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In this paper we solve the problem how to axiomatize a system of quantum computational gates known as the
Poincaré irreversible quantum computational system. A Hilbert-style calculus is introduced obtaining a strong
completeness theorem.
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1 Introduction

The idea of quantum computation was introduced in 1982 by Richard Feynman and remained primarily of the-
oretical interest until developments such as the invention of an algorithm to factor large numbers triggered a
vast domain of research. In a classical computer, information is encoded in a series of bits and these bits are
manipulated via Boolean logical gates like NOT, OR, AND, etc, arranged in succession to produce an end re-
sult. Standard quantum computing is based on quantum systems described by finite dimensional Hilbert spaces,
specially C

2 , the two-dimensional space of a qbit. A qbit (the quantum counterpart of the classical bit) is repre-
sented by a unit vector in C

2 and, generalizing for a positive integer n, n-qbits are represented by unit vectors in
C

2n

. Similarly to the classical computing case, we can introduce and study the behavior of a number of quantum
logical gates (hereafter quantum gates for short) operating on qbits. Classical computing can simulate all com-
putations which can be done by quantum systems; however, one of the main advantages of quantum computation
and quantum algorithms is that they can speed up computations [19].

In [3] and [5], a quantum gate system called Poincaré irreversible quantum computational system (IP-system
for short) was developed. The IP-system is an interesting set of quantum gates specially for two reasons: (i) it is
related to continuous t-norms [17], i.e., continuous binary operations on the interval [0, 1] that are commutative,
associative and non-decreasing with 1 is the unit element. They are naturally proposed as interpretations of the
conjunction in systems of fuzzy logic [13]. (ii) Subsequent generalizations allow to connect the IP-system with
sequential effect algebras [10], introduced to study the sequential action of quantum effects which are unsharp
versions of quantum events [11, 12].

Our work is motivated by the IP-system, and mainly by the following question proposed by the authors in [3]
and [5]: “The axiomatizability of quantum computational logic is an open problem.”. To answer this claim, we
study an algebraic structure related to the IP-system and we provide a Hilbert-style calculus, obtaining a strong
completeness theorem with respect to the mentioned structure.

The paper is structured as follows: In Section 2, we briefly resume basic physical notions of mathematical
approaches to quantum computation. Section 3 contains generalities on universal algebra and algebraic structures
associated with Łukasiewicz infinite-valued calculus as MV-algebras and product MV-algebras. In Section 4
we introduce a set of quantum gates known as Poincaré irreversible quantum gates system. The mathematical
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2 H. Freytes and G. Domenech: Quantum computational logic with mixed states

representation of these quantum gates is closely related with the product MV-algebras structure. In Section 5,
algebraic structures associated to quantum computation are introduced. Specifically, we introduce an expansion of
the equational class known as square root quasi MV-algebras [9], expansion that we call “square root quasi PMV-
algebra” (or

√
qPMV-algebra for short). In Section 6 we focus on a subvariety of the

√
qPMV-algebras called

Irreversible Poincaré Algebras. In Section 7 we introduce the notion of probabilistic consequence. It provides a
generalization of a classical problem related to digital circuits which consists in knowing whether a determinate
state of the output of a set of a circuits conditions a determine state of the output of another circuit. In Section
8 we give a Hilbert-style axiomatization, called LIP , for the probabilistic consequence. A strong completeness
theorem for LIP with respect to the variety of Irreversible Poincaré Algebras is obtained. Finally, Section 9 is
devoted to the conclusions

2 Basic notions in quantum computation

In quantum computation, information is elaborated and processed by means of quantum systems. The pure state
of a quantum system is described by a unit vector in a Hilbert space, denoted by |ϕ〉 in Dirac notation. A quantum
bit or qbit, the fundamental concept of quantum computation, is a pure state in the Hilbert space C

2 . The standard
orthonormal basis {|0〉, |1〉} of C

2 where |0〉 = (1, 0) and |1〉 = (0, 1) is called the logical basis. Thus, pure
states |ϕ〉 in C

2 are coherent superpositions of the basis vectors with complex coefficients

|ψ〉 = c0 |0〉 + c1 |1〉, with |c0 |2 + |c1 |2 = 1.

Recalling the Born rule, any qubit |ψ〉 = c0 |0〉 + c1 |1〉 may be regarded as a piece of information, where
the number |c0 |2 corresponds to the probability-value of the information described by the basic state |0〉; while
|c1 |2 corresponds to the probability-value of the information described by the basic state |1〉. The two basis-
elements |0〉 and |1〉 are usually taken as encoding the classical bit-values 0 and 1, respectively. By these means,
a probability value is assigned to a qbit as follows:

Definition 2.1 Let |ψ〉 = c0 |0〉 + c1 |1〉 be a qbit. Then its probability value is p(|ψ〉) = |c1 |2 . [3, 5]

The quantum states of interest in quantum computation lie in the tensor product
⊗n

C
2 = C

2 ⊗C
2 ⊗· · ·⊗C

2

(n times), a 2n -dimensional complex space. A special basis, called the 2n -computational basis, is chosen for⊗n
C

2 . More precisely, it consists of the 2n orthogonal states |ι〉, 0 ≤ ι ≤ 2n where ι is in binary representation
and |ι〉 can be seen as tensor product of states (Kronecker product) |ι〉 = |ι1〉⊗|ι2〉⊗· · ·⊗|ιn 〉 where ιj ∈ {0, 1}.

A pure state |ψ〉 ∈
⊗n

C
2 is a superposition of the basis vectors |ψ〉 =

∑2n

ι=1 cι |ι〉 with
∑2n

ι=1 |cι |2 = 1.
In the usual representation of quantum computational processes, a quantum circuit is identified with an appro-

priate composition of quantum gates, i.e., unitary operators acting on pure states of a convenient (n-fold tensor
product) Hilbert space

⊗n
C

2 [25]. Consequently, quantum gates represent time reversible evolutions of pure
states of the system.

In general, a quantum system is not in a pure state. This may be caused, for example, by the non complete
efficiency in the preparation procedure or by the fact that systems cannot be completely isolated from the envi-
ronment, undergoing decoherence of their states. On the other hand, there are interesting processes that cannot be
encoded in unitary evolutions, for example, at the end of the computation a non-unitary operation, a measurement,
is applied, and the state becomes a probability distribution over pure states, or what is called a mixed state. In view
of these facts, several authors [1, 10, 27] have paid attention to a more general model of quantum computational
processes, where pure states are replaced by mixed states. This model is known as quantum computation with
mixed states. In what follows we briefly describe the mentioned model.

Let H be a complex Hilbert space. We denote by L(H) the space of linear operators on H . In the model of
quantum computation with mixed states, we regard a quantum state in a Hilbert space H as a density operator
i.e., an Hermitian operator ρ ∈ L(H) that is positive semidefinite (ρ ≥ 0) and has unit trace (Tr(ρ) = 1). We
denote by D(H) the set of all density operators in H . A quantum operation is a linear map E : L(H1) → L(H2)
that is trace-preserving and completely positive. Intuitively, completely positive means that if we embed H into
some larger system, the standard lifting of E to the larger system preserves positive definiteness, and thus states
get mapped to states. Formally, this means that for any Hilbert space K, the linear map E ⊗ IK : L(H1 ⊗ K) →
L(H2⊗K) where IK is the identity in L(H), satisfies that for any ρ ∈ L(H1⊗K), if ρ > 0 then (E⊗IK )(ρ) > 0.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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Each quantum operation E may be expressed as E(ρ) =
∑

i AiρA†
i where Ai are linear operators satisfying

∑
i A†

i Ai = I (Kraus representation [18]).
In this powerful model we can extend, in a natural way, the logical base of qbits and the notion of probability

assigned to a qbit. In fact: we may relate to each vector of the logical basis of C
2 one of the distinguished density

operators P0 = |0〉〈0| and P1 = |1〉〈1| that represent the falsity-property and the truth-property respectively.
Generalizing to the framework of n dimensions, the two special operators P

(n)
0 = 1

Tr(I n −1 ⊗P0 ) I
n−1 ⊗ P0 and

P
(n)
1 = 1

Tr(I n −1 ⊗P1 ) I
n−1 ⊗ P1 (where n is even and n ≥ 2) represent, in each space D

(⊗n
C

2
)
, the falsity-

property and the truth-property respectively. By applying the Born rule, the probability to obtain the truth-property
P

(n)
1 for a system being in the state ρ is given by the following definition:

Definition 2.2 Let ρ ∈ D
(⊗n

C
2
)
. Then, its probability value is p(ρ) = Tr(P (n)

1 ρ). [3, 5]

Note that, in the particular case in which ρ = |ψ〉〈ψ| where |ψ〉 = c0 |0〉 + c1 |1〉, we obtain that p(ρ) = |c1 |2 .
This definition of probability allows to introduce a binary relation ≤w on D

(⊗n
C

2
)

in the following way:

σ ≤w ρ ⇐⇒ p(σ) ≤ p(ρ).

One can easily see that
〈
D

(⊗n
C

2
)
,≤w

〉
is a preorder and it will play an important role in the rest of the

paper.

3 MV-algebras and PMV-algebras

We freely use all basic notions of universal algebra that can be found in [2]. Let σ be a type of algebras and let
A be a class of algebras of type σ. We denote by TermA the absolutely free algebra of type σ built from the
set of variables V = {x1 , x2 , . . .}. Each element of TermA is referred as an A-term. For t ∈ TermA we often
write t as t(x1 , x2 , . . . , xn ) to indicate that the variables occurring in t are among x1 , x2 , . . . , xn . Let A ∈ A.
If t(x1 , x2 , . . . , xn ) ∈ TermA and a1 , . . . an ∈ A, by tA [a1 , . . . , an ], we denote the result of the application
of the term operation tA to the elements a1 , . . . an ∈ A. A valuation in A is a map v : V → A. Of course,
any valuation v in A can be uniquely extended to an A-homomorphism v : TermA → A in the usual way, i.e.,
if t1 , . . . , tn ∈ TermA then v(t(t1 , . . . , tn )) = tA (v(t1), . . . , v(tn )). Thus, valuations are identified with A-
homomorphisms from the absolutely free algebra. If t, s ∈ TermA, A |= t = s means that for each valuation v
in A, v(t) = v(s) and A |= t = s means that for each A ∈ A, A |= t = s. If S is a subclass of A, V(S) denotes
the variety generated by S.

Now we introduce some basic notions in algebraic structures associated to fuzzy logic. An MV-algebra [4] is
an algebra 〈A,⊕,¬, 0〉 of type 〈2, 2, 0〉 such that 〈A,⊕, 0〉 is an abelian monoid with

¬¬x = x,

x ⊕ ¬0 = ¬0,

¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

In agreement with the usual MV-algebraic operations we define:

x 
 y := ¬(¬x ⊕ ¬y),

x ∧ y := x 
 (x → y),

x ∨ y := (x → y) → y,

x → y := ¬x ⊕ y,

1 := ¬0.

On each MV-algebra A we can define an order x ≤ y iff x → y = 1. This order turns 〈A,∧,∨, 0, 1〉 into a
distributive bounded lattice with 1 the greatest element and 0 the smallest element.

A very important example of MV-algebra is [0, 1]MV = 〈[0, 1],⊕,¬, 0〉 such that [0, 1] is the real unit segment
and ⊕ and ¬ are defined as follows:

x ⊕ y = min(1, x + y), ¬x = 1 − x.

www.mlq-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 H. Freytes and G. Domenech: Quantum computational logic with mixed states

The derivate operations in [0, 1]MV are given by x 
 y = max(0, x + y − 1) (called Łukasiewicz t-norm) and
x → y = min(1, 1 − x + y). Finally the MV-lattice structure is the natural order in [0, 1].

A product MV-algebra [22, 23, 24] (for short: PMV-algebra) is an algebra 〈A,⊕, •,¬, 0〉 of type 〈2, 2, 1, 0〉
satisfying the following:

(1) 〈A,⊕,¬, 0〉 is an MV-algebra,

(2) 〈A, •, 1〉 is an abelian monoid,

(3) x • (y 
 ¬z) = (x • y) 
 ¬(x • z).

