄 = (det 𝜎)2 > 0, which in turn requires
to be nonsingular. Using Eq. (2.7),

̇ = �̇�T∇𝛷 = 𝐟T(𝐱)∇𝛷 = −(∇𝛷)T𝑄∇𝛷 < 0

or 𝐷 → 0. Hence, 𝛷(𝐱) is a Lyapunov function for the deterministic
ynamics. Note that although the setup in Eq. (2.5) looks somewhat
rtificial (a system coupled to many heat sources in relative equilibrium
t ‘‘temperature’’ 𝐷) it turns out to be equivalent to the genuinely
ut-of-equilibrium problem �̇� = 𝐟 (𝐱) +𝛯(𝑡), ⟨𝛯(𝑡)𝛯𝑇 (𝑡′)⟩ = 2𝐷𝑄𝛿(𝑡− 𝑡′).

Like the Hamilton–Jacobi equation, Eq. (2.7) is quadratic in its
nknown. This trouble can be circumvented if we can decompose 𝐟 (𝐱) =
(𝐱)+𝐫(𝐱), with 𝐝(𝐱) ∶= −𝑄∇𝛷 the dissipative part of 𝐟 (𝐱). Then Eq. (2.7)
eads 𝐫T(𝐱)∇𝛷 = 0, and 𝐫(𝐱) is the conservative part of 𝐟 (𝐱). Note that

3 Eq. (2.5) generalizes Eq. (2.1) for 𝑔 = const.
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𝐝(𝐱) is still irrotational (in the sense of the Helmholtz decomposition)
but is not an exact form (the Hodge decomposition is made in the
nlarged space).

We may always write 𝐫(𝐱) = 𝐴∇𝛷, with 𝐴 antisymmetric (involving
𝑛 (𝑛−1)∕2 parameters). For illustration purposes, it suffices to consider
𝑛 = 2, i.e.

𝐫(𝐱) = 𝜅 𝛺∇𝛷, 𝛺 ∶=
(

0 1
−1 0

)

. (2.8)

Now 𝐟 (𝐱) = −(𝑄 − 𝜅 𝛺)∇𝛷, det(𝑄 − 𝜅 𝛺) = det𝑄 + 𝜅2 > 0, and thus

∇𝛷 = −(𝑄 − 𝜅 𝛺)−1𝐟 (𝐱). (2.9)

For arbitrary real 𝜎𝑖𝑗 we can parameterize

𝜎 =
(√

𝜆1 cos 𝛼1
√

𝜆1 sin 𝛼1
√

𝜆2 cos 𝛼2
√

𝜆2 sin 𝛼2

)

nd define 𝜆 ∶=
√

𝜆1𝜆2 cos(𝛼1 − 𝛼2) (note that the condition 𝐷 > 0
imposes 𝛼2 ≠ 𝛼1). Then

𝑄 − 𝜅 𝛺 =
(

𝜆1 𝜆 − 𝜅
𝜆 + 𝜅 𝜆2

)

,

and Eq. (2.9) reads

∇𝛷 ∶=
(

𝜕1𝛷
𝜕2𝛷

)

= (2.10)

− 1
det(𝑄 − 𝜅 𝛺)

(

𝜆2𝑓1(𝐱) − (𝜆 − 𝜅)𝑓2(𝐱)
−(𝜆 + 𝜅)𝑓1(𝐱) + 𝜆1𝑓2(𝐱)

)

(𝜕𝑘 is a shorthand for 𝜕∕𝜕𝑥𝑘). If a set {𝜆1, 𝜆2, 𝜆, 𝜅} can be found such
that 𝛷(𝐱) fulfills the integrability condition 𝜕2𝜕1𝛷 = 𝜕1𝜕2𝛷, then a NEP
exists.

2.3. Stochastic fields

Fields are of course a special case of Section 2.2, in which a subset
of the index set refers to a substrate manifold. For instance in 𝐮(𝐱, 𝑡),
𝐮 ≡ {𝑢𝑘}, 𝑘 ∈ {1,… , 𝑛}, whereas 𝐱 ∈ R𝑑 . This hierarchical structure
of the index set introduces a great simplification in the formalism
of Section 2.2: all one has to do is to substitute, e.g. in Eq. (2.10),
𝜕∕𝜕𝑥𝑘 by 𝛿∕𝛿𝑢𝑘(𝐱). This is very convenient since most of the interesting
applications of the NEP refer to extended systems. Attractors are now
points or curves in functional space.

3. Examples, ‘‘classic’’ and new

3.1. Non-extended systems

(a) The FitzHugh–Nagumo system
The voltage-varying conductance model by Hodgkin and Huxley

[70] is still nowadays the starting point for ‘‘ab initio’’ calculations
in neuroscience. In practice however (when such a level of detail is
not needed), two-variable reductions which still capture the essential
trait of neural, cardiac and other tissues, namely excitability, are far
more useful. The simplest such reduction is the FitzHugh–Nagumo
model [71,72], an activator–inhibitor system for which (in the absence
of a tonic current)

𝐟 (𝐱) =
(

0 −1∕𝜖
𝛽 −1

)

𝐱 +
(

𝑔(𝑥1)∕𝜖
0

)

, (3.1)

𝜖 ∶= 𝜏𝑎∕𝜏𝑖 ≪ 1 being the ratio of relaxation times. The integrability
condition for ∇𝛷 arising from Eq. (2.10),

𝜅 = −𝜆 = −1
2

(

𝛽𝜆1 +
𝜆2
𝜖

)

, (3.2)

is fully compatible with the model’s bistable and excitable regimes (the
ones for which a spdf exists). If for instance we take 𝜆1 = (𝜖−1) and
2 = (𝜖), the restriction becomes 𝛽 < 𝜖 [41–46].
3

b) Adding linear dissipation to a 1D Hamiltonian system 𝜏
For nonlinear systems with one degree of freedom having Hamil-
onian 𝐻(𝑥, 𝑝) ∶= 𝑝2∕2𝑚 + 𝑉 (𝑥) when undamped, 𝐻(𝑥, 𝑝)∕𝛾 is a NEP
for any 𝐷) when their damping is linear in 𝑝. Denoting 𝑥1 ∶= 𝑥,
2 ∶= 𝑝∕𝑚, let 𝛾 be the damping per unit mass, and 𝑉 (𝑥1) ∶= 𝑉 (𝑥1)∕𝑚.
ere 𝑓1(𝐱) = 𝑥2 and 𝑓2(𝐱) = −𝛾 𝑥2 − 𝑉 ′(𝑥1). The integrability condition
ields 𝜆1 = 0 (then det𝑄 ≥ 0 imposes 𝜆 = 0) and 𝜆2 = 𝜅𝛾. It turns out

hat 𝐫(𝐱) =
(

𝑥2
−𝑉 ′(𝑥1)

)

and ∇𝛷 = 𝜅−1
(

𝑉 ′(𝑥1)
𝑥2

)

, which integrated over

ny path from 𝐱 = 0, yields 𝛷(𝐱) = 𝜅−1
[

𝑥22
2 + 𝑉 (𝑥1)

]

, so full consistency
is achieved for 𝜅 = 𝛾. 𝐫(𝐱) is in fact the Hamiltonian flow in 𝐻(𝐱), but
𝐟 (𝐱) is not Hamiltonian, because 𝐝(𝐱) =

(

0
−𝛾 𝑥2

)

.

