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Abstract 

The southernmost segment of the Andean Cordillera underwent a complex 

deformation history characterized by alternation of contractional, extensional, and 

strike-slip tectonics. Key elements of southern Andean deformation that remain 

poorly constrained, include the origin of the orogenic bend known as the Patagonian 

Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an 

upper amphibolite facies metamorphic complex currently exposed in Cordillera 

Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 

22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal 

structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego 

(Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the 

original magnetic fabric, which was likely acquired upon layer-parallel shortening 

soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have 

formed during compressive tectonic phases associated to a continuous ~N-S 

contraction. Our data, combined with the existing AMS database from adjacent areas, 

show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes 

yielded continuous contraction, variable from ~E-W in the Patagonian Andes to ~N-S 

in the Fuegian Andes, which defined a radial strain field. A direct implication is that 

the exhumation of the Cordillera Darwin metamorphic complex occurred under 

compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. 

If we agree with recent works considering the curved Magallanes fold-and-thrust belt 

as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its 

formation), then other mechanisms different from oroclinal bending should be 

invoked to explain the documented radial strain field. We tentatively propose a 

kinematic model in which reactivation of variably oriented Jurassic faults at the South 
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American continental margin controlled the Late Cretaceous to Cenozoic evolution of 

the Magallanes fold-and-thrust belt, yielding the observed deformation pattern. 

 

Keywords 

Patagonian Orocline; Tectonics; Southern Andes; Anisotropy of magnetic 

susceptibility; Cordillera Darwin 

 

 

1. Introduction 

The Andean Cordillera is considered the archetype of non-collisional orogens, 

as it formed above a subduction zone consuming oceanic lithosphere of the Nazca 

(Farallon), Phoenix (Aluk), and Antarctic plates below the South American plate 

(e.g., Jordan et al., 1983; Ramos, 1999; Ramos et al., 2014). This process resulted in 

an orogenic system 200 to 700 km wide, spanning the South American continent from 

~7°N to ~56°S. The present-day tectonic setting of the Andes is characterized by 

mainly eastward verging basement thrusts in the hinterland that transfer shortening to 

the fold-and-thrust belt (e.g., Espur et al., 2011). In the central and southern sectors of 

the Cordillera two regional-scale orogenic arcs occur, identified by a significant 

curvature of the main structural trends. The northern one (14°-26°S), known as the 

Bolivian Orocline (e.g., Isacks, 1988; Eichelberger et al., 2013), is a secondary 

orocline (sensu Weil and Sussman, 2004) formed by opposite-sense vertical-axis 

rotation of the two limbs (e.g., Maffione et al., 2009; Eichelberger et al., 2013; Prezzi 

et al., 2014). More controversial is the tectonic history and style of deformation that 

controlled the origin of the orogenic re-entrant named as the ‘Patagonian Orocline’ by 

Carey (1958) at the southernmost tip of the Andean Cordillera (Fig. 1). Here, the ~N–

https://www.researchgate.net/publication/280795275_Uplift_of_the_Central_Andean_Plateau_and_bending_of_the_Bolivian_Orocline?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/261763554_New_paleomagnetic_data_from_Upper_Oligocene-Lower_Miocene_rocks_of_the_Northern_Argentine_Puna-Southern_Bolivian_Altiplano_Constraining_the_age_of_vertical_axis_rotations?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/261763554_New_paleomagnetic_data_from_Upper_Oligocene-Lower_Miocene_rocks_of_the_Northern_Argentine_Puna-Southern_Bolivian_Altiplano_Constraining_the_age_of_vertical_axis_rotations?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
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S-trending southern Patagonian Andes and the ~ESE–WNW-trending Fuegian Andes 

define an orogenic curvature with an interlimb angle of ~110° (Kraemer, 2003). 

Source of uncertainty on the tectonic evolution of the Southern Andes is due to 

multiple interaction, where the South American plate underwent convergence with the 

Antarctic, Phoenix, and Nazca plates to the south and west, and divergence with the 

Antarctic and, later, the Scotia plate in the southeast. This complex geodynamic 

setting yielded alternation of extensional, strike slip, and compressive events from the 

Jurassic until the late Cenozoic (Klepeis and Austin, 1997). 

Early models considered the curved segment of the Southern Andes as a true 

orocline (sensu Weil and Sussman, 2004), interpreting its formation as due to bending 

of an originally straight orogen accompanied by large-scale counterclockwise rotation 

of the southern limb of the arc throughout the Cretaceous and Cenozoic (e.g., Carey, 

1958; Dalziel et al., 1973; Kraemer, 2003) . Other models explained the curvature of 

the Southern Andes by invoking strike slip and transpressional tectonics 

(Cunningham, 1993) segmenting the southern tip of the Andean cordillera since the 

Late Cretaceous but without producing significant tectonic rotations. Other authors 

suggested that oroclinal bending occurred during the initial (Cretaceous) tectonic 

phases of the Andean orogeny associated with the closure of the Rocas Verdes 

marginal basin, but it ceased afterwards (Burns et al., 1980). More recently, a primary 

origin of the curvature of the Southern Andes has also been proposed (Ramos and 

Aleman, 2000), and was partially validated by lithospheric-scale analogue 

experiments by Diraison et al. (2000). Whether the Late Cretaceous orogeny involved 

oroclinal rotation or not is hard to discern from present paleomagnetic data (Rapalini 

et al., 2015), but it clearly produced the consolidation of the basement domain by 

latest Cretaceous time (Cunningham, 1995; Kraemer, 2003). Afterwards, the 
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basement formed a curved rigid indenter that produced the compressional pattern 

observed in the Magallanes fold-and-thrust belt, as shown by sand-box models 

(Ghiglione and Cristallini, 2007). Latest models proposed a two-stage evolution of the 

curvature of the Southern Andes consisting of a Late Cretaceous phase of oroclinal 

bending during closure of the Rocas Verdes basin, followed by formation of the 

primary curvature of the Magallanes fold-thrust belt during the Cenozoic (Poblete et 

al., 2014). 

The poorly constrained kinematic evolution of the Southern Andes is also 

reflected into the debated origin of the Cordillera Darwin metamorphic complex 

(hereafter referred to as ‘Cordillera Darwin’) exposed near the hinge of the curvature 

at ~55°S (Fig. 2). Although several Paleozoic to Mesozoic metamorphic complexes 

are exposed in the Patagonian Andes to the north (Hervé et al., 2008), the processes 

for the exhumation of Cordillera Darwin remains the most debated (Dalziel and 

Brown, 1989; Kohn et al., 1995; Cunningham, 1995; Klepeis, 1994; Maloney et al., 

2011). Cordillera Darwin exposes Paleozoic basement rocks metamorphosed under 

upper amphibolite to greenschist facies conditions (7-11 kbar, 580-600°C) (Nelson et 

al., 1980; Kohn et al., 1993, 1995; Klepeis et al., 2010). Kohn et al. (1995) proposed 

an initial rapid exhumation at 90-70 Ma driven by extension (or transtension), while 

more external sectors were under compression. Similarly, Dalziel and Brown (1989) 

argued that the exhumation began at ca. 70 Ma in a localized extensional setting 

within a developing transform zone between the South American and Antarctic plates. 