An important example of PMV-algebra is [0, 1]MV equipped with the usual multiplication (called product t-
norm). This algebra is denoted by [0, 1]PMV . The following are almost immediate consequences of the definition
of PMV-algebras:

Lemma 3.1 In each PMV-algebra we have 0 •x = 0 and x
 y ≤ x • y ≤ x∧ y. If a ≤ b, then a •x ≤ b •x,
and

Proposition 3.2 Each PMV-algebra is isomorphic to a subdirect product of linearly ordered PMV-algebras.
[23, Lemma 2.3]

Definition 3.3 A PMV 1
2 4

-algebra is an algebra
〈
A,⊕, •,¬, 0, 1

2 , 1
〉

of type 〈2, 2, 1, 0, 0, 0〉 such that

〈A,⊕, •,¬, 0, 1〉 is a PMV-algebra, with ¬ 1
2 = 1

2 and 1
24 ⊕ 1

24 = 1
23 where 1

2n means the term 1
2n −1 • 1

2
(n ≥ 2).

It is well known that a PMV-algebra has at most a fix point of the negation [15, Lemma 2.10]. An example
of PMV 1

2 4
-algebra is [0, 1]PMV where the fix point of the negation is 1

2 . We denote by PMV 1
2 4

the variety of
PMV 1

2 4
-algebras. This variety plays a crucial role in Sections 6 and 8.

4 The Poincaré irreversible quantum gates system

The Poincaré irreversible quantum computational system is framed in the model of quantum computation with
mixed states. It takes into account a set of quantum gates –represented by quantum operations– acting on quantum
mixed states –represented by density operators of D

(
C

2
)
. We first describe some basic properties of density

operators in D
(
C

2
)
. Due to the fact that the Pauli matrices:

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

,

and I (where I is the 2 × 2 identity matrix) are a basis for the set of operators over C
2 , an arbitrary density

operator ρ ∈ D
(
C

2
)

may be represented as

ρ =
1
2
(I + r1σx + r2σy + r3σz )

where r1 , r2 , r3 are real numbers such that r2
1 +r2

2 +r2
3 ≤ 1. When a density operator ρ ∈ D

(
C

2
)

represents a pure
state, it can be identified with a point (r1 , r2 , r3) on the sphere of radius 1 (the Bloch sphere) and each ρ ∈ D

(
C

2
)

that represents a mixed state with a point in the interior of the Bloch sphere. We denote this identifications as
ρ = (r1 , r2 , r3). In this way P1 = (0, 0 − 1) and P0 = (0, 0, 1). An interesting feature of density operators in
D

(
C

2
)

is the following: any real number λ ∈ [0, 1], uniquely determines a density operator ρλ given by

ρλ = (1 − λ)P0 + λP1 .

Lemma 4.1 Let ρ = (r1 , r2 , r3) ∈ D
(
C

2
)
. Then we have:

(1) p(ρ) = 1−r3
2 .

(2) If ρ = ρλ for some λ ∈ [0, 1] then ρ = (0, 0, 1 − 2λ) and p(ρλ ) = λ. [6, Lemma 6.1]

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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Definition 4.2 The Poincaré irreversible quantum computational system (IP-system) [3, 5] is given by the
following set of quantum gates:
σ ⊕ τ = ρp(σ )⊕p(τ ) , [Łukasiewicz gate]
σ • τ = ρp(σ )·p(τ ) , [IAND gate]
¬τ = σxτσ†

x , [NOT gate]
√

τ =
( 1+i

2
1−i
2

1−i
2

1+i
2

)

τ

( 1+i
2

1−i
2

1−i
2

1+i
2

)†
. [

√
NOT gate]

where σ and τ belong to D
(
C

2
)
.

By the Kraus representation mentioned in Section 1, it is immediate that ¬ and √
. are quantum operations.

We refer to [8] for a representation of the IAND gate and the Łukasiewicz gate as quantum operations. The
IP-system defines a set of operations on D

(
C

2
)

giving rise to the structure
〈
D

(
C

2),⊕, •,¬,
√

, P0 , ρ 1
2
, P1

〉

known as Poincaré irreversible quantum computational algebra (shortly IQC-algebra) [3, 5]. The following
lemma gives the main properties of the IQC-algebra.

Lemma 4.3 Let τ, σ ∈ D
(
C

2
)

and let p be the probability function over D
(
C

2
)
. Then we have:

(1)
〈
D

(
C

2
)
, •

〉
and

〈
D

(
C

2
)
,⊕

〉
are abelian monoids,

(2) τ • P0 = P0 ,

(3) τ • P1 = ρp(τ ) ,

(4) p(τ • σ) = p(τ)p(σ),
(5) p(τ ⊕ σ) = p(τ) ⊕ p(σ),
(6)

√¬τ = ¬√τ ,

(7)
√√

τ = ¬τ .

Moreover if σ = (r1 , r2 , r3) then

(8) ¬σ = (r1 ,−r2 ,−r3) and
√

σ = (r1 ,−r3 , r2), hence p(¬σ) = 1+r3
2 and p(

√
σ ) = 1−r2

2 ,

(9) p(
√

τ • σ ) = p(
√

τ ⊕ σ) = 1
2 .

([6, Lemma 6.1] and [7, Lemma 3.7])

Taking into account Lemma 4.3-7, ¬ becomes a definable operation in the IQC-algebra. Recalling that in
our case the assignment of probability is done via a function p : D

(
C

2
)
→ [0, 1], it is possible to establish the

following equivalence relation in D
(
C

2
)
:

σ ≡ τ ⇐⇒ p(σ) = p(τ).

This equivalence is strongly related to the preorder ≤w mentioned at the end of Section 1. In view of Lemma 4.1
and Lemma 4.3, we can see that ≡ is a (⊕, •,¬)-congruence but not a √

.-congruence.

Proposition 4.4 Let [σ] be the equivalence class of σ ∈ D
(
C

2
)

and π≡ : D
(
C

2
)
→ D

(
C

2
)
/≡ be the natural

application. Then

(1) [σ] = [σ • P1 ] = [σ ⊕ P0 ] = [ρp(σ ) ].

(2)
〈
D

(
C

2
)
/≡,⊕, •,¬, [P0 ], [ρ 1

2
], [P1 ]

〉
is a PMV 1

2 4
-algebra and the assignment [ρλ ]

f→ λ is a PMV 1
2 4

-

isomorphism from D
(
C

2
)
/≡ onto [0, 1]PMV .

(3) The following diagram is commutative:

�

� ���
��� f

D
(
C

2
)

[0, 1]PMV

D
(
C

2
)
/≡

p

π≡

www.mlq-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



6 H. Freytes and G. Domenech: Quantum computational logic with mixed states

P r o o f.

(1) Follows from Lemma 4.3.

(2) By item 1, we can consider the identification
(
D

(
C

2
)
/≡

)
= (ρλ )λ∈[0,1] . Then it may be easily proved that

〈(
D

(
C

2
)
/≡

)
,⊕, •,¬, [P0 ],

[
ρ 1

2

]
, [P1 ]

〉
is a PMV 1

2 4
-algebra and [ρλ ]

f→ λ is a PMV 1
2 4

-isomorphism

from D
(
C

2
)
/≡ onto [0, 1]PMV .

(3) Immediate.

Remark 4.5 By Proposition 4.4-3, we can see that the assignment of probability p : D
(
C

2
)
→ [0, 1] can be

identified with the natural application π≡ : D
(
C

2
)
→ D

(
C

2
)
/≡ where D

(
C

2
)
/≡ is endowed with a PMV 1

2 4
-

structure. This crucial fact is particularly relevant in the definition of probabilistic consequence introduced in
Section 7.

5 Quantum computational algebras

In this Section we introduce algebraic structures by means of simple equations in an attempt to capture the basic
properties of the IQC-algebra.

The first and more basic algebraic structure associated to the IP-system was introduced in [21] for the
Łukasiewicz and the NOT gates. This is the quasi MV-algebra or qMV-algebra for short. A qMV-algebra
is an algebra 〈A,⊕,¬, 0, 1〉 of type 〈2, 1, 0, 0〉 satisfying the following equations:

(Q1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,

(Q2) ¬¬x = x,

(Q3) x ⊕ 1 = 1,

(Q4) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x,

(Q5) ¬(x ⊕ 0) = ¬x ⊕ 0,

(Q6) (x ⊕ y) ⊕ 0 = x ⊕ y,

(Q7) ¬0 = 1.

From an intuitive point of view, a qMV-algebra can be seen as an MV-algebra which fails to satisfy the
equation x ⊕ 0 = x. We define the binary operations 
,∨,∧,→ in the same way as we did for MV-algebras.

Lemma 5.1 The following equations are satisfied in each qMV-algebra: x ⊕ y = y ⊕ x, x ⊕ ¬x = 1,
x 
 ¬x = 0, 0 ⊕ 0 = 0, x ⊕ 0 = x ∧ x, x ∧ y = y ∧ x, and x ∨ y = y ∨ x. [21, Lemma 6]

Another algebraic structure associated to the IP-system was introduced in [9] for the Łukasiewicz, the NOT
and the

√
NOT gates. These algebras are known as square root quasi MV-algebras or

√
qMV-algebras for short.

A
√

qMV-algebra is an algebra
〈
A,⊕,√, 0, 1

2 , 1
〉

of type 〈2, 1, 0, 0, 0〉 such that, upon defining ¬x =
√√

x for
all x ∈ A, the following conditions are satisfied:

(SQ1)
〈
A,⊕,¬, 0, 1

2 , 1
〉

is a qMV-algebra,

(SQ2)
√¬x = ¬√x,

(SQ3)
√

x ⊕ y ⊕ 0 =
√

1
2 = 1

2 .

In what follows, we shall extend the
√

qMV-algebra structure taking into account the basic properties of the
IAND gate given in Lemma 4.3.

Definition 5.2 A
√

qPMV-algebra is an algebra
〈
A,⊕, •,√, 0, 1

2 , 1
〉

of type 〈2, 2, 1, 0, 0, 0〉 such that

(1)
〈
A,⊕,√, 0, 1

2 , 1
〉

is a
√

qMV-algebra with

(2) x • y = y • x,

(3) x • (y • z) = (x • y) • z,

(4) x • 1 = x ⊕ 0,

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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(5) x • y = (x • y) ⊕ 0,

(6) x • (y 
 ¬z) = (x • y) 
 ¬(x • z), and

(7)
√

x • y ⊕ 0 = 1
2 .

We denote by
√

qPMV the variety of
√

qPMV-algebras. It is not very hard to see that the IQC-algebra〈
D

(
C

2
)
,⊕, •,¬,√, P0 , ρ 1

2
, P1

〉
is a

√
qPMV-algebra.

Let A be a
√

qPMV-algebra. Then we define two binary relations ≤ and ≡ on A as follows:

a ≤ b ⇐⇒ 1 = a → b,

a ≡ b ⇐⇒ a ≤ b and b ≤ a.

Clearly, 〈A,≤〉 is a preorder and one can also easily prove that a ≤ b iff a ∧ b = a ⊕ 0 iff a ∨ b = b ⊕ 0.
Moreover a ≡ a ⊕ 0.

Proposition 5.3 Let A be a
√

qPMV-algebra and a, b ∈ A. Then:

(1) a • 0 = 0,

(2) If a • b = 1 then a ⊕ 0 = b ⊕ 0 = 1,

(3) If a ≤ b then a • x ≤ b • x,

(4) x • y ≤ x,

(5) x • (y ⊕ 0) = (x • y) ⊕ 0,

(6) 1
2 = ¬ 1

2 ,

(7) 1
2 ⊕ 0 = 1

2 ,

(8)
√

x ⊕ y ⊕
√

z ⊕ w = 1.