𝐫(𝐱) ≠ 0 is what violates detailed balance, which in Langevin
ynamics is just an expression of 𝐉st (𝐱) = 0. If the turnaround mean
requency given by 𝐫(𝐱) is high enough, this fact can be successfully
xploited for slow enough forcing (‘‘adiabatic approximation’’).

c) The Hopf normal form
By Eq. (2.6), 𝛷(𝐱) is restricted to situations where 𝑃st (𝐱;𝐷) exists.

hat is not the case of generic limit cycles and chaos (although one
ight start from a spdf, transform to the comobile system where the
rift becomes periodic in time and do Floquet analysis on the resulting
df). However, there is a special case where the treatment becomes
impler: the supercritical Hopf bifurcation near which, the system can
e approximated by the Hopf normal form

(𝐱) = [𝐴 + 𝐱𝑇 𝐱𝐵] 𝐱, (3.3)

=
(

𝑎1 −𝑎2
𝑎2 𝑎1

)

, 𝐵 =
(

𝑏1 −𝑏2
𝑏2 𝑏1

)

.

n polar coordinates, Eq. (3.3) reads �̇� = 𝑎1 𝑟 + 𝑏1 𝑟3, �̇� = 𝑎2 + 𝑏2 𝜃2 so
n fact, 𝑎2 = 0 since the bifurcation is supercritical. Inserting Eq. (3.3)
nto Eq. (2.10) the Hopf normal form turns out to be potential in the
ense defined by Eq. (2.6) only for 𝑏2 = 0. Even in this case, 𝛷(𝐱)
oes undergo a supercritical Hopf bifurcation from a pointlike attractor
oward an extended one. However, the latter does not describe a limit
ycle but the fact that the deterministic rollover from the destabilized
ormer attractor may equally occur in any direction.

Now, recognizing that matrices 𝐴, 𝐵 are representations of complex
umbers 𝑎, 𝑏, one can map 𝐱 onto its complex coordinates: 𝑥1 = (𝑧 +
∗)∕2, 𝑥2 = (𝑧 − 𝑧∗)∕(2𝑖), so

̇ = 𝑓 (𝑧, 𝑧∗) = 𝑧𝑧∗
( 𝑎
𝑧∗

+ 𝑏𝑧
)

. (3.4)

t is immediate to realize that 𝑓 (𝑧, 𝑧∗) = −𝜕𝑧∗𝛷(𝑧, 𝑧∗), with

(𝑧, 𝑧∗) ∶= −1
2
[𝑎 𝑧𝑧∗ + 𝑏 (𝑧𝑧∗)2].

(𝑧, 𝑧∗) = 𝛷(𝐱𝑇 𝐱) turns out to be a real quantity, but 𝑓 (𝑧, 𝑧∗) is not.
However, 𝛷(𝑧, 𝑧∗) does describe supercritical limit cycles. In [34], the
efinition (2.6) was extended to

(𝑧, 𝑧∗) = − lim
𝐷→0

𝐷 ln𝑃st (𝑧, 𝑧∗;𝐷), (3.5)

nd 𝑓 (𝑧, 𝑧∗) in (3.4) to

(𝑧, 𝑧∗) = −𝜕𝑧∗𝛷(𝑧, 𝑧∗) + 𝑟(𝑧, 𝑧∗), (3.6)
𝜕𝑧𝛷 + 𝑟∗𝜕𝑧∗𝛷 = 0. (3.7)

d) The Wilson–Cowan model
This model describes the coevolution of competing populations

coarse-grained activities) 𝑥1, 𝑥2 of excitatory and inhibitory neurons
espectively [73]:

1 �̇�1 = −𝑥1 + (𝜈1 − 𝑟1𝑥1)𝑠1(𝑖1),

�̇� = −𝑥 + (𝜈 − 𝑟 𝑥 )𝑠 (𝑖 ).
2 2 2 2 2 2 2 2
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The 𝜏𝑘 and 𝑟𝑘 are relaxation and refractory times respectively, and the
𝜈𝑘 set the scale of the monotonically increasing (sigmoidal) response
functions 𝑠𝑘(𝑖𝑘). In [73], the

𝑠𝑘(𝑖𝑘) ∶=
1

1 + exp[−𝛽𝑘(𝑖𝑘 − 𝑖0𝑘)]
− 1

1 + exp(𝛽𝑘𝑖0𝑘)

re such that 𝑠𝑘(0) = 0, and range from −[1 + exp(𝛽𝑘𝑖0𝑘)]
−1 for 𝑖𝑘 → −∞

o 1−[1+exp(𝛽𝑘𝑖0𝑘)]
−1 for 𝑖𝑘 → ∞. So the first crucial observation about

he model is that it is asymptotically linear.
The currents 𝑖𝑘 are in turn linearly related to the 𝑥𝑘:

(𝐱) ∶= 𝐽𝐱 +M =
(

𝑗11 −𝑗12
𝑗21 −𝑗22

)(

𝑥1
𝑥2

)

+
(

𝜇1
𝜇2

)

.

ll the parameters are real and moreover, the 𝑗𝑘𝑙 are positive (𝑗11
nd 𝑗22 are recurrent interactions, 𝑗12 and 𝑗21 are cross-population
nteractions). The above definitions are such that for M = 0, 𝐱 = 0
s a stable fixed point. To avoid confusions in the following, note that
et 𝐽 = −(𝑗11𝑗22 − 𝑗12𝑗21).

In practice however, the names of Wilson and Cowan are associated
o the broader class of rate models. In the following we shall show that
he model defined by

1 �̇�1 = −𝑥1 + 𝑠1(𝑖1), 𝜏2 �̇�2 = −𝑥2 + 𝑠2(𝑖2) (3.8)

oes admit a NEP—for any functional forms of the nonlinear single-
ariable functions 𝑠𝑘(𝑖𝑘)4—provided global stability is assured.