On the other hand, several models were proposed by Cunningham (1995) who related 

the exhumation to (i) erosional denudation within a restraining bend setting, (ii) 

transtension, or (iii) erosion and/or extension following isostatic rebound. The most 

broadly accepted model for the uplift of Cordillera Darwin considers thick-skinned 

https://www.researchgate.net/publication/259177356_Have_the_southernmost_Andes_been_curved_since_Late_Cretaceous_time_An_analog_test_for_the_Patagonian_Orocline?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/248816343_Relationship_between_uplift_of_the_metamorphic_core_of_the_southernmost_Andes_and_shortening_in_the_Magallanes_foreland_fold_and_thrust_belt_Tierra_del_Fuego_Chile?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/248816343_Relationship_between_uplift_of_the_metamorphic_core_of_the_southernmost_Andes_and_shortening_in_the_Magallanes_foreland_fold_and_thrust_belt_Tierra_del_Fuego_Chile?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/248816343_Relationship_between_uplift_of_the_metamorphic_core_of_the_southernmost_Andes_and_shortening_in_the_Magallanes_foreland_fold_and_thrust_belt_Tierra_del_Fuego_Chile?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/227724695_Crustal_growth_during_backarc_closure_Cretaceous_exhumation_history_of_Cordillera_Darwin_southern_Patagonia?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/227724695_Crustal_growth_during_backarc_closure_Cretaceous_exhumation_history_of_Cordillera_Darwin_southern_Patagonia?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/227724695_Crustal_growth_during_backarc_closure_Cretaceous_exhumation_history_of_Cordillera_Darwin_southern_Patagonia?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/273331006_The_Curved_Magallanes_Fold_and_Thrust_Belt_Tectonic_Insights_from_a_Paleomagnetic_and_Anisotropy_of_Magnetic_Susceptibility_Study?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/273331006_The_Curved_Magallanes_Fold_and_Thrust_Belt_Tectonic_Insights_from_a_Paleomagnetic_and_Anisotropy_of_Magnetic_Susceptibility_Study?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
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compressional tectonics coupled with widespread erosion (Klepeis, 1994; Klepeis and 

Austin, 1997; Gombosi et al., 2009; Barbeau et al., 2009; Klepeis et al., 2010; 

Maloney et al., 2011; Torres Carbonell and Dimieri, 2013). 

Understanding the tectonic regime at the Southern Andes during the Late 

Cretaceous and Paleogene is therefore key to untangle the evolution of the Patagonian 

Orocline and the exhumation history of Cordillera Darwin. In this study, we 

reconstruct the nature and orientation of the strain field at the Southern Andes from 

the Cretaceous throughout the Oligocene using both new and published anisotropy of 

magnetic susceptibility (AMS) data from the Magallanes fold-and-thrust belt. 

 

2. Background 

2.1. Geological Setting 

Four tectonic provinces can be recognized in the Southern Andes (Fig. 2), 

from SW to NE: (i) a coastal magmatic arc, including the calc-alkaline igneous suite 

from the Patagonian Batholith emplaced between the Late Jurassic and Neogene 

(Hervé et al., 1984, 2007; Pankhurst et al., 2000; González-Guillot et al., 2011); (ii) 

the Rocas Verdes marginal basin units, including weakly metamorphosed relics of its 

ocean floor (Sarmiento and Tortuga ophiolite complexes; Stern and De Witt, 2004; 

Cunningham, 1994) and its sedimentary cover (Calderón et al., 2007; Olivero and 

Malumián, 2008); (iii) Cordillera Darwin exposing late Paleozoic basement schists 

affected by thick-skinned tectonics (Kohn et al., 1995; Klepeis, 1994; Hervé et al., 

2008; Klepeis et al., 2010; Maloney et al., 2011, 2013); and (iv) the thin-skinned 

Magallanes fold-and-thrust belt, developed within a ~7 km thick (Austral) foreland 

basin containing Upper Cretaceous to Miocene marine sequences (Biddle et al., 1986; 

Alvarez-Marrón et al., 1993; Klepeis, 1994; Olivero and Malumián, 1999; Olivero 

https://www.researchgate.net/publication/249545935_The_Patagonian_Batholith_S_of_Tierra_del_Fuego_Chile_Timing_and_tectonic_implications?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/248816343_Relationship_between_uplift_of_the_metamorphic_core_of_the_southernmost_Andes_and_shortening_in_the_Magallanes_foreland_fold_and_thrust_belt_Tierra_del_Fuego_Chile?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/248816343_Relationship_between_uplift_of_the_metamorphic_core_of_the_southernmost_Andes_and_shortening_in_the_Magallanes_foreland_fold_and_thrust_belt_Tierra_del_Fuego_Chile?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/259543209_The_Late_Jurassic_to_present_evolution_of_the_Andean_margin_Drivers_and_the_geological_record?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/259543209_The_Late_Jurassic_to_present_evolution_of_the_Andean_margin_Drivers_and_the_geological_record?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/259543209_The_Late_Jurassic_to_present_evolution_of_the_Andean_margin_Drivers_and_the_geological_record?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/259543209_The_Late_Jurassic_to_present_evolution_of_the_Andean_margin_Drivers_and_the_geological_record?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/259543209_The_Late_Jurassic_to_present_evolution_of_the_Andean_margin_Drivers_and_the_geological_record?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/230705069_Episodic_silicic_volcanism_in_Patagonia_and_the_Antarctic_Peninsula_Chronology_of_magmatism_associated_with_the_break-up_of_Gondwana?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/240675390_Rocas_Verdes_ophiolites_southernmost_South_America_Remnants_of_progressive_stages_of_development_of_oceanic-type_crust_in_a_continental_margin_back-arc_basin?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
https://www.researchgate.net/publication/240675390_Rocas_Verdes_ophiolites_southernmost_South_America_Remnants_of_progressive_stages_of_development_of_oceanic-type_crust_in_a_continental_margin_back-arc_basin?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
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and Martinioni, 2001; Olivero et al., 2003; Ghiglione et al., 2002; Ghiglione and 

Ramos, 2005; Malumián and Olivero, 2006; Olivero and Malumián, 2008; Torres 

Carbonell et al., 2008). 

The Magallanes fold-and-thrust belt is composed of ~ E-verging (Patagonian 

Andes) and ~N-verging (Fuegian Andes) thrust sheets that involve progressively 

younger units towards the foreland (Fig. 2): Upper Jurassic-Lower Cretaceous 

formations in the inner domain, and Upper Cretaceous to Neogene in the most 

external sectors (Olivero and Malumián, 1999; Olivero and Martinioni, 2001; 

Ghiglione and Ramos, 2005; Menichetti et al., 2008; Olivero and Malumián, 2008). 

The Neogene left-lateral Magallanes–Fagnano Fault Zone cuts the northern domain of 

the fold-thrust belt (Lodolo et al., 2003) forming a transtensional pull-apart basin 

along the Irigoyen River (Ghiglione, 2003). This fault system, crossing the entire 

island of Tierra del Fuego, is considered the onshore segment of the South America–

Scotia plate boundary, along which prominent asymmetric pull-apart basins 

developed (Lodolo et al., 2002, 2003). 