P r o o f. (1) a • 0 = a • (0 
 ¬0) = (a • 0) 
 ¬(a • 0) = 0. (2) Suppose that a • b = 1. Then ¬(a ⊕ 0) =
1 
 ¬(a • 1) = (a • b) 
 ¬(a • 1) = a • (b 
 ¬1) = 0. Thus ¬(a ⊕ 0) = 0, hence a ⊕ 0 = 1. (3) If a ≤ b then
1 = a → b = ¬(a
¬b) and 0 = a
¬b. Using item 1. we have that 0 = x•0 = x•(a
¬b) = (x•a)
¬(x•b).
Thus, 1 = ¬((x • a) 
 ¬(x • b)) = (x • a) → (x • b) resulting (x • a) ≤ (x • b). (4) Since x ≤ 1 by item 3. we
have that x • y ≤ x • 1 = x⊕ 0 ≤ x. (5) x • (y ⊕ 0) = x • (y • 1) = (x • y) • 1 = (x • y)⊕ 0. Items (6), (7) and
(8) can be easily proved.

Definition 5.4 Let A be a
√

qPMV-algebra. An element a ∈ A is regular iff a⊕0 = a. We denote by Reg(A)
the set of regular elements.

Proposition 5.5 Let A be a
√

qPMV-algebra. Then

(1) 〈Reg(A),⊕, •,¬, 0, 1〉 is a PMV-algebra.

(2) ≡ is a 〈⊕, •,¬〉-congruence on A and 〈A/≡,⊕, •,¬, [0], [1]〉 is a PMV-algebra.

(3) A/≡ is PMV-isomorphic to Reg(A). This isomorphism is given by the assignment ϕ([x]) = x ⊕ 0.

P r o o f. (1) From [21, Lemma 9], 〈Reg(A),⊕,¬, 0, 1〉 is an MV-algebra. Using Proposition 5.3-5, the op-
eration • is closed in Reg(A). Now from the axioms of the

√
qPMV-algebras, 〈Reg(A),⊕, •,¬, 0, 1〉 results a

PMV-algebra.
(2) It is easy to see that ≡ is a 〈⊕,¬〉-congruence and 〈A/≡,⊕,¬, [0]〉 is an MV-algebra. For technical

details, cf. [21]. By Proposition 5.3-3, ≡ is compatible with •. Note that [1] is the identity in 〈A/≡, •, [1]〉 since
[x] • [1] = [x • 1] = [x ⊕ 0] = [x]. Hence, by definition of

√
qPMV-algebra, 〈A/≡,⊕, •,¬, [0], [1]〉 is a PMV-

algebra.
(3) Since [x] = [x ⊕ 0] for each x ∈ A, then ϕ is injective. If x ∈ Reg(A) then x = x ⊕ 0. Therefore

ϕ([x]) = x ⊕ 0 = x and ϕ is surjective. Using Proposition 5.3-5 we have that ϕ([x] • [y]) = ϕ([x • y]) =
(x•y)⊕0 = (x⊕0)•(y⊕0) = ϕ([x])•ϕ([y]). In the same way we can prove that ϕ([x]⊕[y]) = ϕ([x])⊕ϕ([y]).
By axiom Q5, ϕ(¬[x]) = ¬ϕ([x]) and ϕ([c]) = c for c ∈ {0, 1

2 , 1} since they are regular elements in A. Thus
[x] �→ x ⊕ 0 is a PMV-isomorphism.
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Definition 5.6 Let 〈A,⊕, •,¬, 0, 1〉 be a PMV-algebra with fix point of the negation 1
2 . The pair algebra over

A is the algebra

SA =
〈

A × A,⊕, •,√, 0,
1
2
, 1

〉

where:

(a, b) ⊕ (c, d) :=
(

a ⊕ c,
1
2

)

,

(a, b) • (c, d) :=
(

a • c,
1
2

)

,

√
(a, b) := (b,¬a),

0 :=
(

0,
1
2

)

,

1 :=
(

1,
1
2

)

,

1
2

:=
(

1
2
,
1
2

)

.

Proposition 5.7 Let A be a PMV-algebra with fix point of the negation 1
2 . Then

(1) The pair algebra SA is a
√

qPMV-algebra.

(2) (a, b) ≤ (c, d) in SA iff a ≤ c in A.

(3) R(SA ) is PMV-isomorphic to A.

P r o o f. (1) It is not very hard to see that
〈
A × A,⊕,√, 0, 1

2 , 1
〉
, where ¬x =

√√
x, is a

√
qMV-algebra.

We only have to prove that SA satisfies axioms 6 and 7 of
√

qPMV-algebras.
Let us show axiom 6, i.e., x • (y 
 ¬z) = (x • y) 
 ¬(x • z). In fact, (a, b) • ((c, d) 
 ¬(z, w)) = (a, b) •

((c, d)
 (¬z,¬w) =
(
a• (c
¬z), 1

2

)
=

(
(a•c)
¬(a•z), 1

2

)
. Moreover ((a, b)• (c, d))
¬((a, b)• (z, w)) =(

a • c, 1
2

)



(
¬(a • z), 1

2

)
=

(
(a • c) 
 ¬(a • z), 1

2

)
.

Let us now show axiom 7, i.e.,
√

x • y ⊕ 0 = 1
2 . In fact:

√
(a, b) • (c, d) ⊕

(
0, 1

2

)
=

√
(a • c, 1

2 ) ⊕
(
0, 1

2

)
=

( 1
2 ,¬(a • c)

)
⊕

(
0, 1

2

)
=

( 1
2 , 1

2

)
= 1

2 .
Hence SA is a

√
qPMV-algebra.

(2) (a, b) ≤ (c, d) iff
(
1, 1

2

)
= (a, b) → (c, d) =

(
¬a ⊕ b, 1

2

)
iff 1 = ¬a ⊕ b in A iff a ≤ b in A.

(3) If we consider SA ⊕0 =
{
(x, y)⊕

(
0, 1

2

)
: (x, y) ∈ A×A

}
then we have that SA ⊕0 =

{(
x, 1

2

)
: x ∈ A

}
.

Therefore, SA ⊕ 0 is PMV-isomorphic to A. Then, by Proposition 5.5, R(SA ) is PMV-isomorphic to A.

Definition 5.8 A
√

qPMV-algebra is called flat iff it satisfies the equation 0 = 1.

Note that if A is flat
√

qPMV-algebra then Reg(A) = {0} and x⊕ y = x • y = 0 for each x, y ∈ A. There is
a standard technique for extracting a flat

√
qPMV-algebra out of an arbitrary

√
qPMV-algebra:

Let
〈
A,⊕, •,√, 0, 1

2 , 1
〉

be
√

qPMV-algebra. Define the structure Fl(A) =
〈
A,⊕, •,√, 0F , 1

2
F
, 1F

〉
where

(1) 0F = 1
2

F = 1F ,

(2) x ⊕ y = x • y = 0F ,

(3)
√

x = x.

Such an algebra is easily seen to be a flat
√

qPMV-algebra.

Proposition 5.9 Let A be a PMV-algebra with fix point of the negation 1
2 and F be a flat

√
qPMV-algebra

that satisfies
√

x = x. Consider the algebra D = F × S where S is a sub
√

qPMV-algebra of the pair algebra
SA . Then
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(1) {(0, (r2 , r3)) : (0, (r2 , r3)) ∈ D} defines a sub
√

qPMV-algebra of D,
√

qPMV-isomorphic to S.

(2) The projection πS : D → S is a
√

qPMV-homomorphism.

(3) If t contains an occurrence of 
 ∈ {⊕, •} then only one of the following possibilities holds: for each
D-valuation v, v(t) =

(
0, r, 1

2

)
or for each D-valuation v, v(t) =

(
0, 1

2 , r
)
.

(4) If t contains an occurrence of 
 ∈ {⊕, •} then, for each D-valuation v, there exists a S-valuation v′ such
that v(t) = v′(t).

(5) D |= t = s iff S |= t = s.

P r o o f. (1), (2) are straightforward.
In what follows we identify (x, (y, z)) with (x, y, z) for each (x, (y, z)) ∈ D.
(3) Induction on the complexity of t. Since t contains at least an occurrence of 
 ∈ {⊕, •}, it cannot be

an atomic term. Its minimum possible complexity is therefore represented by the case in which t is t1 
 t2
where each ti is either a variable or constant. Thus for each D-valuation v, v(t) = v(t1 
 t2) =

(
0, r, 1

2

)
for

some r ∈ A. Now let our claim hold whenever the complexity of a term is less that n and t has complexity

n. Suppose that t is
√

s. If v(s) =
(
0, r, 1

2

)
then v(

√
t) =

√(
0, r, 1

2

)
=

(
0, 1

2 ,¬r
)
. If v(s) =

(
0, 1

2 , r
)

then

v(
√

t) =
√(

0, 1
2 , r

)
=

(
0, r, 1

2

)
. The case in which t is s1 
 s2 is immediate.

(4) Let v be a D-valuation. By item 2, the composition v′ = πS v is an S-valuation. Let t be a
√

qPMV-term
containing an occurrence of 
 ∈ {⊕, •}. By item 3, for each D-valuation v, v(t) = (0, r2 , r3) = πS (0, r2 , r3) =
πS v(t) = v′(t).

(5) We shall consider the non trivial direction. Suppose that D �|= t = s. If neither t nor s contain any
occurrence of ⊕, then t is

√
t1

n
and s is

√
s1

m , where n,m ≥ 1 are indexes of the successive application of the
operation. If t1 is a constant symbol then trivially S �|= t = s since s1 is a variable or constant symbol. If t1 and
s1 are both variables then D �|= t = s implies that t1 and t2 are different. Hence evaluate t1 to

(
0, 0, 1

2

)
and s1 to(

0, 1
2 , 1

2

)
to get the required counterexample.

Suppose that t contains an occurrence of 
 ∈ {⊕, •} but s does not. We have to consider the following three
subcases:

(i) If s is a constant symbol then D |= s = s ⊕ 0 and D �|= t = s ⊕ 0. Let v be a D-valuation such that
v(t) �= v(s⊕ 0). By item 4, there exists an S-valuation v′ such that v(t) = v′(t) and v(s⊕ 0) = v′(s⊕ 0). Thus
v′(t) �= v′(s ⊕ 0) = v′(s) and S �|= t = s.

(ii) Suppose that s is a variable. By item 3, we first assume that v(t) has the form
(
0, r, 1

2

)
for each S-valuation

v. Then evaluate s to (0, 1, 0) to get the required counterexample. If we assume that v(t) has the form
(
0, 1

2 , r
)

for each D-valuation v, evaluate s to (0, 0, 1) to get the required counterexample. Hence S �|= t = s.
(iii) With the same argument used in ii, we can prove that S �|= t = s when s is

√
s1

m .
Suppose that t and s contain an occurrence of 
 ∈ {⊕, •}. Since D �|= t = s then there exists a D-valuation v

such that v(t) �= v(s). By item 4, there exists an S-valuation v′ such that v(t) = v′(t) and v(s) = v′(s). Hence
v′(t) �= v′(s) and S �|= t = s.

Proposition 5.10 Let A be a
√

qPMV-algebra. Consider the
√

qPMV-algebra A∗ = Fl(A) × SReg(A) and
the application f : A → A∗ such that

f(x) =

{
(0, (x ⊕ 0,

√
x ⊕ 0)) if x ∈ Reg(A),

(x, (x ⊕ 0,
√

x ⊕ 0)) if x �∈ Reg(A).

Then f is an injective
√

qPMV-homomorphism.

P r o o f. By definition f is an injective function. We need to prove that f is a
√

qPMV-homomorphism. In
what follows we identify (x, (y, z)) with (x, y, z) for each (x, (y, z)) ∈ A∗. For each x ∈ A, we define tx as
follows:

tx =

{
0 if x ∈ Reg(A),
x if x �∈ Reg(A).
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Let a ∈
{
0, 1

2 , 1
}

. In this case a ∈ Reg(A) and
√

a⊕0 = 1
2 . Therefore f(a) = (0, a⊕0,

√
a⊕0) =

(
0, a, 1

2

)
.

Let 
 ∈ {⊕, •}.

f(x 
 y) = (0, (x 
 y) ⊕ 0,
√

x 
 y ⊕ 0)

=
(

0, (x 
 y) ⊕ 0,
1
2

)

= (tx , x ⊕ 0,
√

x ⊕ 0) 
 (ty , y ⊕ 0,
√

y ⊕ 0)

= f(x) 
 f(y).

f(
√

x ) =
(
t√x ,

√
x ⊕ 0,

√√
x ⊕ 0

)
=

(
t√x ,

√
x ⊕ 0,¬(x ⊕ 0)

)
=

√(
t√x , x ⊕ 0,

√
x ⊕ 0

)
=

√
f(x).