For the model defined by Eqs. (3.8), it is

(𝐱) =
⎛

⎜

⎜

⎝

1
𝜏1
[−𝑥1 + 𝑠1(𝑖1)]

1
𝜏2
[−𝑥2 + 𝑠2(𝑖2)]

⎞

⎟

⎟

⎠

.

he condition 𝜕2𝜕1𝛷 = 𝜕1𝜕2𝛷, namely

𝜆2
𝜏1

[

−𝑗12 𝑠′1(𝑖1)
]

− 𝜆 − 𝜅
𝜏2

[

−1 − 𝑗22 𝑠′2(𝑖2)
]

=

−𝜆 + 𝜅
𝜏1

[

−1 + 𝑗11 𝑠′1(𝑖1)
]

+
𝜆1
𝜏2

[

𝑗21 𝑠
′
2(𝑖2)

]

,

boils down to

𝑗12 𝜆2 = 𝑗11 (𝜆 + 𝜅), 𝑗22 (𝜆 − 𝜅) = 𝑗21 𝜆1,
𝜆 − 𝜅
𝜏2

= 𝜆 + 𝜅
𝜏1

(and these in turn to 𝑗21 𝑗11 𝜏1 𝜆1 = 𝑗12 𝑗22 𝜏2 𝜆2) so that 𝜆2, 𝜆 and 𝜅 can
be expressed in terms of 𝜆1, which sets the global scale of 𝛷(𝐱):

𝜆2 =
𝑗21
𝑗22

𝑗11
𝑗12

𝜏1
𝜏2
𝜆1, 𝜆 =

𝑗21
𝑗22

𝜏1 + 𝜏2
2𝜏2

𝜆1, 𝜅 =
𝑗21
𝑗22

𝜏1 − 𝜏2
2𝜏2

𝜆1.

ince 𝐫(𝐱) = 𝜅 𝛺∇𝛷, 𝜏1 = 𝜏2 suffices to render the flow purely dissipative
albeit not gradient). From this, a good choice is 𝜆1 ∶= 𝑗22

𝑗21
𝜏2𝜌. In

summary,

𝑄 − 𝜅 𝛺 = 𝜌

( 𝑗22
𝑗21
𝜏2 𝜏2

𝜏1
𝑗11
𝑗12
𝜏1

)

,

det(𝑄 − 𝜅 𝛺) = −
𝜌2𝜏1𝜏2
𝑗12𝑗21

det 𝐽 ,

and Eq. (2.10) becomes

∇𝛷 =
𝑗12𝑗21

𝜌𝜏1𝜏2 det 𝐽
× (3.9)

( 𝑗11
𝑗12

[−𝑥1 + 𝑠1(𝑖1)] − [−𝑥2 + 𝑠2(𝑖2)]

−[−𝑥1 + 𝑠1(𝑖1)] +
𝑗22
𝑗21

[−𝑥2 + 𝑠2(𝑖2)]

)

.

4 With our mind in neurophysiology applications, we shall assume 𝑠𝑘(𝑖𝑘) to
have the same functional form, of sigmoidal shape. But neither condition is
necessary to satisfy the integrability condition.
4

Integrating Eq. (3.9) over any path from 𝐱 = 0, yields

𝛷(𝐱) = −
𝑗11𝑗21𝑥21 − 2𝑗12𝑗21𝑥1𝑥2 + 𝑗12𝑗22𝑥22

2𝜌𝜏1𝜏2 det 𝐽
(3.10)

+
𝑗21

[

𝑆1(𝑖1) − 𝑆1(𝜇1)
]

− 𝑗12
[

𝑆2(𝑖2) − 𝑆2(𝜇2)
]

𝜌𝜏1𝜏2 det 𝐽
.

As already pointed out, being 𝑠𝑘(𝑖𝑘) sigmoidal functions, Eq. (3.10)
is at most quadratic. Global stability thus imposes det 𝐽 < 0, i.e. 𝑗11𝑗22 >
𝑗12𝑗21. But note that matrix 𝐽 also determines the paraboloid’s cross
section. For the remaining terms, we note that Eq. (3.9) can be written
as

∇𝛷 = 1
𝜌𝜏1𝜏2 det 𝐽

(

𝑗21 0
0 −𝑗12

)

𝐽 (𝐱 − 𝐬)

and recall that 𝑠𝑘(𝑖𝑘) have sigmoidal shape. So at large |𝐱|, the compo-
nent

− 1
𝜌𝜏1𝜏2 det 𝐽

(

𝑗21 0
0 −𝑗12

)

𝐽 𝐬

will tend to different constants (according to the signs of 𝑖𝑘), so the
symptotic contribution of these terms will be piecewise linear, namely
collection of half planes.

A popular choice for the response functions is

𝑘(𝑖𝑘) ∶=
𝜈𝑘
2

(1 + tanh 𝛽𝑘𝑖𝑘), 𝛽𝑘 > 0,

for which

𝑆𝑘(𝑖𝑘) − 𝑆𝑘(𝜇𝑘) =
𝜈𝑘
2

[

𝑖𝑘 − 𝜇𝑘 + 𝛽−1𝑘 ln
cosh 𝛽𝑘𝑖𝑘
cosh 𝛽𝑘𝜇𝑘

]

. (3.11)

ts 𝛽𝑘 → ∞ limit, 𝜈𝑘 𝜃(𝑖𝑘) with

𝑘(𝑖𝑘) − 𝑆𝑘(𝜇𝑘) = 𝜈𝑘
[

𝑖𝑘 𝜃(𝑖𝑘) − 𝜇𝑘 𝜃(𝜇𝑘)
]

, (3.12)

ighlights the cores of the response functions while keeping the global
andscape. In this case, the second term in Eq. (3.10) is nonetheless
han a collection of half planes, which favors geometric reasoning.
or example, let us see the mechanism whereby Eqs. (3.8) sustain
istability.

• For 𝜇𝑘 < 0 (𝑘 = 1, 2), there is no question that 𝐱 = 0 is a fixed
point (we may call it the ‘‘off’’ node); Eq. (3.10) reduces to its
first term and 𝛷(0) = 0.

• By suitably choosing the half planes—taking advantage of the
relative sign in the numerator of the second term in Eq. (3.10)—
another fixed point N ∶= (𝜈1, 𝜈2)𝑇 (the ‘‘on’’ node) can be induced5

if (𝐽N)𝑘 > −𝜇𝑘, 𝑘 = 1, 2 (namely 𝑗11𝜈1−𝑗12𝜈2 > −𝜇1, 𝑗21𝜈1−𝑗22𝜈2 >
−𝜇2) with

𝛷(N) =
𝑗11𝑗21𝜈21 − 2𝑗12𝑗21𝜈1𝜈2 + 𝑗12𝑗22𝜈22

2𝜌𝜏1𝜏2 det 𝐽

+
𝑗21𝜈1𝜇1 − 𝑗12𝜈2𝜇2

𝜌𝜏1𝜏2 det 𝐽
.