 

2.2. Tectonic history of the Southern Andes 

The Middle-Late Jurassic evolution of the Southern Andes included 

widespread silicic subaerial volcanism along the present Pacific continental margin 

coevally with the breakup of Antarctica from South America (Bruhn et al., 1978; 

Pankhurst et al., 2000; Calderón et al., 2007). Prolonged extension along the South 

American margin culminated in the Late Jurassic opening of the Rocas Verdes 

marginal basin (Katz, 1973; Dalziel et al., 1974; Bruhn and Dalziel, 1977; Bruhn et 

al., 1978; Dalziel, 1981; Calderón et al., 2007). The extensional phase also affected 

more internal sectors of the South American continent, yielding widespread normal 

https://www.researchgate.net/publication/254287883_Contrasts_in_tectonic_evolution_of_orogenic_belts_in_the_south-east_Pacific?el=1_x_8&enrichId=rgreq-e00a5b3d-26c1-4808-af43-f977cc6d7053&enrichSource=Y292ZXJQYWdlOzI4MzI3MDgwMjtBUzoyODkyNDI0NjgxMTAzMzhAMTQ0NTk3MjE4NjYxMw==
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faults and crustal attenuation that are thought to have played a key role during later 

foreland propagation of the deformation (Winslow, 1982; Fosdick et al., 2011, 2014; 

Likerman et al., 2013). The first sedimentary infill of the marginal basin is 

represented by the Upper Jurassic to Lower Cretaceous submarine silicic volcanics 

and volcaniclastic levels of the Tobifera (or Lemaire) formation, and dark mudstones 

of the Yahgan (or Zapata) formation, followed by slope mudstones of the Beauvoir 

Formation (Wilson, 1991; Fildani and Hessler, 2005; Olivero and Malumián, 2008; 

Menichetti et al., 2008; Klepeis et al., 2010). In the Early Cretaceous, the opening of 

the South Atlantic Ocean associated with increased subduction rates along the Pacific 

margin (Rabinowitz and LaBrecque, 1979; Dalziel, 1986; Ramos, 1989; Diraison et 

al., 2000; Somoza and Zaffarana, 2008) induced sinistral transpression along the 

southwestern margin of South America (Cunningham et al., 1995; Klepeis, 1994). 

This event caused tectonic inversion (i.e., extension to compression) in the retro-arc 

region that was accommodated by trench-ward underthrusting of the South American 

craton down to ~35 km depth (Bruhn, 1979; Wilson, 1991; Cunningham, 1995; 

Klepeis et al., 2010). Ductile deformation, isoclinal folding and low-grade 

metamorphism in the marginal basin sedimentary units (Bruhn, 1979), and peak 

metamorphism at upper amphibolite facies conditions (7-11 kbar and 580–600°C; 

Kohn et al., 1993) in the underthrust basement rocks currently exposed in Cordillera 

Darwin (Klepeis et al., 2010; Maloney et al., 2011) marked the onset of the earliest 

tectonic phase in the Southern Andes. 

Complete closure of the Rocas Verdes marginal basin and collision between 

the magmatic arc and the South American continental margin was achieved in the 

Late Cretaceous (Halpern and Rex, 1972; Bruhn and Dalziel, 1977; Cunningham, 

1994; 1995; Calderón et al., 2012), and produced initial uplift of continental basement 
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blocks. This included Cordillera Darwin whose uplift and exhumation has been 

initially constrained by 
40

Ar/
39

Ar and fission–track thermochronology showing two 

major pulses at 90-70 Ma and 60-40 Ma (Nelson, 1982; Kohn et al., 1995). U/Pb 

detrital-zircon geochronology from the eastern Magallanes foreland basin 

documented a dramatic provenance shift at ca. 39 Ma, suggesting that the 

metamorphic Paleozoic basement was completely exposed by that time (Barbeau et 

al., 2009). Apatite and zircon fission-track and (U-Th-Sm)/He data (Gombosi et al., 

2009) indicate, consistently with the conclusions of Barbeau et al. (2009), a rapid 

exhumation that occurred in the middle-late Eocene (40-35 Ma), followed by slower 

exhumation rates. Early contraction events in the basement domains have been 

recently constrained at ca. 85-86 Ma in the Fuegian Andes (Klepeis et al. 2010), and 

ca. 85 Ma in the Southern Patagonian Andes (Calderón et al., 2012). 

Progressive crustal thickening in the inner sectors of the Southern Andes, 

characterized by out-of-sequence thrusting, continued throughout the Late Cretaceous 

and Paleogene, yielding lithospheric loading and flexural subsidence in the 

Magallanes (or ‘Austral’) and Malvinas foreland basins (Winslow, 1981; Biddle et al., 

1986; Ramos, 1989; Wilson, 1991; Alvarez- Marrón et al., 1993; Klepeis, 1994; 

Coutand et al., 1999; Fildani et al., 2003; Ghiglione et al., 2010). Major and minor 

unconformities within the foreland basin in the Fuegian Andes have been associated 

with a number of tectonic pulses, including the late Paleocene San Vicente thrusting 

episode (61-55 Ma), the Eocene Rio Bueno thrusting event (49-34 Ma), and other 

minor events in the early Eocene and late Oligocene (Alvarez-Marrón et al., 1993; 

Olivero et al., 2003; Olivero and Malumián, 2008; Ghiglione and Ramos, 2005; 

Torres Carbonell et al., 2008, 2011, 2013; Torres Carbonell and Dimieri, 2013). 

Uncertainties still exist on the age of the earliest tectonic pulses in the foreland basin 
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of the Fuegian Andes, and older (i.e., pre-62 Ma) events have also been proposed 

(Torres Carbonell et al., 2013). The Punta Gruesa strike-slip event (ca. 24-16 Ma) 

defines the initial tectonic phase associated to the development of the Magallanes-

Fagnano Fault Zone and the active strike-slip deformation (Cunningham, 1993, 1995; 

Lodolo et al., 2003; Eagles et al., 2005; Rossello, 2005). Then, subhorizontal units 

above lower Miocene beds mark the end of compressional tectonics in the southern 

Magallanes basin (Ghiglione, 2002; Ghiglione et al., 2010). 