Thus f is a
√

qPMV-homomorphism.

Theorem 5.11 Let S� be the subclass of pair algebras SA where A is a PMV-chain with fix point of the
negation. Then

√
qPMV = V

(
S�)

.

P r o o f. We shall prove that
√

qPMV |= t = s iff S� |= t = s. As regards the non-trivial direction, assume
that S� |= t = s. Suppose that there exists a

√
qPMV-algebra A such that A �|= t = s. By Proposition 5.10, A

can be embedded in Fl(A)×SReg(A) . Therefore Fl(A)×SReg(A) �|= t = s and by Proposition 5.9-5, SReg(A) �|=
t = s. By Proposition 3.2 we can consider a subdirect representation β : Reg(A) ↪→

∏
i∈I Ai such that (Ai)i∈I

is a family of PMV-chains. For each i ∈ I , let pi be the ith-projection in Ai and consider the following function:

βi : SReg(A) → SAi
s.t. (x, y) �→ βi((x, y)) = (piβ(x), piβ(y))i∈I .

We shall prove that βi is a
√

qPMV-homomorphism. The preservation of
(
0, 1

2

)
,
( 1

2 , 1
2

)
and

(
1, 1

2

)
is imme-

diate. Let 
 ∈ {⊕, •}. βi((x1 , y1) 
 (x2 , y2)) = βi

(
x1 
 x2 ,

1
2

)
=

(
x1 i 
 x2 i ,

1
2 i

)
= (x1 i , y1 i) 
 (x2 i , y2 i) =

βi((x1 , y1)) 
 βi((x2 , y2)).

βi(
√

(x, y)) = βi((y,¬x)) = (yi,¬xi) =
√

(xi, yi) =
√

βi(x, y).

Thus βi is a
√

qPMV-homomorphism for each i ∈ I . Now we define the function

β∗ : SReg(A) →
∏

i∈I

SAi
by (x, y) �→ β∗((x, y)) = (βi(x, y))i∈I .

Note that β∗ is injective since β is a subdirect embedding. Moreover β∗ is a
√

qPMV-homomorphism since βi

is a
√

qPMV-homomorphism for each i ∈ I . Thus SReg(A) �|= t = s implies that there exists m ∈ I such that
SAm

�|= t = s which is contradiction since SAm
lies in S�. Hence

√
qPMV |= t = s.

We have seen that the structure of the
√

qPMV-algebra is a good abstraction for the IQC-algebra. However,
we do not yet know whether

√
qPMV = V

(
D

(
C

2
))

. In what follows, we shall show that this is not the case. In
order to do it, we need some preliminary results:

Lemma 5.12

(1) The set D
(
C

2
)
y ,z

=
{
(0, y, z) : (0, y, z) ∈ D

(
C

2
)}

defines a sub
√

qPMV-algebra of D
(
C

2
)
.

(2) Consider the real interval [−1, 1] equipped with the following operations: x ⊕ y = x • y = 0,
√

x = x

and 0[−1,1] = 1
2

[−1,1] = 1[−1,1] = 0. Then F[−1,1] =
〈
[−1, 1],⊕, •,√, 0[−1,1], 1

2
[−1,1]

, 1[−1,1]
〉

is a flat

algebra.

(3) f : F[−1,1] ×D
(
C

2
)
y ,z

→ D
(
C

2
)

such that (x, (0, y, z)) �→ (x, y, z) is a
√

qPMV-isomorphism.

P r o o f. Straightforward.
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Let S[0,1] be the pair algebra over the standard PMV-algebra [0, 1]PMV . If we consider the set

D[0,1] =

{

(x, y) ∈ S[0,1] :
(

x − 1
2

)2

+
(

y − 1
2

)2

≤ 1
4

}

it is not very hard to see that
〈
D[0,1],⊕, •,√, 0, 1

2 , 1
〉

is a sub
√

qPMV-algebra of S[0,1] . Moreover Reg
(
D[0,1]

)
=

Reg
(
S[0,1]

)
and it is PMV-isomorphic to [0, 1]PMV .

Proposition 5.13

(1) ϕ : D
(
C

2
)
y ,z

→ D[0,1] such that ϕ(y, z) =
( 1−z

2 , 1−y
2

)
is a

√
qPMV-isomorphism.

(2) D
(
C

2
)
|= t = s iff D[0,1] |= t = s.

P r o o f. (1) Let σ = (0, b, c) ∈ D
(
C

2
)
y ,z

. Then ϕ(σ) =
( 1−c

2 , 1−b
2

)
and

( 1−c
2 − 1

2

)2 +
( 1−b

2 − 1
2

)2 =
1
4

(
c2 +b2

)
≤ 1

4 . Thus the image of ϕ is contained in D[0,1] . It is clear that ϕ is injective. Let (a, b) ∈ D[0,1] . If we

consider σ = (0, 1−2b, 1−2a) then (1−2b)2 +(1−2a)2 = 4
( 1

2 −a
)2 +4

( 1
2 −b

)2 ≤ 1. Hence σ ∈ D
(
C

2
)
y ,z

,

ϕ(σ) = (a, b) and ϕ is a surjective map. Now we prove that ϕ is a
√

qPMV-homomorphism. Let σ = (0, r2 , r3)
and τ = (0, s2 , s3). Let 
 ∈ {⊕, •}. Using Lemma 4.1 and Lemma 4.3 we have that:

ϕ(σ 
 τ) = ϕ(ρp(σ )
p(ρ))

= ϕ(0, 0, 1 − 2(p(σ) 
 p(ρ)))

=
(

p(σ) 
 p(ρ),
1
2

)

=
(

1 − r3

2
,
1 − r2

2

)




(
1 − s3

2
,
1 − s2

2

)

= ϕ(σ) 
 ϕ(τ).

ϕ(
√

σ) = ϕ(0,−r3 , r2) =
(

1 − r2

2
,
1 + r3

2

)

=
(

1 − r2

2
, 1 − 1 − r3

2

)

=

√(
1 − r3

2
,
1 − r2

2

)

=
√

ϕ(σ).

ϕ(P1) = ϕ(0, 0,−1) =
(

1,
1
2

)

, ϕ(P0) = ϕ(0, 0, 1) =
(

0,
1
2

)

and ϕ
(
ρ 1

2

)
= ϕ(0, 0, 0) =

(
1
2
,
1
2

)

.

Thus ϕ is
√

qPMV-isomorphism.

(2) By item 1 and Lemma 5.12 we can see that D
(
C

2
)

is
√

qPMV-isomorphic to F[−1,1] ×D[0,1] . Hence, by
Proposition 5.9-5, D

(
C

2
)
|= t = s iff D[0,1] |= t = s.

Proposition 5.14 Consider the pair algebra S[0,1] and a = (a1 , a2) ∈ S[0,1] . Then the following conditions
are equivalent:

(1) a ∈ D[0,1] ,

(2) a satisfies the equation 1 =
(

1
24 ⊕

(
x•x
22 ⊕

√
x•√x
22

))
→

(
x
22 ⊕

√
x

22

)
,

(3) a satisfies the equation 1 =
(

1
24 ⊕

(
¬x•¬x

22 ⊕
√

x•√x
22

))
→

(
¬x
22 ⊕

√
x

22

)
,

(4) a satisfies the equation 1 =
(

1
24 ⊕

(
x•x
22 ⊕

√¬x•√¬x
22

))
→

(
x
22 ⊕

√¬x
22

)
,

(5) a satisfies the equation 1 =
(

1
24 ⊕

(
¬x•¬x

22 ⊕
√¬x•√¬x

22

))
→

(
¬x
22 ⊕

√¬x
22

)
,

where 1
2n means the term 1

2n −1 • 1
2 and t

2n means the term t • 1
2n (n ≥ 2).

www.mlq-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



12 H. Freytes and G. Domenech: Quantum computational logic with mixed states

P r o o f.

1 ⇐⇒ 2:
1 =

(
1
24 ⊕

(
x•x
22 ⊕

√
x•√x
22

))
→

(
x
22 ⊕

√
x

22

)
is satisfied by a = (a1 , a2) ∈ S[0,1] iff

(
1, 1

2

)
=

((
1
24 , 1

2

)
⊕

((
a2

1
22 , 1

2

)
⊕

(
a2

2
22 , 1

2

)))
→

((
a1
22 , 1

2

)
⊕

(
a2
22 , 1

2

))
iff

(
1, 1

2

)
=

(
1
24 ⊕ a2

1
22 ⊕ a2

2
22 , 1

2

)
→

(
a1
22 ⊕ a2

22 , 1
2

)

iff 1 =
(

1
24 ⊕ a2

1
22 ⊕ a2

2
22

)
→

(
a1
22 ⊕ a2

22

)
iff 1

24 ⊕ a2
1

22 ⊕ a2
2

22 ≤ a1
22 ⊕ a2

22 iff 1
24 + a2

1
22 + a2

2
22 ≤ a1

22 + a2
22 iff

a2
1 − a1 + 1

22 + a2
2 − a2 + 1

22 ≤ 1
22 iff

(
a1 − 1

2

)2
+

(
a2 − 1

2

)2
≤ 1

4 iff a = (a1 , a2) ∈ D[0,1] .

1 ⇐⇒ 3:
1 =

(
1
24 ⊕

(
¬x•¬x

22 ⊕
√

x•√x
22

))
→

(
¬x
22 ⊕

√
x

22

)
is satisfied by a = (a1 , a2) ∈ S[0,1] iff

(
1, 1

2

)
=

((
1
24 , 1

2

)
⊕

((
(1−a1 )2

22 , 1
2

)
⊕

(
a2

2
22 , 1

2

)))
→

((
1−a1

22 , 1
2

)
⊕

(
a2
22 , 1

2

))
iff

(
1, 1

2

)
=

(
1
24 ⊕ (1−a1 )2

22 ⊕ a2
2

22 , 1
2

)
→

(
(1−a1 )

22 ⊕ a2
22 , 1

2

)
iff 1 =

(
1
24 ⊕ (1−a1 )2

22 ⊕ a2
2

22

)
→

(
1−a1

22 ⊕ a2
22

)
iff 1

24 ⊕ (1−a1 )2

22 ⊕ a2
2

22 ≤ 1−a1
22 ⊕ a2

22 iff

1
8 + a2

1
2 + a2

2
2 ≤ a1

2 + a2
2 iff

(
a1 − 1

2

)2
+

(
a2 − 1

2

)2
≤ 1

4 iff a = (a1 , a2) ∈ D[0,1] .

With the same argument we can prove (1 ⇐⇒ 4) and (1 ⇐⇒ 5).

Theorem 5.15
√

qPMV �= V
(
D

(
C

2
))

.

P r o o f. By Proposition 5.13-2 and Proposition 5.14, the equation 1=
(

1
16 ⊕

(
x•x
4 ⊕

√
x•√x
4

))
→

(
x
4 ⊕

√
x

4

)

holds in D
(
C

2
)

and fails in S[0,1] . Hence
√

qPMV �= V(D
(
C

2
)
).

6 Poincaré irreversible algebras

In this section we introduce and study an algebraic structure called “Poincaré irreversible algebra” with the
following motivation. As shown by Proposition 5.13 the

√
qPMV-equations which hold in the IQC-algebra

coincide with the
√

qPMV-equations which hold in D[0,1] . Moreover, the property that characterizes D[0,1] ,
i.e., a circle of radius 1

2 and center
( 1

2 , 1
2

)
circumscribed in the square [0, 1] × [0, 1], may be captured by the

set of equations given in Proposition 5.14. Since these four equations may be formulated in the language of√
qPMV , this allows to study a subvariety of the

√
qPMV-algebras that captures in a more faithful manner the

basic properties of the IQC-algebra.