If 𝜇1 is varied (as in [73,74]), equistability is achieved for

𝜇1 =
1
2

[

𝑗12𝜈2
𝑗21𝜈1

(𝑗21𝜈1 − 𝑗22𝜈2 + 2𝜇2) − (𝑗11𝜈1 − 𝑗12𝜈2)
]

. (3.13)

The intersection of the cores of the 𝑠𝑘(𝑖𝑘)6 is a (singular in this
limit) saddle point. Fig. 1(b) illustrates this situation for 𝜌 = 1,
𝜇2 = −.01, and

𝜏 =
(

1
1

)

, 𝜈 =
(

1
.1

)

, 𝐽 =
(

1 .5
.5 .1

)

(the choice obeys to the fact that global stability makes condition
𝑗21𝜈1 − 𝑗22𝜈2 > −𝜇2 rather stringent).

5 (through an inverse saddle–node bifurcation at the ‘‘on’’ location: in one
ariable, 𝑥2

2
− 𝑎 (𝑥 − 𝑎) 𝜃(𝑥 − 𝑎) resets the slope to zero at 𝑥 = 𝑎).

6 (located at the solution 𝑗22𝜇1−𝑗12𝜇2 , 𝑗21𝜇1−𝑗11𝜇2 of 𝐽𝐱 +M = 0).

det 𝐽 det 𝐽
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𝑧

Fig. 1. Illustration of the analytical results in Section 3.2. Trajectories from random
initial conditions and contour plot of the NEP—Eq. (3.10), with 𝑆𝑘(𝑖𝑘) − 𝑆𝑘(𝜇𝑘) given
by Eq. (3.12)—in the equistable case given by Eq. (3.13) (b), and near the ‘‘off’’ (a)
and ‘‘on’’ (c) saddle–node bifurcations.

• As 𝜇𝑘 → 0, 𝑘 = 1, 2, this saddle point moves toward the ‘‘off’’ node.
After a (direct) saddle–node bifurcation, only the ‘‘on’’ node at
𝑥𝑘 = 𝜈𝑘 remains, since conditions (𝐽N)𝑘 > −𝜇𝑘, 𝑘 = 1, 2 are better
satisfied, see Fig. 1(c).

The most striking feature of Fig. 1 is the existence of an edge
between half planes, whose location translates parallely as 𝜇1 is varied,
from the neighborhood of the ‘‘on’’ node in (a) to that of the ‘‘off’’
one in (c). If there is room for some spreading of the core, the for-
mer result remains valid for whatever analytical form of the response
5

functions. In such a case, the saddle point (lying at the crossing of the
aforementioned edge with the one joining the nodes) will be analytical.

In the singular limit 𝑠𝑘(𝑖𝑘) ∶= 𝜈𝑘 𝜃(𝑖𝑘) we deal with in this subsection,
we can prove rigorously the nonexistence of limit cycles (at least for
large 𝜇𝑘 < 0, 𝑘 = 1, 2). The Bendixson–Dulac theorem states that if there
exists a 1 function 𝛷(𝐱) (called the Dulac function) such that div(𝛷𝐟 )
has the same sign almost everywhere7 in a simply connected region of the
plane, then the plane autonomous system �̇� = 𝐟 (𝐱) has no nonconstant
periodic solutions lying entirely within the region. Because of Eq. (2.7),

div(𝛷𝐟 ) = 𝐟T(𝐱)∇𝛷 +𝛷div 𝐟 = −(∇𝛷)T𝑄∇𝛷 +𝛷div 𝐟 .

Clearly, div 𝐟 < 0 almost everywhere [i.e. except at the cores of the
𝑠𝑘(𝑖𝑘)]. For 𝜇𝑘 < 0 (𝑘 = 1, 2) and large, 𝛷(𝐱) will be essentially the
quadratic form in the first term of Eq. (3.10), so it meets the conditions
to be a Dulac function in a simply connected region of the plane.

3.2. Extended systems

(a) One-component reaction–diffusion systems
In [2] we have addressed the phenomenon of stochastic resonance

in reaction–diffusion systems, exploiting the NEP framework. In partic-
ular, we have shown the occurrence of array-enhanced and system-size
stochastic resonance in a scalar (one-component) model with field-
dependent diffusion, in both the reaction term and the diffusion coeffi-
cient are which piecewise linear, thus allowing for stationary patterns
to be found analytically. Among them, one acts as saddle between the
‘‘off’’ and ‘‘on’’ stable patterns, providing a finite barrier which depends
on the parameters. The phenomena of stochastic resonance and akin
occur mainly but not only at equistability [53].

(b) Two-component reaction–diffusion systems
Also in [2], the work described in the former paragraph is general-

ized to a stylized reaction–diffusion version of the FitzHugh–Nagumo
system. After an adiabatic-like elimination of the inhibitor field, we
derive an effective scalar model that includes a nonlocal contribution.
Studying the role played by the range of the nonlocal kernel and its
effect on stochastic resonance, we find an optimal range that maximizes
the system’s response.

In [75], the nonequilibrium Ising–Bloch front bifurcation of the
FitzHugh–Nagumo model with nondiffusing inhibitor provides a beau-
tiful instance of an extended bistable system made up of propagating
(Bloch) fronts. Moreover, these fronts are chiral and parity-related,
and the finite barrier between them is nonetheless but a stationary
Ising front. By means of numerical simulation in the neighborhood of
this bifurcation, we demonstrate the existence of stochastic resonance
in the transition between Bloch fronts of opposite chiralities, when
an additive noise is included. The signal-to-noise ratio is numerically
observed to scale with the distance to the critical point. This scaling
law is theoretically characterized in terms of an effective NEP.