There are insufficient age constraints along strike (in space and time) to test 

whether the tectonic phases were synchronous throughout the Southern Andes. The 

available data, however, indicate that at least some events were coeval both in the 

Patagonian and Fuegian Andes. During the Paleocene, deformation in the Patagonian 

Andes was mainly localized in the basement domain (Kraemer, 1998). Subsequent 

collision of the Farallon-Phoenix ridge in the middle Eocene (Cande and Leslie, 1986; 

Somoza and Ghidella, 2005; 2012) produced reactivation and eastward shifting of the 

orogenic front. This event produced angular unconformities and growth-strata at Río 

Turbio (Malumián et al., 2000), and emplacement of an Eocene basaltic plateau 

(Mesetas) (Ramos 1989, 2005). A major thrusting event and uplift in the Paleogene 

has been also constrained using zircon (U-Th)/He dating from the eastern domains of 

the southern Patagonian Andes (Fosdick et al., 2013). The Eocene tectonics became 

much stronger towards the south affecting in particular Tierra del Fuego due to fast 

~NE-directed subduction of the Phoenix plate between 47-28 Ma (Ramos and 

Aleman, 2000; Olivero and Martinioni, 2001; Kraemer, 2003; Ghiglione and Ramos, 

2005; Somoza and Ghidella, 2005, 2012; Ghiglione and Cristallini, 2007). Apatite 

fission track, and apatite and zircon (U-Th)/He ages constrained compressive events 

in the western domains of the Patagonian Andes to the late Oligocene (30-23 Ma; 
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Thomson et al., 2001), which then propagated to the east during the early Miocene 

(22-18 Ma; Fosdick et al. (2013) and middle to late Miocene (12-8 Ma; Thomson et 

al., 2001). 

The space-time evolution and magnitude of the strike-slip tectonics at the 

Southern Andes is even more difficult to constrain. While it is commonly accepted 

that sinistral strike-slip faulting, mainly associated with the South America-Antarctica 

relative plate motion, affected the Fuegian Andes in the late Cenozoic (Lodolo et al., 

2003; Rossello, 2005; Ghiglione and Ramos, 2005; Menichetti et al., 2008), the origin 

of dextral Miocene (16-10 Ma) strike-sip faults in the southern Patagonian Andes is 

less certain, and possibly associated to the Phoenix-Antarctica ridge subduction event 

(Thomson, 2002). 

 

3. Anisotropy of magnetic susceptibility (AMS): methodology 

Anisotropy of magnetic susceptibility (AMS) is a petrofabric tool able to 

determine the preferred orientation of magnetically-dominant minerals, and it is 

commonly used as a rock strain indicator (e.g., Jelinek, 1977; 1978; Hrouda, 1982, 

1993; Borradaile, 1988, 1991; Jackson, 1991; Jackson and Tauxe, 1991; Rochette et 

al., 1992; Tarling and Hrouda, 1993; Sagnotti et al., 1994, 1998; Parés et al., 1999; 

Soto et al., 2009). In weakly deformed sedimentary rocks, AMS reflects the initial 

fabric produced during incipient deformation (mainly related to layer-parallel 

shortening) at the time of, or shortly after, deposition and diagenesis of the sediment 

(Sintubin, 1994; Sagnotti et al., 1998, 1999; Parés et al., 1999; Coutand et al., 2001; 

Cifelli et al., 2004, 2005; Larrasoaña et al., 2004; Soto et al., 2009). For this reason 

AMS analyses of weakly deformed sediments have frequently been used in orogenic 

settings to document the syn-sedimentary tectonic regime (Mattei et al., 1999; 
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Sagnotti and Speranza, 1993; Sagnotti et al., 1998; Parés et al., 1999; van Hinsbergen 

et al., 2005; Maffione et al., 2012; Gong et al., 2009; Macrì et al., 2014, among many 

others). 

AMS can be geometrically described by an ellipsoid, whose axes are the 

minimum (kmin), intermediate (kint), and maximum (kmax) axis of susceptibility 

(Hrouda, 1982). During deposition, sedimentary rocks acquire a so-called 

‘sedimentary fabric’ characterized by the kmax and kint axes dispersed within a plane 

(magnetic foliation, F) that is subparallel to the stratification plane. A sedimentary 

fabric can be partially overprinted by a ‘tectonic fabric’ during incipient deformation 

(e.g., Parés et al., 1999). The result of this process is the development of a magnetic 

lineation (L) whereby kmax axes align parallel to the maximum axis of stretching (ε1). 

For weak strain, the AMS ellipsoid is congruent to the orientation of the strain 

ellipsoids (e.g., Parés et al., 1999). 

In extensional settings, the magnetic lineation has been found to be parallel to 

the stretching direction and local bedding dip, and hence perpendicular to local 

normal faults (Sagnotti et al., 1994; Mattei et al., 1997, 1999; Cifelli et al., 2004, 

2005; Maffione et al., 2012). In compressive settings, the magnetic lineation is 

usually sub-horizontal and parallel to both the local strike of the strata and folds axes 

(e.g., Sagnotti and Speranza 1993; Mattei et al., 1997; Sagnotti et al., 1998). The 

relationship between the direction of the magnetic lineation and the local attitude of 

the studied rock is therefore often diagnostic to discriminate the tectonic regime 

(compressive versus extensional) responsible for the origin of the magnetic lineation 

(Mattei et al., 1997). 

Increasing strain progressively modifies the shape of the AMS ellipsoid from a 

pure sedimentary fabric (oblate ellipsoid: kmax ≈ kint >> kmin), to a sedimentary fabric 
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with a marked tectonic overprint (triaxial ellipsoid: kmax > kint > kmin), to a pure 

tectonic fabric (prolate ellipsoid: kmax >> kint ≈ kmin), and eventually returning to an 

oblate ellipsoid with the magnetic foliation parallel to the cleavage/schistosity (Parés, 

2004). Such a progression has previously been identified in the Southern Pyrenean 

foreland basin (Parés et al., 1999). In the last stage of deformation, which corresponds 

to incipient metamorphism, the tectonic fabric developed during the initial (syn-

sedimentary) phases of deformation is overprinted and lost, whereas it is preserved 

under small strains at low temperature (e.g., Parés, 2004; Larrasoaña et al., 2004; Soto 

et al., 2009). This implies that the finite strain inferred from AMS analyses of weakly 

deformed rocks can provide, in combination with structural geological analysis, 

fundamental constraints to study the tectonic regime (style and orientation) 

accompanying the deformation of sedimentary basins. 

 

4. Sampling and methods 

Samples were collected from Upper Cretaceous to upper Eocene sedimentary 

rocks from the most internal domains of the Magallanes fold-and-thrust belt (south of 

the Magallanes-Fagnano Fault Zone) along the Atlantic coast of Peninsula Mitre (Fig. 

2). The sampled rocks are folded and faulted, but without any evidence of 

metamorphism or pervasive cleavage. A total of 286 cores were collected at 22 sites 

from six different formations (Fig. 3, Table 1). Four sites were collected from the 

Maastrichtian-Danian Policarpo Formation (> 700 m-thick) represented by highly 

bioturbated dark slaty mudstones and sandstones deposited in the earliest, innermost 

Bahía Tethis foreland depocenter (Olivero and Malumián, 1999; Olivero and 

Martinioni, 2001). This formation is overthrust in the south by the pervasively 

cleaved upper Campanian-lower Maastrichtian Bahia Tethis Formation and, at the 
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sampling locality, it is unconformably covered by the Rio Bueno Formation. Eight 

sites were drilled in the upper Paleocene La Barca Formation (220 m-thick), 

composed of tuffaceous sandstones, siltstones and black mudstones. Three sites were 

sampled in the upper Paleocene-lower Eocene Punta Noguera Formation (380 m-

thick), consisting of glauconitic gravity flows deposits, including massive tuffaceous 

sandstones and sandy turbidites. One site was drilled in the lower Eocene Cerro 

Ruperto Formation (200 m-thick), glauconite-rich, silty sandstones and siltstones 

(Olivero and Malumián, 1999). One site was drilled in the lower-middle Eocene 

rhythmically bedded grainstones of the Río Bueno Formation (~80 m-thick). Five 

sites were sampled within the middle-upper Eocene dark gray mudstones of the Cerro 

Colorado Formation (855 m-thick). 