Definition 6.1 A Poincaré irreversible algebra (IP-algebra for short) is a
√

qPMV-algebra satisfying the
following axioms:

(IP1) 1 =
(

1
24 ⊕

(
x•x
22 ⊕

√
x•√x
22

))
→

(
x
22 ⊕

√
x

22

)
,

(IP2) 1 =
(

1
24 ⊕

(
¬x•¬x

22 ⊕
√

x•√x
22

))
→

(
¬x
22 ⊕

√
x

22

)
,

(IP3) 1 =
(

1
24 ⊕

(
x•x
22 ⊕

√¬x•√¬x
22

))
→

(
x
4 ⊕

√¬x
22

)
,

(IP4) 1 =
(

1
24 ⊕

(
¬x•¬x

22 ⊕
√¬x•√¬x

22

))
→

(
¬x
22 ⊕

√¬x
22

)
,

(IP5) 1
24 ⊕ 1

24 = 1
23 .

where 1
2n means the term 1

2n −1 • 1
2 and t

2n means the term t • 1
2n (n ≥ 2).

Remark 6.2 In the particular case of D[0,1] , axioms (IP1) to (IP4) are all equivalent. This is due to simple
arithmetic properties of the real numbers. In the general case, a

√
qPMV-algebra that satisfies one of these axioms

does not necessarily satisfy the others. It is due to this fact that the four equations must be introduce as axioms in
the definition of IP-algebra.

We denote by IP the subvariety of
√

qPMV given by the IP-algebras. Clearly IP-homomorphisms are√
qPMV-homomorphisms. D[0,1] is an IP-algebra and constitutes the standard model for IP . Another important

examples of IP-algebras are the flat algebras.
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Unfortunately we cannot give a completeness theorem for the IP-equations of the form t = s with respect
to D[0,1] . In fact, the open problem for the axiomatization of all identities in the language of PMV which are
valid in the PMV-algebra arising from the real interval [0, 1] (cf. [22, 16]) will appear in IP . In view of this, we
delineate a generalization of the D[0,1] algebra, whose role is analogous to the PMV-chains with respect to the
equational theory of PMV .

Let A be a PMV 1
2 4

-algebra (see Definition 2.3) and SA be the pair algebra over A. We consider the following
subsets in SA :

Q1 =
{

x ∈ SA : 1 =
(

1
24 ⊕

(
x • x

22 ⊕
√

x • √x

22

))

→
(

x

22 ⊕
√

x

22

)}

,

Q2 =
{

x ∈ SA : 1 =
(

1
24 ⊕

(
¬x • ¬x

22 ⊕
√

x • √x

22

))

→
(
¬x

22 ⊕
√

x

22

)}

,

Q3 =
{

x ∈ SA : 1 =
(

1
24 ⊕

(
x • x

22 ⊕
√¬x • √¬x

22

))

→
(

x

22 ⊕
√¬x

22

)}

,

Q4 =
{

x ∈ SA : 1 =
(

1
24 ⊕

(
¬x • ¬x

22 ⊕
√¬x • √¬x

22

))

→
(
¬x

22 ⊕
√¬x

22

)}

.

Then we define DA := Q1 ∩ Q2 ∩ Q3 ∩ Q4 .

Proposition 6.3 Let SA be the pair algebra over the PMV 1
2 4

-algebra A. Then:

〈

DA,⊕, •,√,

(

0,
1
2

)

,

(
1
2
,
1
2

)

,

(

1,
1
2

)〉

is the largest IP-algebra contained in SA as sub-
√

qPMV-algebra. Moreover
(
a, 1

2

)
�→ a defines a PMV 1

2 4
-

isomorphism from Reg(DA ) onto A.

P r o o f. We first prove that Reg(SA ) ⊆ DA . Let
(
a, 1

2

)
∈ Reg(SA ). We have to prove the following four

cases:

Case 1.
(
a, 1

2

)
∈ Q1 .

1
24 ⊕

(
x • x

22 ⊕
√

x • √x

22

)

|(a, 1
2 ) =

(
1
24 ,

1
2

)

⊕
((

1
22 ,

1
2

)

•
(

a,
1
2

)

•
(

a,
1
2

))

⊕
((

1
22 ,

1
2

)

•
√(

a,
1
2

)

•
√(

a,
1
2

))

=
(

1
24 ,

1
2

)

⊕
(

a • a

22 ,
1
2

)

⊕
(

1
24 ,

1
2

)

=
(

a • a

22 ⊕ 1
23 ,

1
2

)

since A is a PMV 1
2 4

-algebra, i.e., 1
24 ⊕ 1

24 = 1
23 holds in the first component.

x

22 ⊕
√

x

22

∣
∣
∣
(a, 1

2 )
=

((
1
22 ,

1
2

)

•
(

a,
1
2

))

⊕
((

1
22 ,

1
2

)

•
√(

a,
1
2

))

=
(

a

22 ⊕ 1
23 ,

1
2

)

.

Since a•a
22 ⊕ 1

23 ≤ a
22 ⊕ 1

23 in the PMV 1
2 4

-algebra A, 1
24 ⊕

(
x•x
22 ⊕

√
x•√x
22

)
|(a, 1

2 ) ≤ x
22 ⊕

√
x

22 |(a, 1
2 ) . Hence

(
a, 1

2

)
∈ Q1 for each a ∈ A.
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Case 2.
(
a, 1

2

)
∈ Q2 .

1
24 ⊕

(
¬x • ¬x

22 ⊕
√

x • √x

22

)

|(a, 1
2 ) =

(
1
24 ,

1
2

)

⊕
((

1
22 ,

1
2

)

•
(

¬a,
1
2

)

•
(

¬a,
1
2

))

⊕
((

1
22 ,

1
2

)

•
√(

a,
1
2

)

•
√(

a,
1
2

))

=
(

1
24 ,

1
2

)

⊕
(
¬a • ¬a

22 ,
1
2

)

⊕
(

1
24 ,

1
2

)

=
(
¬a • ¬a

22 ⊕ 1
23 ,

1
2

)

.

x

22 ⊕
√

x

22 |(¬a, 1
2 ) =

((
1
22 ,

1
2

)

•
(

¬a,
1
2

))

⊕
((

1
22 ,

1
2

)

•
√(

a,
1
2

))

=
(
¬a

22 ⊕ 1
23 ,

1
2

)

.

Since ¬a•¬a
22 ⊕ 1

23 ≤ ¬a
22 ⊕ 1

23 in the PMV 1
2 4

-algebra A, 1
24 ⊕

(
¬x•¬x

22 ⊕
√

x•√x
22

)
|(a, 1

2 ) ≤ ¬x
22 ⊕

√
x

22 |(a, 1
2 ) . Hence

(
a, 1

2

)
∈ Q2 for each a ∈ A.

Case 3.
(
a, 1

2

)
∈ Q3 .

1
24 ⊕

(
x • x

22 ⊕
√¬x • √¬x

22

)

|(a, 1
2 ) =

(
1
24 ,

1
2

)

⊕
((

1
22 ,

1
2

)

•
(

a,
1
2

)

•
(

a,
1
2

))

⊕
((

1
22 ,

1
2

)

•
√

¬
(

a,
1
2

)

•
√

¬
(

a,
1
2

))

=
(

1
24 ,

1
2

)

⊕
(

a • a

22 ,
1
2

)

⊕
(

1
24 ,

1
2

)

=
(

a • a

22 ⊕ 1
23 ,

1
2

)

since A is a PMV 1
2 4

-algebra, i.e., 1
24 ⊕ 1

24 = 1
23 holds in the first component.

x

22 ⊕
√¬x

22 |(a, 1
2 ) =

((
1
22 ,

1
2

)

•
(

a,
1
2

))

⊕
((

1
22 ,

1
2

)

•
√

¬
(

a,
1
2

))

=
(

a

22 ⊕ 1
23 ,

1
2

)

.

Since a•a
22 ⊕ 1

23 ≤ a
22 ⊕ 1

23 in the PMV 1
2 4

-algebra A, 1
24 ⊕

(
x•x
22 ⊕

√¬x•√¬x
22

)
|(a, 1

2 ) ≤ x
22 ⊕

√¬x
22 |(a, 1

2 ) . Hence
(
a, 1

2

)
∈ Q3 for each a ∈ A.

Case 4.
(
a, 1

2

)
∈ Q4 .

1
24 ⊕

(
¬x • ¬x

22 ⊕
√¬x • √¬x

22

)

|(a, 1
2 ) =

(
1
24 ,

1
2

)

⊕
((

1
22 ,

1
2

)

•
(

¬a,
1
2

)

•
(

¬a,
1
2

))

⊕
((

1
22 ,

1
2

)

•
√

¬
(

a,
1
2

)

•
√

¬
(

a,
1
2

))

=
(

1
24 ,

1
2

)

⊕
(
¬a • ¬a

22 ,
1
2

)

⊕
(

1
24 ,

1
2

)

=
(
¬a • ¬a

22 ⊕ 1
23 ,

1
2

)

¬x

22 ⊕
√¬x

22 |(¬a, 1
2 ) =

((
1
22 ,

1
2

)

•
(

¬a,
1
2

))

⊕
((

1
22 ,

1
2

)

•
√

¬
(

a,
1
2

))

=
(
¬a

22 ⊕ 1
23 ,

1
2

)

.
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Since ¬a•¬a
22 ⊕ 1

23 ≤ ¬a
22 ⊕ 1

23 in the PMV 1
2 4

-algebra A, 1
24 ⊕

(
¬x•¬x

22 ⊕
√¬x•√¬x

22

)
|(a, 1

2 ) ≤ ¬x
22 ⊕

√¬x
22 |(a, 1

2 ) .

Hence
(
a, 1

2

)
∈ Q4 for each a ∈ A. Thus

(
a, 1

2

)
∈ DA for each a ∈ A and Reg(SA ) ⊆ DA . Now we prove that

DA defines a sub
√

qPMV-algebra of SA .
We show that DA is closed under 
 ∈ {⊕, •}: Let (x1 , y1), (x2 , y2) in DA and 
 ∈ {⊕, •}. By the precedent

argument, (x1 , y1) 
 (x2 , y2) =
(
x1 
 x2 ,

1
2

)
∈ Reg(SA ) ⊆ DA . Hence, DA is closed under ⊕ and •.

We show that DA is closed under √.: Let t ∈ DA . We have to prove the following four cases:

Case 1.
√

t ∈ Q1 .
(

1
24 ⊕

(
x•x
22 ⊕

√
x•√x
22

))
→

(
x
22 ⊕

√
x

22

)
|√t =

(
1
24 ⊕

(√
t•

√
t

22 ⊕
√√

t•
√√

t
22

))
→

(√
t

22 ⊕
√√

t
22

)
=

(
1
24 ⊕

(√
t•

√
t

22 ⊕ ¬t•¬t
22

))
→

(√
t

22 ⊕ ¬t
22

)
= 1 since t ∈ Q2 . Hence,

√
t ∈ Q1 .

Case 2.
√

t ∈ Q2 .
(

1
24 ⊕

(
¬x•¬x

22 ⊕
√

x•√x
22

))
→

(
¬x
22 ⊕

√
x

22

)
|√t =

(
1
24 ⊕

(√
¬t•

√
¬t

22 ⊕
√√

t•
√√

t
22

))
→

(√
¬t

22 ⊕
√√

t
22

)
=

(
1
24 ⊕

(√
¬t•

√
¬t

22 ⊕ ¬t•¬t
22

))
→

(√
¬t

22 ⊕ ¬t
22

)
= 1 since t ∈ Q4 .

Case 3.
√

t ∈ Q3 .
(

1
24 ⊕

(
x•x
22 ⊕

√¬x•√¬x
22

))
→

(
x
22 ⊕

√¬x
22

)
|√t =

(
1
24 ⊕

(√
t•

√
t

22 ⊕
√

¬
√

t•
√

¬
√

t
22

))
→

(√
t

22 ⊕
√

¬
√

t
22

)
=

(
1
24 ⊕

(√
t•

√
t

22 ⊕ t•t
22

))
→

(√
t

22 ⊕ t
22

)
= 1 since t ∈ Q1 . Hence,

√
t ∈ Q3 .