(c) The complex Ginzburg–Landau equation (CGLE)
This equation is retrieved when 𝑧 in Eq. (3.4) is let to be a field 𝑧(𝐱),

𝐱 ∈ R𝑑 and a complex diffusion term 𝑑∇2𝑧 is added [34]. Eqs. (3.4),
(3.6) and (3.7) generalize to

̇ (𝐱) = − 𝛿𝛷
𝛿𝑧∗

+ 𝑟(𝑧(𝐱), 𝑧∗(𝐱)), (3.14)

∫ d𝑑𝑥
[

𝑟 𝛿𝛷
𝛿𝑧

+ 𝑟∗ 𝛿𝛷
𝛿𝑧∗

]

= 0. (3.15)

In the supercritical domain 𝑎1 > 0, Eq. (3.14) has several further
instabilities. Newell and Kuramoto showed that the (arbitrary and
spatially constant) phase of 𝑧 on the extended attractor |𝑧| =

√

𝑎1∕𝑏1
may become unstable in 𝑘−space near 𝑘 = 0, leading to ‘‘phase turbu-
lence’’. Moreover, traveling-wave attractors which exist in addition to the

7 Everywhere except possibly in a set of measure 0.
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spatially homogeneous one, may become unstable under appropriate
conditions, leading to Eckhaus–Benjamin–Feir instability among other
phenomena [34].

(d) The KPZ equation
The KPZ equation for kinetic interface roughening (KIR) [76–79],

𝜕𝑡ℎ(𝐱, 𝑡) = 𝜈∇2ℎ(𝐱, 𝑡) + 𝜆
2
[∇ℎ(𝐱, 𝑡)]2 + 𝜉(𝐱, 𝑡), (3.16)

where ℎ(𝐱, 𝑡) is the interface height and 𝜉(𝐱, 𝑡) a Gaussian noise with

⟨𝜉(𝐱, 𝑡)⟩ = 0 , ⟨𝜉(𝐱, 𝑡)𝜉(𝐱′, 𝑡′)⟩ = 2𝐷𝛿𝑑 (𝐱 − 𝐱′) 𝛿(𝑡 − 𝑡′),

is nowadays a paradigm of systems exhibiting nonequilibrium critical
scaling [80]. In fact—besides standing out as a representative of a
large and robust class of microscopic KIR models,8 from which the
phenomenological parameters 𝜈, 𝜆, 𝐷 can be computed—it is intimately
related to the equilibrium statistics of directed polymers and to the
Burgers equation of turbulence.

In the literature, it is commonly assumed that the KPZ equation
cannot be directly obtained from a Hamiltonian. However, as shown
in Ref. [55], there is no trouble in expressing Eq. (3.16) as a stochastic
gradient flow,

𝜕𝑡ℎ(𝐱, 𝑡) = − 𝛿𝛷[ℎ]
𝛿ℎ(𝐱, 𝑡)

+ 𝜉(𝐱, 𝑡).

The functional 𝛷 is defined as

𝛷[ℎ(𝐱, 𝑡)] = ∫ d𝐱
[

𝜈
2
(∇ℎ)2 − 𝜆

2 ∫

ℎ(𝐱,𝑡)

ℎ0(𝐱,0)
d𝜓 (∇𝜓)2

]

, (3.17)

where ℎ0(𝐱, 0) is an arbitrary initial pattern (usually assumed to be
constant, in particular ℎ0 = 0). The first term is clearly the Landau–
Ginzburg free-energy functional

𝛷EW[ℎ(𝐱, 𝑡)] = 𝜈
2 ∫ d𝐱 [∇ℎ(𝐱, 𝑡)]2.

associated to the (equilibrium) EW process. Unfortunately, the second
one has not an explicit density. Even though at time 𝑡, 𝛷 depends only
on the field ℎ(𝐱, 𝑡), its evaluation requires knowing the detailed history
that led from ℎ0 to ℎ(𝐱, 𝑡). In other words, retrieving information on 𝛷
(such as its landscape at certain time or the time dependence of its
mean value) requires averaging not simply over field configurations
ℎ(𝐱) at time 𝑡, but over (statistically weighted) trajectories of the field
configuration.

Being the KPZ equation a (stochastic) gradient one, the functional
𝛷 governing its deterministic component provides the landscape where
the stochastic dynamics of ℎ(𝐱) takes place at time 𝑡, and in the absence
of noise fulfills explicitly the Lyapunov property �̇�[ℎ] = −

[

𝛿𝛷[ℎ]
𝛿ℎ(𝑥,𝑡)

]2
≤ 0.

Unfortunately, this does not make 𝛷 into a Lyapunov functional, since
(as shown in the next paragraph) it is unbounded from below.

The second term in Eq. (3.17), namely

−𝜆
2 ∫ d𝐱 ∫

ℎ(𝐱,𝑡)

ℎ0(𝐱,0)
d𝜓 (∇𝜓)2,

is not a functional integral of the form ∫
∏

𝐱 d𝜓(𝐱) [82,83], but a kind
of ‘‘grand mean’’ of (∇ℎ)2. For a suitably small time 𝜏, the integral over
𝜓 at fixed 𝐱 can be evaluated by resort to the Mean Value Theorem,
yielding

∫

ℎ(𝐱,𝜏)

ℎ0(𝐱,0)
d𝜓 (∇𝜓)2 ≈ [ℎ(𝐱, 𝜏) − ℎ(𝐱, 0)]

[

∇ℎ̃(𝐱)
]2 ,

8 We deliberately leave aside KIR models exhibiting diverse kinds of
anomalous scaling [3,81].
6

Fig. 2. Time behavior of 𝛷[ℎ], averaged over 100 samples, in (a) 1d (size 1024), (b)
2d (size 1282), and (c) 3d (size 643). The symbols (denoting a subset of the simulation
points) indicate the values adopted for 𝜆 in each curve. ■ ∶ 𝜆 = 0.01, ▴ ∶ 𝜆 = 0.10,
⋄ ∶ 𝜆 = 0.20, ★ ∶ 𝜆 = 0.30, ∙ ∶ 𝜆 = 0.50, ▾ ∶ 𝜆 = 1.00. Inset: Detail showing the
existence of maxima in 2d for any 𝜆 > 0 (the same occurs in 1d and 3d).

where ℎ̃(𝐱) is some intermediate value between ℎ(𝐱, 𝜏) and ℎ(𝐱, 0). For
finite time 𝑡, a discretization with step 𝜏 and index 𝜇 yields

∫

ℎ(𝐱,𝑡)

ℎ0(𝐱,0)
d𝜓 (∇𝜓)2 ≈

𝑀−1
∑

𝜇=0
𝜏
ℎ𝜇+1(𝐱) − ℎ𝜇(𝐱)

𝜏
[

∇ℎ̃𝜇(𝐱)
]2

≈ ∫

𝑡

0
d𝑠 ℎ̇(𝐱, 𝑠)[∇ℎ(𝐱, 𝑠)]2,

with ℎ̃𝜇(𝐱) intermediate between ℎ𝜇(𝐱) and ℎ𝜇+1(𝐱), and ℎ̇(𝐱, 𝑠) ∶=
lim𝜏→0[ℎ𝜇+1(𝐱) − ℎ𝜇(𝐱)]∕𝜏. This allows us to write the potential in the
form

𝛷[ℎ] = ∫ d𝐱
{

𝜈
2
(∇ℎ)2 − 𝜆

2 ∫

𝑡

0
d𝑠 ℎ̇(𝐱, 𝑠)[∇ℎ(𝐱, 𝑠)]2

}

, (3.18)

which highlights the fact that even though the field ℎ(𝐱, 𝑡) obeys a
Fokker–Planck equation (thus it is Markovian, albeit without stationary
regime), it evolves at every time in an adaptive potential landscape,
which itself evolves according to the whole history of ℎ(𝐱, 𝑡) and has
thus a very long (‘‘infinite’’) memory [61]. The dependence of the
asymptotic statistics in 1D [84–88] on the topology of the substrate
might probably be traced back to this fact.