Samples were collected in the field with a petrol-powered portable drill cooled 

by water, and oriented with a magnetic compass, which was corrected for the local 

magnetic declination (11º E at the time of sampling, December 2012). All the 

laboratory analyses were conducted at the paleomagnetic laboratory of the Istituto 

Nazionale di Geofisica e Vulcanologia (Rome, Italy). Low-field AMS was measured 

with Multi-Function Kappabridge (MFK1-FA, AGICO). The AMS parameters at both 

the specimen and the site levels were evaluated according to Jelinek statistics (1977, 

1978) using the Anisoft 4.2 software (AGICO). Rock magnetic experiments on 

representative samples were also performed to investigate the main mineral fraction 

responsible for the AMS. Natural remanent magnetization (NRM) was measured from 

all samples using a 2G Enterprise DC-SQUID superconducting cryogenic 

magnetometer. Thermal variation (20-700°C) of magnetic susceptibility was 

measured at four representative samples from site CJ04, CR01, RL01, and RL03 with 

an MFK1-FA Kappabridge (AGICO) coupled with a CS-3 device. Hysteresis cycles 
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were performed with a Micromag AGM (maximum applied field 1 T) on the same 

samples used for the thermomagnetic curves. 

 

5. Results 

A well-defined magnetic fabric has been identified at 21 out of 22 sites, with 

site RL02 showing an isotropic fabric (Fig. 4 and Table 1). Site mean susceptibility 

(km) in the studied samples varies between 1.24 and 4.13 x 10
-4 

SI (with more frequent 

values in the range 1.2-3.2 x 10
-4

 SI) (Fig. 5a; Table 1). NRM is generally low and 

ranges between 0.16 and 2.01 mA/m (Table 1). Both thermomagnetic curves and 

hysteresis cycles indicate the predominance of paramagnetic minerals on the low-field 

magnetic susceptibility (Fig. 5b,c). This evidence indicates that the AMS is mainly 

controlled by a phyllosilicate paramagnetic matrix (e.g., Rochette, 1987; Borradaile et 

al., 1987; Hrouda and Jelinek, 1990). 

Site mean anisotropy degree (P’) values are commonly low (P’ < 1.120), with 

20 sites showing P’ values lower than 1.070 (Fig. 5d; Table 1). Figure 5d shows that, 

within each unit, km and P’ are not correlated, implying that the variation of P’ may be 

proportional to the strain rather than to the concentration and nature of the 

ferromagnetic fraction. We note, however, that for site RL01 a high P’ value 

correspond to an equally high susceptibility (Table 1); the anisotropy degree in this 

case might be controlled by the mineralogy rather than the strain. 

A change in the shape of the AMS ellipsoid, from strongly oblate (T ≈ 1, F >> 

L), to triaxial (T ≈ 0, F ≈ L), to strongly prolate (T ≈ -1, L >> F) is observed within 

the sampled sites, with no apparent spatial pattern (Fig. 5e; Table 1). Such variation 

describes a path that matches (when site RL01 is excluded) the expected evolution of 
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the AMS ellipsoid during increasing strain (Borradaile and Henry, 1997; Parés et al., 

1999). 

A pure sedimentary fabric is observed at sites FB02 and PG01, where the 

AMS ellipsoid is strongly oblate (F >> L), and the kint and kmax susceptibility axes are 

not clearly resolved (Figs. 4 and 5e; Table 1). Site RB01 displays a triaxial AMS 

ellipsoid, yet it has a very low degree of anisotropy (P’ = 1.007; Table 1) that makes 

the tectonic origin for its magnetic fabric arguable. Therefore, these three sites will 

not be considered for following tectonic reconstructions. 

The magnetic fabric of the remaining 18 sites indicates a tectonic overprint of 

the original sedimentary fabric. Within this group, the AMS ellipsoids of 12 sites are 

mainly oblate (T > 0), with a strong triaxial tendency (i.e., the three susceptibility 

axes form distinct clusters) and the magnetic foliation plane sub-parallel to the strata 

(the pole to local bedding is comprised within the distribution of the kmin axes; see 

Fig. 4 and Table 1). These are all typical features of weakly deformed rocks (e.g., 

Borradaile, 1987; Borradaile and Jackson, 2004). A mainly prolate fabric (T < 0), 

showing a girdle distribution of the kint and kmin axes perpendicular to the kmax mean 

orientation dominates at six sites (three from the Policarpo Formation; Table 1 and 

Fig. 4). One of these sites (CR01) shows a magnetic fabric resembling that of typical 

pencil structure, a stage that predates the development of a macroscopic cleavage 

upon moderate to high deformation (e.g., Borradaile and Tarling, 1981). Although 

cleavage was not recognized in the sampled rocks, it is likely that the six sites 

characterized by a prolate AMS ellipsoid were affected by a higher strain. 

Magnetic lineation is well developed (e12 < 30°; Table 1) at 16 out of the 18 

sites characterized by tectonic overprint. Two remaining sites show a moderately-

developed, yet still defined, magnetic lineation (30° < e12 < 40.8°; Table 1). The mean 
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magnetic lineation is sub-horizontal or shallowly plunging and parallel to both the 

local strike of the unit and nearby fold axes at 14 sites, subparallel to the dip direction 

of the strata at two sites (CJ05-07), and oblique to the local strike of the bedding at 

site PL01 (Figs. 3 and 4). All sites but RB01 show a mean lineation trending ~E-W 

(Fig. 3). 

 

6. Discussion 

AMS analyses from the Upper Cretaceous to upper Eocene sedimentary rocks 

of the internal structural domains of the Magallanes fold-thrust belt in Tierra del 

Fuego revealed a magnetic fabric of tectonic origin at 18 sites (Table 1 and Figure 3). 

The shape of the AMS ellipsoids (T) and the anisotropy degree (P’) at these sites, 

combined with the absence of a macroscopic cleavage, indicate that these rocks 

experienced a low degree of deformation; the initial AMS fabric acquired during (or 

shortly after) sedimentation is, therefore, likely preserved in these rocks. Similar 

AMS parameters and lithological features were observed in Cretaceous-Oligocene 

sedimentary units from the southern and western Magallanes fold-thrust belt 

(Diraison, 1998; Maffione et al., 2010; Poblete et al., 2014). This implies that the 

magnetic fabric of the foreland basin formations from the Southern Andes very likely 

preserve a record of the syn-sedimentary tectonics. This allows us to reconstruct the 

sequence of tectonic events (i.e., their nature and kinematics) that affected the 

Southern Andes in the Late Cretaceous and Cenozoic. 