Case 4.
√

t ∈ Q4 .
(

1
24 ⊕

(
¬x•¬x

22 ⊕
√¬x•√¬x

22

))
→

(
¬x
22 ⊕

√¬x
22

)
|√t =

(
1
24 ⊕

(√
¬t•

√
¬t

22 ⊕
√

¬
√

t•
√

¬
√

t
22

))
→

(√
¬t

22 ⊕
√

¬
√

t
22

)
=

(
1
24 ⊕

(√
¬t•

√
¬t

22 ⊕ t•t
22

))
→

(√
¬t

22 ⊕ t
22

)
= 1 since t ∈ Q3 . Hence,

√
t ∈ Q4 .

Hence
√

t ∈ DA and DA is closed under
√

.. Thus DA is a sub-
√

qPMV-algebra of SA . Since Reg(SA ) ⊆
DA , Reg(DA ) is PMV 1

2 4
-isomorphic to A. By definition of DA it is immediate that DA is an IP-algebra. Let

B be an IP-algebra such that B is a sub-
√

qPMV-algebra of SA . If a ∈ B, then a satisfies (IP1) to (IP4). Then
s ∈ DA and B ⊆ DA . Hence DA is the largest IP-algebra contained in SA as sub-

√
qPMV-algebra.

Theorem 6.4 Let S◦ be the sub-class of IP-algebras DA where A is a PMV 1
2 4

-chain. Then:

IP = V(S◦).

P r o o f. We shall prove that IP |= t = s iff S◦ |= t = s. As regards the non-trivial direction, assume that
S◦ |= t = s. Suppose that there exists an IP-algebra A such that A �|= t = s. By Proposition refREP2, there
exists a

√
qPMV-embedding f : A → Fl(A) × SReg(A) . Thus the image f(A) is an IP-algebra and it is a sub√

qPMV-algebra of Fl(A) × SReg(A) .
We prove that f(A) is a sub IP-algebra of Fl(A)×DReg(A) . Let (a1 , a2) ∈ f(A). Then there exists a ∈ A such

that f(a) = (a1 , a2). Since a satisfies (IP1) to (IP4), f(a) also satisfies these equations. It implies that a2 satisfies
(IP1) to (IP4) and by Proposition 6.3, a2 ∈ DReg(A) . This proves that f(a) = (a1 , a2) ∈ Fl(A) × DReg(A) and
then, f(A) is a sub IP-algebra of Fl(A)×DReg(A) . Consequently Fl(A)×DReg(A) �|= t = s and, by Proposition
5.9-5, DReg(A) �|= t = s.

By Proposition 3.2, consider a subdirect representation β : Reg(A) →
∏

i∈I Ai such that (Ai)i∈I is a family
of PMV 1

2 4
-chains. For each i ∈ I , let pi be the ith-projection in Ai and consider the following function:

βi : DReg(A) → SAi
s.t. (x, y) �→ βi((x, y)) = (piβ(x), piβ(y))i∈I .

Following the same argument used in the proof of Theorem 5.11 we can prove that βi is a
√

qPMV-
homomorphism. Since DReg(A) is an IP-algebra, the image βi(DReg(A)) is an IP-algebra. Then, by Proposi-
tion 6.3, βi(DReg(A)) is a sub IP-algebra of DAi

. In other words, we can see βi as a
√

qPMV-homomorphism
βi : DReg(A) → DAi

for each i ∈ I . Now we define the function

β∗ : DReg(A) →
∏

i∈I

DAi
s.t. (x, y) �→ β∗((x, y)) = (βi(x, y))i∈I .

β∗ is injective since β is injective. Moreover β∗ is a
√

qPMV-homomorphism since βi is a
√

qPMV-
homomorphism for each i ∈ I .
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Thus DReg(A) �|= t = s implies that there exists m ∈ I such that DAi
�|= t = s which is a contradiction since

DAi
∈ S◦. Hence IP |= t = s.

7 Probabilistic consequence

An usual problem treated in digital techniques is the following: if T is a set of Boolean circuits and t is a Boolean
circuit, we want to know if a determinate state of the outputs of the circuits of T , represented in a string of bits
0, 1, forces a determinate state of the output of t given by a bit, either 0 or 1. As a general rule, this problem can
be solved through effective procedures solving the particular case in which a set of circuits T with all outputs in
state 1 forces the state 1 in the output of a circuit t.

One may naturally extend this problem by considering circuits made from assemblies of quantum gates of the
IP-system called IP-circuits. In fact: let T be a set of IP-circuits and t be an IP-circuit. Suppose that the output
of the circuits of T are labeled with density operators (σi)i such that p(σi) = 1 for each i. We want to know
whether from the above, necessarily follows an output of t labeled with a density operator σ such that p(σ) = 1.
Since each IP-circuit can be related to a

√
qPMV-term we can define a relation of consequence based on the

preservation of probability values 1.

Definition 7.1 Let t ∈ Term√
qPMV and T ⊆ Term√

qPMV . We say that t is a probabilistic consequence
of T in D

(
C

2
) (

noted T |=Prob
D(C2 ) t

)
iff for each valuation e : Term√

qPMV → D
(
C

2
)
, p(e(t)) = 1 whenever

p(e(s)) = 1 for each s ∈ T .

Taking into account Proposition 4.4 and Remark 4.5, for each valuation e : Term√
qPMV → D

(
C

2
)

and for
each

√
qPMV-term t, the probability valued p(e(t)) can be identifies with e(t ⊕ 0). Thus we can establish the

following result:

Proposition 7.2 Let t ∈ Term√
qPMV and T ⊆ Term√

qPMV . Then the following conditions are equivalent:

(1) T |=Prob
D(C2 ) t.

(2) For each valuation e : Term√
qPMV → D

(
C

2
)
, e(t ⊕ 0) = P1 whenever e(s ⊕ 0) = P1 for each s ∈ T .

The equivalence given in Proposition 7.2 allows to extend, in a natural way, the concepts of probability assign-
ment and probabilistic consequence with respect to each IP-algebra.

Definition 7.3 Let A be an IP-algebra, e : Term√
qPMV → A be a valuation and t ∈ Term√

qPMV . Then we
define the generalized probability value associated to e as ep(t) = e(t ⊕ 0).

We introduce the following notation: Let T ⊆ Term√
qPMV and e : Term√

qPMV → A be a valuation. Then
ep(T ) = 1 means that for each s ∈ T , ep(s) = 1.

Definition 7.4 Let t ∈ Term√
qPMV , T ⊆ Term√

qPMV and A be an IP-algebra. We say that t is a proba-
bilistic consequence of T in A iff for each valuation e : Term√

qPMV → A, if ep(T ) = 1 then ep(t) = 1.

We preserve the notation T |=Prob
A t for the probabilistic consequence in A. In particular T |=Prob

IP t means
that T |=Prob

A t for each A ∈ IP .
A

√
qPMV-term t is said to be a tautology iff for each A ∈ IP and for each e : Term√

qPMV → A,
ep(t) = 1. Note that t is a tautology iff ∅ |=Prob

IP t. Thus we use the notation |=Prob
IP t in the case in which t is a

tautology.

Proposition 7.5 Let DA ∈ S◦ where A is a PMV 1
2 4

-algebra. If e, e′ are two valuation over DA such that for

each atomic term α, ep(α) = e′p(α) and ep(
√

α) = e′p(
√

α) then, e = e′.

P r o o f. By definition of valuation, we have to see that e and e′ coincide over atomic terms. Let α be an atomic
term. Suppose that e(α) = (a, b) and e′(α) = (a′, b′). On the one hand, (a, 1

2 ) = (a, b) ⊕ 0 = ep(α) = e′p(α) =
(a′, b′) ⊕ 0 = (a′, 1

2 ) and then, a = a′. On the other hand, (b′, 1
2 ) = (b′,¬a′) ⊕ 0 = ep(

√
α) = e′p(

√
α) =

(b′,¬a′) ⊕ 0 = (b′, 1
2 ) and then, b = b′. Hence e(α) = e′(α).
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8 Hilbert system for the probabilistic consequence

Let t ∈ Term√
qPMV and T ⊆ Term√

qPMV . One may naturally consider the following decision problem: does
there exist an effective procedure deciding whether T |=Prob

IP t? In this section we shall reformulate this problem
in purely logical terms within a Hilbert-style axiomatization (LIP) for the probabilistic consequence.

Definition 8.1 Consider the absolutely free algebra Term√
qPMV taking into account the following syntactic

abbreviations:

¬t is a syntactic abbreviation for
√√

t,

t1 
 t2 is a syntactic abbreviation for ¬(¬t1 ⊕ ¬t2),
t1 → t2 is a syntactic abbreviation for ¬t1 ⊕ t2 ,

t1 ↔ t2 is a syntactic abbreviation for (t1 → t2) 
 (t2 → t1),
1

2n is a syntactic abbreviation for 1
2n −1 • 1

2 (n ≥ 2),
t

2n is a syntactic abbreviation for t • 1
2n (n ≥ 2).

An axiom of the Hilbert-style calculus LIP is a
√

qPMV-term that can be written in any one of the following
ways, where α, β and γ denote arbitrary terms in Term√

qPMV :

Łukasiewicz axioms:

(W1) α → (β → α),
(W2) (α → β) → ((β → γ) → (α → γ)),
(W3) (¬α → ¬β) → (β → α),
(W4) ((α → β) → β) → ((β → α) → α),

Constant axioms:

(C1) 1,

(C2) ¬0 ↔ 1,

(C3) ¬1
2 ↔ 1

2 ,

(C4)
( 1

24 ⊕ 1
24

)
↔ 1

23 ,

Product axioms:

(P1) (α • β) → (β • α),
(P2) (1 • α) ↔ α,

(P3) (α • β) → β,

(P4) ((α • β) • γ) ↔ (α • (β • γ)),
(P5) (α • (β 
 ¬γ)) ↔ ((α • β) 
 ¬(α • γ)),

Square root axioms:

(sQ1)
√¬α ↔ ¬√α,

(sQ2)
√

α 
 β ↔ 1
2 where 
 ∈ {⊕, •},

(sQ3)
√

c ↔ 1
2 where c ∈

{
0, 1

2 , 1
}

,

(sQ4)
(

1
24 ⊕

(
α•α
22 ⊕

√
α•√α
22

))
→

(
α
22 ⊕

√
α

22

)
,

(sQ5)
(

1
24 ⊕

(
¬α•¬α

22 ⊕
√

α•√α
22

))
→

(
¬α
22 ⊕

√
α

22

)
,

(sQ6)
(

1
24 ⊕

(
α•α
22 ⊕

√¬α•√¬α
22

))
→

(
α
22 ⊕

√¬α
22

)
,

(sQ7)
(

1
24 ⊕

(
¬α•¬α

22 ⊕
√¬α•√¬α

22

))
→

(
¬α
22 ⊕

√¬α
22

)
.
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The deduction rule of LIP is modus ponens

(MP) {α, α → β} �LIP β

Note that, axioms (W1) to (W4), (C1), (C2) and (MP) define the same propositional system as the infinite
valued Łukasiewicz calculus [4, Section 4]. By adding (C3), (C4) and (P1) to (P5), the propositional system
associated to the product Łukasiewicz logic [14, 22] with fix point of the negation [15] is obtained. (sQ1), (sQ2)
and (sQ3) axiomatize the basic properties of the operation √

.. Finally, (sQ4) to (sQ7) allow to introduce in the
calculus the property that characterizes the subvariety of IP-algebras with respect to the variety

√
qPMV , as was

already mentioned at the beginning of Section 6 and in Remark 6.2.
A theory is any set T ⊆ Term√

qPMV . A proof from T is a sequence of terms α1 , . . . , αn such that each
member is either an axiom or a member of T or follows from preceding members of the sequence by modus
ponens. The notation T �LIP α (to be read ‘α is provable from T ’) means that α is the last term of a proof from
T . Thus the Hilbert-style calculus LIP is given by

LIP =
〈
Term√

qPMV , �LIP
〉
.

Let T be a theory. If T = ∅ we use the notation �LIP α and we say that α is a theorem of LIP . T is
inconsistent iff T �LIP α for each α ∈ Term√

qPMV ; otherwise it is consistent.