Spectral methods pay back the overhead of Fourier transforming
ℎ(𝐱) forth and back every time 𝑡, with a discrete approximation of
∇ℎ of the order of the system’s size. They have proved to be more
stable and reliable than pure real-space finite-differences schemes in
the integration of some nonlinear growth equations [89–91]. Using a
spectral method to integrate Eq. (3.16), we have analyzed the time
behavior of ⟨𝛷[ℎ]⟩𝑡 (the average of 𝛷 over noise realizations, at time 𝑡)
as given by Eq. (3.18).
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Fig. 2 displays the time dependence of the NEP’s average over 100
samples, for systems in 1d (size 1024), 2d (size 1282), and 3d (size 643),
and several values of 𝜆, starting from flat initial conditions. For any
𝜆 > 0 there is a maximum, where the nonlinear (KPZ) term overcomes
the linear (EW) one.9 Hence we see two evident advantages of the NEP
in KPZ: its maximum gives a visual criterion for the EW–KPZ crossover
and its linearly decreasing range (whose slope goes as 𝜆2) does the same
for the KPZ scaling regime. Among other issues discussed in [61] are the
similarity of the KPZ process with an escape one, and the relationship
between the asymptotic form of the NEP and the asymptotic front speed
𝑣∞.

Before leaving this section, it is worth noting the interesting work
of Harris and Ermentrout [92] on traveling waves in the Wilson-Cowan
model. Although the system is potential only when the ranks of the
interaction kernels are equal, such a case is representative of generic
behavior.

4. Applications in stochastic thermodynamics

For nearly a century or more, the only consistent framework to
tackle scientific and technological problems was equilibrium thermo-
dynamics which as known, is based on two postulates: equilibrium and
the so-called ‘‘thermodynamic limit’’. Like sailors before Columbus, for
nearly an additional half a century, our most daring detachment from
equilibrium was weak disequilibrium, whose most celebrated result is
Onsager’s reciprocal relations [3]. Even within that limited scope, a key
concept for further development was identified: entropy production.

Today, we could not be doing nanotechnology and molecular bio-
physics if it were not for the development in the last two decades
of stochastic thermodynamics (ST). Since it is not our purpose here
to describe this development, we refer to a few arbitrarily chosen
reviews [93–96] and focus on two specific topics, the Jarzynski equality
and thermodynamic uncertainty relations (TUR), from the viewpoint of
the NEP.

4.1. Jarzynski equality in the Wilson–Cowan model

Far from the thermodynamic limit, thermodynamics’ ‘‘second law’’
becomes true only in probability. Early in the development of ST, a
number of ‘‘fluctuation theorems’’ encoded this result, one of the most
known being the Jarzynski equality for general processes beginning
and ending at equilibrium [64,97]: It relates the average of the irre-
versible work done along an ensemble of trajectories joining the same
equilibrium states with the difference between their free energies,

⟨exp(−𝑊 ∕𝑘𝑇 )⟩ = exp(−𝛥𝐹∕𝑘𝑇 ),

which can be recast as

⟨exp[(𝑊 − 𝛥𝐹 )∕𝑘𝑇 )⟩ = 1. (4.1)

As argued in [98] for nonequilibrium steady states (NESS)—and
further generalized in [99] to arbitrary nonequilibrium states—we wish
next to obtain some transient fluctuation theorems for 𝑌 F ∶= ∫ d𝑡 �̇� 𝜕𝛷

𝜕𝜇 ,
when some control parameter 𝜇 on which 𝑉 (𝑥1) depends is externally
varied according to some protocol 𝜇(𝑡). From Eq. (?),

𝑌 F = 1
𝛾𝐷 ∫ d𝑡 �̇�F 𝜕𝑉

𝜕𝜇
, 𝑌 B = 1

𝛾𝐷 ∫ d𝑡 �̇�B 𝜕𝑉
𝜕𝜇

. (4.2)

If 𝜇 is varied linearly from −𝜏 to 𝜏, then �̇�B = −�̇�F = const, and
B = −𝑌 F along each trajectory. For the undriven Duffing oscillator we
ay take 𝜇 ∶= 𝜔2

0, imagining the oscillator is realized as a Moon beam,

9 Only for 𝜆 = 0 (corresponding to EW) is there true saturation. The
= 0.01 case shown here (visually resembling a saturation behavior) attains

ts maximum outside the plotted range.
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T

and the magnets are moved steadily in such a way that the pitchfork
bifurcation is come across. If 𝜔2

0 goes from 1 to −1 in 2𝜏,

𝑌 F = − 1
2𝛾𝐷𝜏 ∫

+𝜏

−𝜏
d𝑡 𝑥21(𝑡).

According to [98], when both protocol and dynamics are jointly re-
ersed, the distributions 𝜌(𝑦) of 𝑌 –values in an ensemble of realizations
f the respective processes (keeping the endpoints fixed) obey

𝜌F(𝑦)
�̂�B(−𝑦)

= exp(𝑦), (4.3)

here in �̂�B, 𝑥2 → −𝑥2. Eq. (4.3) has a Jarzynski-like integrated version

exp(−𝑦)⟩F = 1, (4.4)

here ⟨∙⟩F denotes average over realizations of the forward process.
rom [98],

F(𝑦) = ∫

𝑥1(𝑡𝑓 )=𝑥
𝑓
1

𝑥1(𝑡𝑖)=𝑥𝑖1

[𝑥1]e3(𝐷)F𝛿(𝑌 F − 𝑦)

̂B(−𝑦) = ∫

𝑥1(𝑡𝑓 )=𝑥
𝑓
1

𝑥1(𝑡𝑖)=𝑥𝑖1

[𝑥1]e3(𝐷)B𝛿(𝑌 B + 𝑦)

e may reason trajectorywise with the aid of the canonical momenta
F
𝑌 , 𝑝B𝑌 conjugated to 𝑌 F and 𝑌 B.