The shape of the AMS ellipsoid is indicative of the intensity of deformation 

affecting these rocks (e.g., Parés et al., 1999). Considering the existing AMS database 

from the Southern Andes (Diraison, 1998; Maffione et al., 2010; Poblete et al., 2014), 

we infer that the most internal structural domains of the fold-and-thrust belt, exposing 
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Upper Cretaceous to Paleocene rocks, show a predominantly prolate AMS ellipsoid 

indicative of moderate-to-high strain. Conversely, the oblate-to-triaxial AMS 

ellipsoids characterizing the younger post-Paleocene formations exposed within the 

most external domains of the belt are suggestive of relatively weak strain. 

 

6.1. Late Cretaceous-late Eocene tectonic regime in the Magallanes fold-and-

thrust belt   

Magnetic lineation has frequently been used to infer the nature (extensional 

vs. contractional) and orientation of the strain field, and draw conclusions on the local 

tectonic regime (e.g., Mattei et al., 1997; Larrasoaña et al., 2004; Soto et al., 2009; 

Gong et al., 2009). In this study, the magnetic lineations from the oldest (non-

metamorphic) units located in the most internal sectors of the Magallanes fold-and-

thrust belt have been analysed to constrain the kinematics of the earliest tectonic 

phases in the Fuegian Andes. 

Magnetic lineations at 18 sites within the study area have very likely a tectonic 

origin (Figure 3). Although paleocurrents may also produce a relatively well-defined 

magnetic lineation (e.g., Rees and Woodall, 1975; Parés et al., 2007), such a fabric is 

commonly easily overprinted during initial stages of deformation. Furthermore, the 

directions of the magnetic lineation from the sampled sites are slightly different from 

the regional paleocurrent directions, which are NE- to ENE-directed (Torres 

Carbonell and Olivero, 2012). The clear tectonic overprint of the studied rocks and 

the directions of the magnetic lineation, therefore, make paleocurrents an unlikely 

source of the lineation in the studied rocks. 

Sub-horizontal magnetic lineations at 14 sites (Figs. 3 and 4; Table 1) are 

generally subparallel to both the strike of the strata and local fold axes. Following 
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criteria of Mattei et al. (1997), these relationships indicate a predominantly 

compressive tectonic setting at the time of sedimentation (or subsequent diagenesis) 

of each sedimentary unit. The shortening direction is therefore inferred to be 

perpendicular to the lineation. 

Within the remaining four sites, three upper Paleocene sites from the La Barca 

Formation (CJ05, CJ06, and CJ07) show a magnetic lineation that is sub-parallel to 

the local dip direction of the strata compatible, sensu Mattei et al. (1997) with an 

extensional tectonic origin of the lineation. The direction of the mean lineations at 

these three sites is, however, statistically indistinguishable (the confidence ellipses 

around the mean directions overlap; see Figure 4) from that of adjacent, coeval sites 

CJ08, CJ09, and CJ10, which show a clear compressive origin of the lineation. 

Furthermore, sites CJ05, CJ06, and CJ07 lie along the crest of a ~E-W trending, 

westward plunging syncline (Fig. 3). We propose that the magnetic lineations of these 

sites formed by layer-parallel shortening, within the same tectonic regime that 

affected nearby sites, and were subsequently tilted to the west subparallel to local 

hinges during progressive folding. 

The remaining site PL01 (Policarpo Formation) shows a horizontal lineation 

that is not contained in the bedding plane, is at high angle to the strike of the strata, 

and has a direction that is significantly different from that of adjacent, coeval sites 

(Fig. 4). Mismatch between the lineation and the bedding attitude might be related to 

uncertainties in the definition of the bedding plane (stratification of the Policarpo 

Formation was not well developed) or, more likely, to a high internal strain, as the 

prolate shape of the AMS ellipsoid seems to suggest. Because of these uncertainties, 

we cannot unequivocally interpret the nature of the deformation (i.e., extensional 
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versus contractional) affecting this site using the criteria adopted so far; site PL01 is 

therefore discarded from further analyses. 

In summary, a clear compressive origin of the magnetic lineation has been 

identified at 17 out of the 18 sites showing a tectonic fabric. These sites were 

subdivided into four age groups, and mean magnetic lineations were calculated for 

each group (Fig. 6). Sites were distributed as follows: Late Cretaceous-early 

Paleocene (Policarpo Formation, PD01, PD02), late Paleocene (La Barca Formation, 

CJ05, CJ06, CJ07, CJ08, CJ09, CJ10, FB01), late Paleocene-early Eocene (Punta 

Noguera Formation: RL01, RL03; Cerro Ruperto Formation: CR01), middle-late 

Eocene (Cerro Colorado and Leticia formations, CJ01, CJ02, CJ03, CJ04, CJ11). The 

four age groups show a consistently ~E-W-oriented mean magnetic lineation. The 

orientation of these lineations suggests that the tectonic regime responsible for their 

origin was relatively stable, yielding continuous ~N-directed contraction in the 

internal domains of the Magallanes foreland basin from the Late Cretaceous until the 

late Eocene (ca. 70 to 35 Ma). 

 

6.2. Strain field at the Southern Andes during the main tectonic phases 

A large-scale picture of the tectonic regime active in the Southern Andes 

during the latest Mesozoic and Cenozoic times has been drawn by using our new and 

previously published AMS data (Diraison, 1998; Rapalini et al., 2005; Maffione et al., 

2010; Esteban et al., 2011; Poblete et al., 2014) and fault kinematics data (Diraison et 

al., 2000; Torres Carbonell et al., 2013) from this region.  

Two AMS studies investigating Jurassic and Cretaceous metamorphic units 

from the internal sectors of the Fuegian Andes (Rapalini et al., 2005; Esteban et al., 

2011) have documented mainly oblate AMS ellipsoids with magnetic foliations 
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coincident with cleavage planes, and magnetic lineations parallel to mineralogical 

lineations. These features of the magnetic fabric are indicative of a high strain that 

overprinted the initial fabric acquired during the early stages of deformation. These 

data, therefore, cannot be considered for the analysis of the syn-sedimentary tectonic 

events in the Southern Andes. Three more AMS studies have been carried out from 

non-metamorphic units of the Magallanes fold-and-thrust belt, distributed as follows: 

sixteen sites from Upper Cretaceous to Cenozoic rocks from both the Patagonian and 

Fuegian Andes (Diraison, 1998), twenty sites from upper Eocene to lower Miocene 

formations from the outer part of the fold-and-thrust belt in Tierra del Fuego 

(Maffione et al., 2010), and 85 sites from Cretaceous to Miocene rocks uniformly 

distributed throughout the Southern Andes (Poblete et al., 2014). Data reported by 

these authors (apart from 7 sites from Poblete et al. (2014) not used in our analysis 

because of high internal strain) consistently show oblate to triaxial (and minor 

prolate) AMS ellipsoids where the magnetic foliations are contained within the 

bedding planes, and the magnetic lineations are generally sub-horizontal and 

subparallel to local fold axes, thrust faults, and strikes of the bedding (Fig. 7). The 

anisotropy degree of these units typically shows low values (P’ < 1.20 on average). 