Lemma 8.2 Let α, β ∈ Term√
qPMV and T ⊆ Term√

qPMV . Then the following items may be proved using
only (W1) to (W4), (C1), (C2), (P1) to (P5) and (MP).

(1) �LIP α → α,

(2) T �LIP α 
 β iff T �LIP α and T �LIP β,

(3) T �LIP α ↔ β iff T �LIP α → β and T �LIP β → α,

(4) T �LIP α → β and T �LIP β → γ then T �LIP α → γ,

(5) �LIP ¬¬α → α,

(6) �LIP (α → β) → (¬β → ¬α),
(7) �LIP (α → β) → ((α ⊕ γ) → (β ⊕ γ)),
(8) �LIP ((α ↔ β) 
 (β ↔ γ)) → (α ↔ γ),
(9) �LIP (α ↔ β) → ((α → γ) ↔ (β → γ)),

(10) �LIP (α ↔ β) → ((γ → α) ↔ (γ → β)),
(11) �LIP (α → β) → ((γ • α) → (γ • β)).

P r o o f. Items (1) to (10) follow by observing that this result are theorems and metatheorems in the infinite
valued Łukasiewicz calculus (cf. [13]). We prove item (11):

�LIP γ • (α 
 ¬β) → ((α 
 ¬β)) by axiom (P3)(1)

�LIP ((γ • α) 
 ¬(γ • β)) → γ • (α 
 ¬β) by axiom (P5)(2)

�LIP ((γ • α) 
 ¬(γ • β)) → (α 
 ¬β) by (1), (2), axiom (W2)(3)

�LIP (((γ • α) 
 ¬(γ • β)) → (α 
 ¬β))

→ (¬(α 
 ¬β) → ¬((γ • α) 
 ¬(γ • β))) by Ax (W3)(4)

�LIP ¬(α 
 ¬β) → ¬((γ • α) 
 ¬(γ • β)) by (MP), (3), (4)(5)

�LIP (α → β) → ¬(α 
 ¬β) by definition of 
, item (1)(6)

�LIP (α → β) → ¬((γ • α) 
 ¬(γ • β)) by (5), (6), axiom (W2)(7)

�LIP ¬((γ • α) 
 ¬(γ • β)) → ((γ • α) → (γ • β)) by definition of 
, item (1)(8)

�LIP (α → β) → ((γ • α) → (γ • β)) by (7), (8), axiom (W2)(9)
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Proposition 8.3 Let α, β ∈ Term√
qPMV and T ⊆ Term√

qPMV . Then:

(1) Axioms of LIP are tautologies.

(2) {α, α → β} |=Prob
IP β.

(3) If T �LIP α then T |=Prob
IP α.

P r o o f. (1) Immediate. (2) Let α, β ∈ Term√
qPMV and e : Term√

qPMV → A be an IP-valuation such
that ep(α → β) = 1 and ep(α) = 1. We show that ep(β) = 1. In fact: 1 = ep(α → β) = e((α → β) ⊕ 0) =
e(α⊕0) → (β⊕0) and then ep(α) = e(α⊕0) ≤ e(β⊕0) = ep(β). Therefore ep(α) = 1 implies that 1 = ep(β)
since 1 ≤ e(β ⊕ 0) = e(β) ⊕ 0 ∈ Reg(A) and Reg(A) is a PMV-algebra (cf. Proposition 5.5-1). (3) Immediate
from items (1) and (2).

Now we focus on a sub-calculus of LIP particularly relevant in the study of the completeness of LIP .
Consider the set V ∪ (

√
x)x∈V where V is the usual set of variables in Term√

qPMV . Let Term√
V be the

smallest set S ⊆ Term√
qPMV such that

{
0, 1

2 , 1
}
∪ V ∪ (

√
x)x∈V ⊆ S and if α, β ∈ S then, ¬α ∈ S and

α 
 β ∈ S where 
 ∈ {⊕, •}. Now we define the Hilbert-style calculus

L√
V =

〈
Term√

V ,�L√
V

〉

given by the axioms (W1) to (W4), (C1) to (C4), (P1) to (P5) and (MP) as inference rule.

Remark 8.4 By definition of L√
V , the results of Lemma 8.2 continue to be valid in L√

V .

Let T ⊆ Term√
V i.e., a theory in Term√

V . Then T is said to be complete in L√
V iff for each pair of terms

α, β in Term√
V ; T �√

V α → β or T �√
V β → α. Moreover T is inconsistent in L√

V iff T �√
V α for each

α ∈ Term√
V , otherwise it is consistent in L√

V .

Lemma 8.5 Let T be a theory and α be a term, both in Term√
V . Suppose that T ��√

V α. Then there exists a
complete theory T ′ in Term√

V such that, T ⊆ T ′ and T ′ ��√
V α.

P r o o f. It follows by the same arguments used in [13, Lemma 2.4.2].

Let A be a PMV 1
2 4

-algebra. Term√
V -valuations in A are functions v : Term√

V → A satisfying v(0) = 0,

v
( 1

2

)
= 1

2 , v(1) = 1, v(¬α) = ¬v(α) and v(α 
 β) = v(α) 
 v(β) where 
 ∈ {⊕, •}. Note that for a Term√
V -

valuation, the terms in the set (
√

x)x∈V have no restriction in the election of the value v(
√

x).
Theorem 8.6 Let T be a consistent theory in Term√

V . For each α ∈ Term√
V we consider the class

[α] =
{
β ∈ Term√

V : T �L√
V

α ↔ β
}
.

Let LT =
{
[α] : α ∈ Term√

V

}
. If we define the following operations in LT :

[α] ∗ [β] := [α ∗ β] for ∗ ∈ {⊕, •},
¬[α] := [¬α],

0 := [0],
1
2

:=
[
1
2

]

, 1 := [1],

then:

(1) 〈LT ,⊕, •,¬, 0, 1
2 , 1〉 is a PMV 1

2 4
-algebra.

(2) If α ∈ T then [α] = 1.

(3) If T is a complete theory then LT is a totally ordered set.

P r o o f. (1) We first show that the operations are well defined on LT . In the cases ⊕,¬, 0, 1
2 , 1 we refer to [13,

Lemma 2.3.12]. The case • follows from Lemma 8.2-11. By axioms (W1) to (W4), (C1) to (C4), (P1) to (P5), it
is not very hard to see that LT is a PMV 1

2 4
-algebra. (2) Follows from axiom (W1). (3) Follows using the same

argument as in [13, Lemma 2.4.2].
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We shall refer to LT as the Lindenbaum algebra associated to the theory T ⊆ Term√
V . Clearly, the natural

application α �→ [α] is a Term√
V -valuation in LT .

Definition 8.7 We define the
√

V -translation α
t→ αt as the application e : Term√

qPMV → Term√
V such

that:

(1) x
t�→ x and

√
x

t�→ √
x for each x ∈ V ,

(2) c
t�→ c and

√
c

t�→ 1
2 for each c ∈

{
0, 1

2 , 1
}

,

(3) ¬α
t�→ ¬(αt),

(4)
√¬α

t�→ (¬√α)t ,

(5)
√

α 
 β
t�→ 1

2 for each binary connective 
,

(6) α 
 β
t�→ αt 
 βt for each binary connective 
.

If T is a theory in Term√
qPMV , then we define the

√
V -translation over T as the set Tt = {αt : α ∈ T}.

Proposition 8.8 Let α ∈ Term√
qPMV . Then:

�LIP α ↔ αt.

P r o o f. We use induction on the complexity of terms. Let α be an atomic term. By definition of
√

V -
translation, Lemma 8.2-1 and axiom (sQ3) of LIP it is clear that �LIP α ↔ αt and �LIP

√
α ↔ (

√
α)t .

Suppose that �LIP α ↔ αt and �LIP β ↔ βt . By Lemma 8.2-6 we have that �LIP ¬α ↔ ¬αt . Let

 ∈ {⊕, •}. Then we have that:

�LIP α → αt(1)

�LIP (α → αt) → ((α 
 β) → (αt 
 β)) by Lemma 8.2, item (7) or (11)(2)

�LIP (α 
 β) → (αt 
 β) (MP), (1), (2)(3)

�LIP β → βt(4)

�LIP (β → βt) → ((αt 
 β) → (αt 
 βt)) by Lemma 8.2, item (7) or (11)(5)

�LIP (αt 
 β) → (αt 
 βt) (MP), (4), (5)(6)

�LIP (α 
 β) → (αt 
 βt) by Lemma 8.2-4(7)

By the same argument we can prove that �LIP (αt 
 βt) → (α 
 β). Hence �LIP (α 
 β) ↔ (α 
 β)t .
If α is

√
γ then we have to consider two cases:

(i) γ is γ1 
 γ2 such that 
 ∈ {⊕, •}. Then αt = (
√

γ)t = (
√

γ1 
 γ2)t = 1
2 . By Axiom (sQ2), �LIP (

√
γ) ↔

1
2 . Hence �LIP α ↔ αt .

(ii) γ is
√

γ1 . Then αt = (
√√

γ1)t = (¬γ1)t = ¬(γ1)t . By inductive hypothesis �LIP γ1 ↔ (γ1)t and then
�LIP ¬γ1 ↔ ¬(γ1)t . Hence �LIP

√√
γ1 ↔ ¬γ1 and �LIP α ↔ αt .

Taking into account the axiom (sQ4) to (sQ7), we introduce, in the following definition, the theory TD ⊆
Term√

V which will allow to establish a relation between proofs in LIP and proofs in L√
V .

Definition 8.9 We consider the following sets of terms in Term√
V

T1 =
{(

1
24 ⊕

(
s • s

22 ⊕
√

s • √s

22

))

→
(

s

22 ⊕
√

s

22

)

: s ∈ V ∪
{

0,
1
2
, 1

}}

,

T2 =
{(

1
24 ⊕

(
¬s • ¬s

22 ⊕
√

s • √s

22

))

→
(
¬s

22 ⊕
√

s

22

)

: s ∈ V ∪
{

0,
1
2
, 1

}}

,

T3 =
{(

1
24 ⊕

(
s • s

22 ⊕
√¬s • √¬s

22

))

→
(

s

22 ⊕
√¬s

22

)

: s ∈ V ∪
{

0,
1
2
, 1

}}

,

T4 =
{(

1
24 ⊕

(
¬s • ¬s

22 ⊕
√¬s • √¬s

22

))

→
(
¬s

22 ⊕
√¬s

22

)

: s ∈ V ∪
{

0,
1
2
, 1

}}

.

Then we define TD := T1 ∪ T2 ∪ T3 ∪ T4 .
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Proposition 8.10 Let α ∈ Term√
qPMV . Then:

(1) TD �L√
V

((
1
24 ⊕

(
α•α
22 ⊕

√
α•√α
22

))
→

(
α
22 ⊕

√
α

22

))

t
.

(2) TD �L√
V

((
1
24 ⊕

(
¬α•¬α

22 ⊕
√

α•√α
22

))
→

(
¬α
22 ⊕

√
α

22

))

t
.

(3) TD �L√
V

((
1
24 ⊕

(
α•α
22 ⊕

√¬α•√¬α
22

))
→

(
α
22 ⊕

√¬α
22

))

t
.

(4) TD �L√
V

((
1
24 ⊕

(
¬α•¬α

22 ⊕
√¬α•√¬α

22

))
→

(
¬α
22 ⊕

√¬α
22

))

t
.

P r o o f. Let α ∈ Term√
qPMV . For the sake of simplicity we use the following notation:

α1
t means

((
1
24 ⊕

(
α • α

22 ⊕
√

α • √α

22

))

→
(

α

22 ⊕
√

α

22

))

t

,

α2
t means

((
1
24 ⊕

(
¬α • ¬α

22 ⊕
√

α • √α

22

))

→
(
¬α

22 ⊕
√

α

22

))

t

,

α3
t means

((
1
24 ⊕

(
α • α

22 ⊕
√¬α • √¬α

22

))

→
(

α

22 ⊕
√¬α

22

))

t

,

α4
t means

((
1
24 ⊕

(
¬α • ¬α

22 ⊕
√¬α • √¬α

22

))

→
(
¬α

22 ⊕
√¬α

22

))

t

.