In order to generate such an ensemble, we start from the trajectory
n Fig. 2 and introduce random deviations with variance 𝐷 along it.

.2. Thermodynamic uncertainty relation in KPZ [62]

As found in [65], the entropy production rate 𝜎 in a nonequilibrium
teady state (NESS) turns out to be bounded from below by the ratio
etween the squared mean and the variance of an arbitrary current.10

his result was followed by several others [100–104], known generi-
ally as ‘‘thermodynamic uncertainty relations’’ (TUR). Recently, a TUR
as been discussed for KPZ [105–107].

In [108], the TUR were shown to stem from the Cramer–Rao
nequality [109]: for a multivariate generalized (or ‘‘multiplicative’’)
angevin equation

̇ = 𝐀𝜃(𝐱, 𝑡) +
√

2𝐂(𝐱, 𝑡)𝛯(𝑡),

epending on a real parameter 𝜃.
Following [108], we now derive another TUR. We start by adding to

q. (3.16) a constant 𝐹 , representing, e.g. a particle flux in molecular-
eam epitaxy (MBE).

We can relate our equation (KPZ) with the equations in [108]
i.e. Eq. (1)). The spatial variable could be in any dimension, that is
𝑥𝑖 = ℎ𝑖(𝑟, 𝑡)
𝜃 = 𝐹
𝐴𝜃|𝑖 = (𝜈∇2ℎ(�̄�, 𝑡) + 𝜆

2 (∇ℎ(�̄�, 𝑡))
2 + 𝐹 )|𝑖

√

2𝐶(𝐱, 𝑡) = 1
𝐵 is a diagonal matrix with elements 𝜀∕2
etc ...

For the ‘‘estimator’’ 𝛩[𝛤 ] (𝛤 a trajectory), we adopt the entropy
roduction 𝛩[𝛤 ] = 𝑅𝐹 (ℎ𝑎, ℎ𝑏) (to start, at 𝑡 = 0 we assume flat initial
onditions, but it is easy to generalize for arbitrary initial conditions).
ence, in what follows, 𝛷[ℎ𝑎] = 0. Then we have
𝐹 (ℎ𝑎, ℎ𝑏) = −

(

𝛷[ℎ𝑏] −𝛷[ℎ𝑎]
)

= −𝛷[ℎ𝑏]. (4.5)

e shall not repeat here all the steps done in the indicated reference,
ut it is worth indicating the use of a vector notation (in particular in
d, but that could be extended to any dimension).

10 Specifically, after a time 𝑡 in the NESS, a fluctuating integrated current
𝑋(𝑡) has a mean ⟨𝑋(𝑡)⟩ = 𝑗𝑡, and a diffusivity 𝐷 = (2𝑡)−1 lim𝑡→∞⟨(𝑋(𝑡) − 𝑗𝑡)2⟩.

hen 𝜎 ≥ 𝑗2∕2𝐷.
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In order to simplify, we define
- 𝜈

2 (ℎ𝑗+1 + ℎ𝑗−1 − 2ℎ𝑗 ) ≡
(

𝜈∇2ℎ
)

|𝑗

𝜆
2

(

((ℎ𝑗+1−ℎ𝑗 )2+(ℎ𝑗−ℎ𝑗−1)2)
2

)

=
(

𝜆
2 (∇ℎ(�̄�, 𝑡))

2
)

|𝑗

as with this definitions, as used in the NEP, we get a discrete represen-
tation [56–59] that, if not ‘‘exact’’ at least is coherent.

We exploit the ‘‘Cramer–Rao inequality’’ (as described in [108]).
Hence, we have the relation
𝑣𝑎𝑟(𝛩[𝛤 ])

(𝜕𝐹 ⟨𝛩[𝛤 ])⟩2𝐹
≥ (𝐼(𝛤 ))−1 (4.6)

with 𝐼(𝛤 ) the Fisher information. It is given by

𝐼(𝛤 ) = ⟨

(

𝜕𝐹 ln𝑃𝐹 (𝛤 )
)2
⟩𝐹 = −⟨𝜕2𝐹 ln𝑃𝐹 (𝛤 )⟩𝐹 .

Using the definition of mean values along trajectories 𝛤 , that is
⟨𝛩(𝛤 )⟩|𝐹 , etc. And with a flat initial condition, we get

𝐼(𝐹 ) = 1
2𝜀

⟨𝑇𝛺⟩𝐹 = 𝑇𝛺
2𝜀

, (4.7)

where 𝛺 is the volume in dimension 𝑑. We used that

𝜕𝐹𝐴𝑗,𝐹 = 1.

With a non flat initial condition, with the approximate pdf

𝑃 (ℎ𝑓 , 𝑡𝑓 ) ≈ 𝑒−𝑆0[ℎ𝑓 ,𝑡𝑓 ]∕𝜀,

e get

(𝐹 ) ∼ 𝑇𝛺
2𝜀

.

Hence, the form of the TUR is

⟨(𝑅𝐹 (ℎ𝐹 ) − ⟨𝑅𝐹 (ℎ𝐹 )⟩𝐹 )2⟩𝐹
(𝜕𝐹 ⟨𝑅𝐹 (ℎ𝐹 )⟩)2

≥ 2𝜀
𝑇𝛺

. (4.8)

Eventually, we could make all the evaluation more precise, ex-
loiting that, asymptotically, ℎ(𝑟, 𝑡) ≈ 𝑣∞𝑡 + (𝛤 𝑡)𝛽𝜒(𝑟′), with 𝑟′ =

(𝐴𝑟∕2)(𝛤 𝑡)−1∕𝑧, 𝐴 = 𝜈∕2𝜀, 𝛤 = 𝐴2𝜆∕2 (𝛽 = 1∕3, 𝑧 = 3∕2, 𝛼 = 1∕2).

5. Other applications

5.1. System-size stochastic resonance in Wilson–Cowan

The adaptability of the neocortex to changing environments shows
its high susceptibility, a property of critical systems. As there is no fine
tuning, self-organized criticality [110] or Griffiths phases [111] have
been thought of. Another possibility is stochastic resonance, since the
Wilson–Cowan model presents a bistable regime. But also, as this is a
population model, it can show system-size stochastic resonance.