Furthermore the regional paleocurrent directions in the western domain of the Fuegian 

Andes are ~NE- to N-oriented (Torres Carbonell and Olivero, 2012), hence almost 

perpendicular to the magnetic lineations from this area. Relying on this evidence, we 

conclude that the non-metamorphic units of the Magallanes fold-thrust belt have been 

affected by a weak deformation associated to syn-sedimentary compressive tectonics. 

Few attempts of using AMS analyses in strike-slip tectonic settings have been 

done in the past (e.g., Ferré et al., 2002; Cifelli et al., 2013). Quantifying the effect of 

such tectonics using AMS constraints, however, may be challenging. Although we 
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cannot exclude, based on AMS data alone, that a transpressive tectonics was active at 

the time of sedimentation, the parallelism between the magnetic lineation and both the 

local and regional structural trends suggest that such tectonic style, if active, did not 

affected the AMS of the studied units. 

The selected sites were distributed within four progressive time windows 

(based on the age of the sedimentary units). For each time window, data were grouped 

geographically within three main sectors: northern (southern Patagonian Andes), 

central (western Fuegian Andes), and eastern (eastern Fuegian Andes) (Fig. 7). The 

mean orientation of the magnetic lineations within the northern sector, where the local 

faults and fold axes strike 345°, point out to a consistent ENE-WSW-oriented 

contraction (Fig. 7). In the central sector where faults and fold axes trend 320° to 

295°, lineations indicate a mainly NE-SW- to NNE-SSW-oriented shortening (Fig. 7). 

In the eastern sector near the Atlantic coast, where the regional structural trend varies 

between 285° and 260°, the mean shortening direction inferred from the lineation data 

is N-S to NNW-SSE (Fig. 7). 

Overall, the magnetic lineations from the Southern Andes mimic the change in 

direction of the main structural trend of the orogen, describing a radial strain field that 

is stable over time (Fig. 7). A similar pattern is inferred from the shortening directions 

obtained from fault kinematic analyses by Diraison et al. (2000). According to these 

authors, the shortening directions (based on the measurement of 1600 striated fault 

planes from the Mesozoic-Cenozoic sedimentary cover of the Magallanes fold-thrust 

belt) show a progressive change in orientation from 075° (Patagonian Andes) to 

N043° (Fuegian Andes). Few data from the easternmost regions of the Fuegian Andes 

indicate a roughly N-directed shortening, which is also consistent with fault 

kinematics results obtained from the same area by Torres Carbonell et al. (2013). 
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Although the geological record from this region is not complete enough to 

assess whether the main tectonic events have been synchronous across the Patagonian 

and Fuegian Andes, a partial time overlap of some deformational episodes within the 

two domains during the Cenozoic (Cande and Leslie, 1986; Thomson et al., 2011; 

Somoza and Ghidella, 2012; Fosdick et al., 2013) appears to be compatible with our 

AMS results. 

A radial distribution of deformation paths may be a common feature in 

secondary or progressive arcs (sensu Weil and Sussman, 2004) where the strain 

trajectories, initially parallel within a rectilinear mountain belt, tend to diverge (or 

converge) following to subsequent oroclinal bending (e.g., Speranza et al., 1997; 

Marshak, 2004; Yonkee and Weil, 2010; Weil et al., 2010; Gutiérrez-Alonso et al., 

2012; Pastor-Galan et al., 2012; Johnston et al., 2013). Conversely, in primary arcs 

(sensu Weil and Sussman, 2004) where no oroclinal bending is involved, both a 

uniform and radial strain field can exist (Weil et al., 2010). Key to better interpret our 

results within a regional tectonic framework is to understand the real nature and origin 

of the orogenic bend of the Southern Andes. 

 

6.3. The exhumation of the Cordillera Darwin Metamorphic Complex  

Although there is growing evidence in support of models requiring 

compressive tectonics for the exhumation of Cordillera Darwin (Klepeis et al., 2010; 

Maloney et al., 2011), the tectonic events affecting the Fuegian Andes during the 

main uplifting phase of Cordillera Darwin have been so far poorly constrained. 

Relying on structural and geochronological constraints, Klepeis et al. (2010) proposed 

the occurrence of two early contractional events in the Fuegian Andes. The first 

tectonic event, likely caused by a flat subduction event (González-Guillot et al., 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 24 

2011), occurred between 100 and 86 Ma, and caused the inversion of the Rocas 

Verdes marginal basin and southward underthrusting of the South American 

continental margin below the magmatic arc. This age is precisely constrained in 

Cordillera Darwin by crosscutting relationships between folded sedimentary rocks of 

the Rocas Verdes basin and Upper Cretaceous granites (86-74 Ma; Kohn et al., 1995). 

The second tectonic event has been ascribed to a poorly constrained post-80 Ma 

contractional phase yielding basement-rooted thrust sheet emplacement. Following 

models of Klepeis et al. (2010), Torres Carbonell and Dimieri (2013) argued that 

starting from ca. 80 Ma a regional-scale basement duplex system developed along the 

current axis of the Fuegian Andes above a mid-crustal decoupling surface, yielding 

uplift in the Fuegian Andes and continuous continent-ward propagation of the 

compression until the Miocene. It is therefore clear that while the younger (post-

middle Paleocene) tectonic phases in the Fuegian Andes are well constrained (e.g., 

Ghiglione and Ramos, 2005; Torres Carbonell et al., 2013), large uncertainties still 

exist on the tectonic setting active between ~80 and ~60 Ma, i.e., during initial 

exhumation phases of Cordillera Darwin. 

The AMS results from this study provide new insights on this debated point. 

Based on the combined database including both our and previous AMS results, we 

propose that a compressive tectonic regime, yielding shortening perpendicular to the 

local structural trend of the orogen, was active from at least the Early Cretaceous to 

the late Oligocene (Fig. 7). We therefore conclude, in agreement with previous 

models (e.g., Klepeis et al. 2010), that the exhumation of Cordillera Darwin occurred 

under a general compressive tectonic regime. As suggested by these authors, 

contraction in the Fuegian Andes yielded a regional-scale crustal duplexing within the 
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Paleozoic basement, which resulted in regional uplift and erosional exhumation of the 

metamorphic basement currently exposed in Cordillera Darwin. 

 

6.4. An alternative tectonic model for the formation of the Patagonian 

Orocline 

The primary nature of the curvature of the Magallanes fold-and-thrust belt, 

supported by paleomagnetic data (Maffione et al., 2010; Poblete et al., 2014), requires 

more complex processes (different from oroclinal bending) to explain the radial strain 

field documented by this study. Paleomagnetic constraints indicate that the present-

day shape of the Southern Andes was likely already acquired in the Late Cretaceous-

early Cenozoic before the formation of the Magallanes fold-and-thrust belt. Models 

considering the indentation of a curved rigid indenter during the Cenozoic (e.g., 

Ghiglione and Cristallini, 2007) to explain the formation of the Magallanes fold-and-

thrust belt are, therefore, more consistent with the paleomagnetic evidence. However, 

the rigid indenter models proposed by Ghiglione and Cristallini (2007) produced a 

slightly convergent pattern of deformation paths, much less pronounced than the 

radial strain field characterizing the Magallanes fold-and-thrust belt. 