We use induction on the complexity of α. The case α ∈ V ∪
{
0, 1

2 , 1
}

is immediate from definition of TD .
Suppose that α is α1 
 α2 where 
 ∈ {⊕, •}. By Axiom P3, Axiom C4 and Lemma 8.2-4 it follows that for

each α ∈ Term√
V

(8) �L√
V

(
1
24 ⊕

(
α • α

22 ⊕ 1
24

))

→
(

α

22 ⊕ 1
23

)

.

We prove that TD �L√
V

α1
t . By definition of

√
V -translation we have that

α1
t =

((
1
24 ⊕

(
(α1 
 α2) • (α1 
 α2)

22 ⊕
√

α1 
 α2 •
√

α1 
 α2

22

))

→
(

α1 
 α2

22 ⊕
√

α1 
 α2

22

))

t

=
(

1
24 ⊕

(
(α1 
 α2)t • (α1 
 α2)t

22 ⊕ 1
24

)

→
(

(α1 
 α2)t

22 ⊕ 1
23

))

.

Since (α1 
 α2)t ∈ Term√
V , by (8), we have �L√

V
α1

t and TD �L√
V

α1
t . Cases TD �L√

V
α2

t , TD �L√
V

α3
t

and TD �L√
V

α4
t follow in a similar way.

Suppose α is
√

β. We prove that TD �L√
V

α1
t . By definition of

√
V -translation we have that

α1
t =

((
1
24 ⊕

(√
β •

√
β

22 ⊕
√√

β •
√√

β

22

))

→
(√

β

22 ⊕
√√

β

22

))

t

=
((

1
24 ⊕

(
(
√

β)t • (
√

β)t

22 ⊕ ¬βt • ¬βt

22

))

→
(

(
√

β)t

22 ⊕ ¬βt

22

)

By inductive hypothesis we have TD �L√
V

β2
t and by Lemma 8.2 it is straightforward to see that

TD �L√
V

β2
t ↔

((
1
24 ⊕

(
(
√

β)t • (
√

β)t

22 ⊕ ¬βt • ¬βt

22

))

→
(

(
√

β)t

22 ⊕ ¬βt

22

))

.

Hence, by Lemma 8.2-3, TD �L√
V

α1
t . Cases TD �L√

V
α2

t , TD �L√
V

α3
t and TD �L√

V
α4

t follow in a
similar way.
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Theorem 8.11 Let α ∈ Term√
qPMV and T ⊆ Term√

qPMV . Then:

T �LIP α iff Tt ∪ TD �L√
V

αt .

P r o o f. Suppose that T �LIP α. We use induction on the length of the proof of α noted by Length(α). If
Length(α) = 1 then we have the following possibilities:

(1) The term α is one of the axioms (W1) to (W4), (C1) to (C4), or (P1) to (P5). In this case αt results an
axiom of L√

V and �L√
V

αt .

(2) The term α is one of the axioms (sQ1) to (sQ3). In this case αt looks like β ↔ β in Term√
V . Then, by

Proposition 8.2-1, �L√
V

αt .

(3) The term α is one of the axioms (sQ4) to (sQ7). In this case, by Proposition 8.10, TD �L√
V

αt .

(4) If α ∈ T then αt ∈ Tt . Hence, Tt �L√
V

αt .

Suppose that the theorem is valid for Length(α) < n. We consider Lengh(α) = n. Thus we have a proof of
α from T as follows

α1 , . . . , αm → α, . . . , αm , . . . , αn−1 , α

obtaining α by (MP) from αm → α and αm . Using the inductive hypothesis we have that Tt ∪TD �L√
V

(αm →
α)t and Tt ∪ TD �L√

V
(αm )t . Taking into account that (αm → α)t = (αm )t → αt , by (MP), we have

Tt ∪ TD �L√
V

αt .
For the converse, suppose that Tt ∪ TD �L√

V
αt . Then there exist two subsets {β1 , . . . , βn} ⊆ T and

{γ1 , . . . , γm} ⊆ TD such that

{(β1)t , . . . , (βn )t , γ1 , . . . , γm} �L√
V

αt .

Consequently {(β1)t , . . . , (βn )t , γ1 , . . . , γm} �LIP αt . By Lemma 8.8 we have that �LIP α ↔ αt and �LIP
βi ↔ (βi)t for each i ∈ {1, . . . , n}. Moreover, by Axiom (sQ4) to (sQ7), �LIP γj for each j ∈ {1, . . . , m}.
Thus {β1 , . . . , βn} �LIP α and T �LIP α.

Corollary 8.12 Let α ∈ Term√
qPMV . Then, �LIP α iff TD �L√

V
αt .

Let SA be the pair algebra over the PMV 1
2 4

-chain A. Consider the sub-algebra DA of SA (i.e., the IP-algebra
defined in Proposition 6.4). We introduce the following sets: EDA

is the set of all valuations e : Term√
qPMV →

DA and VDA
is the set of all Term√

V -valuations v : Term√
V → Reg(DA ) such that v(TD ) = 1.

Proposition 8.13 Let e ∈ EDA
and the restriction ve = ep |Term√

qPMV where ep(t) is the generalized
probability value. Then the assignment e �→ ve is a bijection EDA

→ VD such that ep(α) = ve(αt).

P r o o f. We first prove that e �→ ve is well defined in the sense that ve ∈ VD . Let α ∈ TD . Then ve(α) =
ep(α) = e(α ⊕ 0) = e(α) = 1 since DA ∈ IP . Hence ve(TD ) = 1.

We prove the injectivity. Suppose that ve1 = ve2 . Let t be an atomic term in termIP . Then we have
that e1p(t) = ve1 (t) = ve2 (t) = e2p(t) and e1p(

√
t) = ve1 (

√
t) = ve2 (

√
t) = e2p(

√
t). Therefore by

Proposition 7.5, e1 = e2 and e �→ ve is injective.
Now we prove the surjectivity. Let v ∈ VDA

. By Proposition 6.3, consider the PMV 1
2 4

-isomorphism g : Reg

(DA ) → A given by g
(
a, 1

2

)
= a and define the valuation e : Term√

qPMV → DA such that for each atomic
term t in Term√

qPMV e(t) = (gv(t), gv(
√

t)). By induction on the complexity of terms we prove that ve = v.
Let t be an atomic term in Term√

V . The case t ∈
{
0, 1

2 , 1
}

is immediate. If t is a variable x then, ve(x) =
ep(x) = e(x⊕ 0) = e(x)⊕ 0 = (gv(x), gv(

√
x))⊕ 0 =

(
gv(x), 1

2

)
= v(x). If t is

√
x where x is variable then,

ve(
√

x) = ep(
√

x) = e(
√

x⊕ 0) = e(
√

x)⊕ 0 =
√

e(x)⊕ 0 =
√

(gv(x), gv(
√

x))⊕ 0 = (gv(
√

x),¬gv(x))⊕
0 =

(
gv(

√
x), 1

2

)
= v(

√
x).

That constitutes the base of the induction in the language Term√
V . Now let our claim hold whenever the

complexity of Term√
V -terms is less than n and α has complexity n.
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If α ∈ Term√
V is α1 
 α2 where 
 ∈ {⊕, •} then ep(α) = e(α ⊕ 0) = e((α1 
 α2) ⊕ 0) = e((α1 ⊕ 0) 


(α2 ⊕ 0)) = e(α1 ⊕ 0) 
 e(α2 ⊕ 0) = ep(α1) 
 ep(α2) = v(α1) 
 v(α2) = v(α1 
 α2).
If α ∈ Term√

V is ¬α1 then, ve(α) = ep(¬α1) = e(¬α1 ⊕ 0) = e(¬(α1 ⊕ 0)) = ¬e(α1 ⊕ 0) = ¬ep(α1) =
¬v(α1) = v(¬α1) = v(α).

Thus v = ve and e �→ ve is a bijection from EDA
onto VDA

. Let e ∈ EDA
. By induction on the complexity of

terms we prove that for each α ∈ Term√
qPMV , ep(α) = ve(αt).

If α is an atomic term then ep(α) = ep(αt) = ve(αt). Now let our claim hold whenever the complexity of the
term is less than n and α have complexity n.

Suppose that α is α1 
 α2 where 
 ∈ {⊕, •}. Then ep(α) = ep(α1 
 α2) = e((α1 
 α2) ⊕ 0) = e((α1 ⊕ 0) 

(α2 ⊕ 0)) = e(α1 ⊕ 0) 
 e(α2 ⊕ 0) = ep(α1) 
 ep(α2) = ve(α1 t) 
 ve(α2 t) = ve(α1 t 
 α2 t) = ve(αt).

Suppose that α is
√

α1 . Let us consider the following cases:

Case 1. α1 is an atomic term. Then its follows from the fact that (
√

α1)t =
√

α1 .

Case 2. α is
√√

α1 . Then ep(α) = ep(
√√

α1) = ¬ep(α1) = ¬ve(α1 t) = ve(¬α1 t) = ve((
√√

α1)t) = ve(α).

Case 3. α1 is
√

α2 
 α3 where 
 ∈ {⊕, •}. Then ep(α)= ep(
√

α2 
 α3)=
( 1

2 , 1
2

)
= ep

( 1
2

)
= ve((

√
α2 
 α3)t) =

ve(αt).
Hence ep(α) = ve(αt) for each α ∈ Term√

qPMV .

Theorem 8.14 Let T be a theory and α be a term both in Term√
qPMV . Then

T |=Prob
IP α iff T �LIP α.

P r o o f. We assume that T is consistent. Suppose that T |=Prob
IP α but T ��LIP α. Then, by Theorem 8.11,

Tt ∪TD ��L√
V

αt . By Lemma 8.5 and Theorem 8.6, there exists a complete theory T ′ ⊆ Term√
V such that Tt ∪

TD ⊆ T ′, T ′ ��L√
V

αt , LT ′ is a totally ordered PMV 1
2 4

-algebra. Thus [αt ] �= 1. Consider the natural Term√
V -

valuation v : Term√
V → LT ′ , i.e., s �→ v(s) = [s]. Then [αt ] = v(αt) �= 1. Moreover, by Theorem 8.6,

v(β) = 1 for each β ∈ T ′.
By Proposition 8.13 there exits a valuation e : Term√

qPMV → DLT ′ such that ep(β) = v(βt) for each
β ∈ Term√

qPMV . One the one hand, for each γ ∈ T , ep(γ) = v(γt) = 1 since γt ∈ T ′. Hence ep(T ) = 1. On
the other hand, ep(α) = v(αt) �= 1 which is a contradiction since T |=Prob

IP α. Thus T �LIP α. For the converse,
cf. Proposition 8.3.

Now we can establish a compactness theorem for the probabilistic consequence:

Theorem 8.15 Let T be a theory and α be a term both in TermIP . Then:

T |=Prob
IP α iff ∃T0 ⊆ T finite such that T0 |=Prob

IP α.

P r o o f. If T |=Prob
IP α by Theorem 8.14 there exists a proof of α, α1 , . . . αn , α from T . If we consider

T0 = {αk ∈ T : αk ∈ {α1 , . . . αn}} then T0 |=Prob
IP α. The converse is immediate.

9 Conclusion

In this paper we have developed a logical-algebraic study for the system of quantum computational gates known
as Poincaré irreversible quantum computational system or IP-system for short. The IP-system is interesting not
only due to its relation with the continuous t-norms but also because it may be possibly applicable to the study
of error-correcting codes [20] in the context of quantum computation. Several algebraic structures originated in
reducts of the IP-system, as qMV-algebras and

√
qMV-algebras, were introduced and studied in recent years,

remaining as an open problem that posed in [3] and [5] about the axiomatizability of the IP-system.
The main results of this paper are the following: (i) We have introduced an algebraic structure, the IP-algebra,

that allows to give a mathematical representation of circuits made from assemblies of quantum gates of the IP-
system. (ii) We have established a Hilbert-style calculus and a completeness theorem respect to the variety of
IP-algebras, thus providing an answer to the mentioned open problem.
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