If we set the external input 𝜇1 to 𝜇1𝑏 and add a small harmonic
signal to it, so that 𝜇1 = 𝜇1𝑏+𝛥𝜇1 cos(𝜔𝑡), with 1∕𝜔 ≫ max(𝜏1, 𝜏2) we are
able to study the stochastic resonance. Since the signal is slow, we can
consider that the NEP adapts to the instantaneous value of 𝜇1 (adiabatic
approximation) and the frequencies are those corresponding to the
value of 𝜇1 ‘‘given by Fig. 1’’. To calculate the signal-to-noise ratio 𝑅,
as usual, we linearize the values of 𝜔𝑘 around 𝜇1 = 𝜇1𝑏. The values of
the coordinates of the critical points for 𝜇1𝑏 are: 𝐱∗1 = (0, 0.1)𝑇 , 𝐱∗2 =
(1, 0.99)𝑇 and 𝐱∗ = (0.5, 0.58)𝑇 . The values of the Hessian determinants
are H(𝛷(𝐱∗1)) = 1.93, H(𝛷(𝐱∗2)) = 0.84 and H(𝛷(𝐱∗)) = −15.73 and
the positive eigenvalue of the Jacobian in the saddle is 𝜆∗+ = 4.84,
all in 𝜇1 = 𝜇1𝑏. The common value of both barriers without signal is
𝛥𝛷0 = 0.12. Neglecting terms (𝛥𝜇)2, the linearized escape frequencies
remain, as

𝜔1 = 𝜔10 − 𝛼10𝛥𝜇1 cos(𝜔𝑡) (5.1)
𝜔2 = 𝜔20 + 𝛼20𝛥𝜇1 cos(𝜔𝑡) (5.2)
𝜔10 = 0.27 exp(−0.12∕𝐷) (5.3)
𝜔 = 0.18 exp(−0.12∕𝐷) (5.4)
8

20
Fig. 3. Signal-to-noise ratio for 𝜏1 = 𝜏2 = 𝜌 = 𝜈1 = 𝜈2 = 𝛽2 = 1, 𝛽1 = 1.2, 𝜇1 = −3.723,
𝜇2 = 0, 𝑗11 = 12, 𝑗12 = 4, 𝑗21 = 13, 𝑗22 = 11. The maximum 𝑅max = 8.44 × 10−2𝛥𝜇2

1 is
attained for 𝑁 = 17𝐷0.

𝛼10 = (0.022∕𝐷) exp(−0.12∕𝐷) (5.5)
𝛼20 = (0.014∕𝐷) exp(−0.12∕𝐷). (5.6)

inally, the signal-to-noise ratio 𝑅 [53] is given by

=
𝜋(𝛥𝜇1)2(𝛼20𝜔10 + 𝛼10𝜔20)2

4𝜔10𝜔20(𝜔10 + 𝜔20)
+ (𝛥𝜇1)4. (5.7)

Taking into account the relation between the intensity of the noise and
the size of the system [112] given by 𝐷 = 𝐷0∕𝑁 , with 𝐷0 independent
of 𝑁 , we see that the model presents SSSR, as shown in Fig. 3, where
we plot the signal-to-noise ratio as a function of the size of the system,
that is, the number 𝑁 of neurons. Since 𝑅 ∼ exp(−𝛥𝛷0∕𝐷)∕𝐷2, the
maximum of 𝑅 is at 𝑁 = 2𝐷0∕𝛥𝛷 (𝐷 = 𝛥𝛷∕2).

5.2. Memory of initial conditions in KPZ

The simulations in Section 3.2 have been performed starting from
flat initial conditions (IC). Given that (a) in 1D, the topology of the IC
determines the front’s statistics in the scaling regime and (b) the NEP
keeps memory of the whole process [61], it is interesting to see how
the results in Fig. 2 change when other IC are considered. Fig. 4 shows
simulations by spectral methods in the same conditions as in Fig. 2 (100
realizations, up to 𝑡 = 100 with 𝜖 = 0.5 and 𝜈 = 1) but for a single value
of 𝜆 = 0.1 in 1D and 2D.

In 1D, the initial condition is a function of the form

abs(𝑥 − 𝐿∕2)∕𝑎, 𝑎 ∈ {0.5, 1.5, 3, 20}.

The flat-surface initial condition is also included. The system size is
𝐿 = 1024. The light blue curve corresponds to 𝑎 = 0.5 and the dark blue
one to 𝑎 = 20. In the studied time interval, the slopes depend strongly
on the IC.

In 2D, the initial condition is of the pyramidal type with vertex at
(𝐿∕2, 𝐿∕2) and value 𝐿∕(2𝑎) at the edges of the system. The values of
𝑎 are in this case {0.75, 1, 1.5, 3, 20}. The flat-surface initial condition is
also included. The system size is 𝐿 × 𝐿, with 𝐿 = 128. The light blue
urve corresponds to 𝑎 = 0.55 and the dark blue one to 𝑎 = 20. In the
tudied time interval, not only do the slopes depend strongly on the IC
ut a concavity is observed in some curves.

These preliminary results tell us that there is an optimal population
ize that gives maximum susceptibility. .

. Conclusions

The fact that every Langevin system whose Fokker–Planck equation
dmits a stationary solution is a potential one is not a minor issue, as
either is the fact that by means of noise, one can eventually condition
nonpotential deterministic system to become a potential one.

We have introduced two new instances of potential systems:
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Fig. 4. Ensemble average of 𝛷[ℎ] in Eq. (3.18), for 𝜆 = 0.1. (1D): 𝑎 = 0.5 (light
blue), 1.5 (dark green), 3 (red), 20 (dark blue), and ∞ (magenta). (2D) 𝑎 = 0.75 (light
blue), 1.0 (green), 1.5 (magenta), 3 (light green), 20 (dark blue), and ∞ (red). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

a. The celebrated KPZ equation—the stochastic field theory of
kinetic roughening—turned out to be a (stochastic) gradient flow
in a self-consistent, adaptive landscape [55]. Among the virtues
of the functional it stems from, yielding visual criteria for the
EW–KPZ crossover and the onset of the scaling regime can be
remarked [61].

b. The Wilson–Cowan rate model of the neocortex is generically a
non-relaxational potential system for vanishing refractory times.
The facts that it becomes relaxational for equal relaxation times
and that it cannot sustain limit cycles for vanishing refractory
times can also be remarked [63].

The usefulness of the NEP for obtaining results in stochastic ther-
modynamics has been illustrated by deriving a Jarzynski equality in
the equal-relaxation-times Wilson–Cowan model and a novel thermo-
dynamic uncertainty relation (TUR) in the KPZ equation.

That the NEP is useful to obtain results in phenomena akin to
stochastic resonance is not a novelty. Here we illustrate this fact by
showing the existence of system-size stochastic resonance in the Wilson
Cowan model, exploiting the fact that it is itself a population model.

Finally, we advance preliminary results on the dependence of the
ensemble average of the KPZ NEP on initial conditions, a subject that
deserves further study.
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