One plausible mechanism able to reproduce a radial strain field in the foreland basin 

of the Southern Andes upon indentation of a rigid curved buttress is represented by 

slip partitioning along pre-existing crustal heterogeneities (e.g., faults). It has been 

already pointed out the key role of pre-existing Jurassic normal faults rooted in the 

basement of the South American continental margin in the evolution of the 

Magallanes foreland basin sedimentation and subsequent deformation (Menichetti et 

al., 2008; Likerman et al., 2013; Fosdick et al., 2011, 2014; Ghiglione et al., 2013). 

The potential role of inherited faults in the origin of the curved shape of the Southern 
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Andes, however, has never been considered. While ~N-S oriented normal faults and 

~E-W oriented transfer faults associated to the rifting of the Rocas Verdes basin have 

been documented affecting the basement of the Patagonian Andes (Likerman et al., 

2013; Fosdick et al., 2011), the Jurassic extensional fault array in Tierra del Fuego 

consist of N to NW oriented normal faults and E to NE oriented transfer faults 

(Ghiglione et al., 2013). We, therefore, propose that the pre-existing Jurassic faults in 

the basement of the Southern Andes (N-S trending in the Patagonian Andes, and E-W 

oriented in the Fuegian Andes) controlled the Late Cretaceous to Cenozoic kinematic 

evolution and final geometry of the curved Magallanes fold-and-thrust belt. 

In our model, during the Middle-Late Jurassic extensional phase associated to 

the break-up of Pangea and the separation of Antarctica from South America, the 

southern edge of the South American continent was attenuated by a number of both 

extensional and transfer faults that mirrored the current shape of the Patagonian Arc 

(Fig. 8a). This extensional phase was accompanied by the development of a magmatic 

arc (Patagonian batholith) in the Late Jurassic, and eventually culminated in the 

opening of the Rocas Verdes marginal basin and Weddell Sea (Fig. 8b). During the 

closure of the Rocas Verdes basin, the originally straight magmatic arc wrapped 

around the South American continental margin leading to widespread (~ 90° to 30°) 

counterclockwise (CCW) vertical-axis rotations (Rapalini, 2007; Rapalini et al., 

2015). In the early Late Cretaceous (Fig. 8c), internal contraction of the Rocas Verdes 

basin and initial deformation of the South American continental margin reactivated 

the Jurassic faults of the continental basement. In the middle Late Cretaceous (Fig. 

8d), collision of the magmatic arc with the attenuated South American continental 

margin led to the formation of a tectonic domain (central belt) exposing both 

sedimentary and magmatic units of the Rocas Verdes basin and uplifted blocks of the 
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Paleozoic continental margin (e.g., Cordillera Darwin). Minor CCW tectonic rotations 

may have still been active at this stage (Rapalini et al., 2015). Since the Late 

Cretaceous-Paleocene the Southern Andes have represented a curved-to-foreland belt, 

similarly to the rigid indenter models proposed by Ghiglione and Cristallini (2007). 

A thick-skinned tectonics affecting the central belt is in agreement with 

existing models (Menichetti et al., 2008; Torres Carbonell and Dimieri, 2013). Slip 

partitioning mechanisms along these faulted blocks in the central belt allowed 

transference of fault-normal compression components into the Magallanes foreland 

(~N-ward and ~E-ward contraction in the Fuegian and Patagonian Andes, 

respectively) throughout the Cenozoic, yielding a radial strain field (Fig. 8e). 

Following models by Torres Carbonell and Dimieri (2013), we suggest that Cenozoic 

deformation in the Magallanes fold-and-thrust belt occurred above a décollement at 

the top of the basement, while compressive stresses were transmitted to the foreland 

basin by the crustal duplex structures of the central belt (Fig. 8e). Slip partitioning 

associated to the presence of such faults would have produced widespread sinistral 

and dextral strike-slip displacements on main thrusts from the internal domains of the 

Fuegian and Patagonian Andes, respectively. Further data documenting the existence 

of such strike-slip tectonics along the Southern Andes are, however, needed to fully 

test the proposed model. 

 

6.5. An updated definition of the Patagonian Orocline 

The curved shape of the Southern Andes inspired Carey (1958) to propose that 

it may have formed by oroclinal bending of an originally straight orogen. Since then, 

the curved segment of the Southern Andes has been referred to as the ‘Patagonian 

Orocline’. This initial hypothesis was subsequently supported by sparse 
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paleomagnetic data from the magmatic units, mainly within the internal sectors of the 

Fuegian Andes, which documented the occurrence of ~90° of counterclockwise 

rotation (see review by Rapalini, 2007). Tectonic models proposing oroclinal bending 

in the Cenozoic, related to the opening of the Drake Passage between South America 

and Antarctica, initially received the largest consensus (Dalziel et al., 1973; 

Cunningham, 1993; Kraemer, 2003), but were recently challenged by paleomagnetic 

data from the sedimentary units of the Magallanes fold-and-thrust belt (Maffione et 

al., 2010; Poblete et al., 2014). Although alternative hypotheses have also emerged, 

suggesting a primary origin of the curvature of the Southern Andes (Ramos and 

Aleman, 2000), oroclinal bending models related to the closure of the Rocas Verdes 

marginal basin in the Late Cretaceous, proposed originally by Burns et al. (1980), 

represent today a viable mechanism congruent with the known rotation pattern of the 

Southern Andes (Maffione et al., 2010; Poblete et al., 2014). The regional post-72 Ma 

30° CCW rotation of the Fuegian Andes documented by Rapalini et al. (2015), 

although occurring after complete closure of the Rocas Verdes basin, might still be 

associated to the tip of this major tectonic process. 

The increasing number of paleomagnetic constraints from the Southern Andes 

suggests that defining the orogenic arc of the Southern Andes as either a primary or a 

secondary (i.e., orocline) arc is equally inaccurate. Paleomagnetic data from the 

magmatic and metamorphic units of the Fuegian and Patagonian Andes consistently 

show large CCW rotations that support a secondary origin of the curved shape of the 

outer part of the arc (magmatic and metamorphic domains). On the other hand, the 

absence of tectonic rotations in the inner part of the arc, represented by the 

Magallanes fold-and-thrust belt, indicates that this structure developed during the 

Cenozoic as a primary arc (Maffione et al., 2010; Poblete et al., 2014). Accordingly, 
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the Patagonian Orocline is more properly formed by the juxtaposition of a secondary 

and a primary arc, as also suggested by Poblete et al. (2014). For this reason it would 

be more appropriate to use in the future the term ‘Patagonian Arc’ when referring to 

the curved segment of the Southern Andes. 

 

Conclusions 

Anisotropy of magnetic susceptibility (AMS) results from weakly deformed Upper 

Cretaceous to upper Eocene sedimentary rocks from 17 sites within the most internal 

structural domain of the Magallanes fold-and-thrust belt of Tierra del Fuego 

(Argentina), reveal a ~N-S contraction that occurred continuously from the Late 

Cretaceous until the late Eocene. To reconstruct the evolution of the orogen-scale 

curvature at the Southern Andes within a wider regional tectonic context, our new and 

previously published AMS data are integrated, together with available paleomagnetic 

and fault kinematics constraints. This combined AMS dataset shows that from at least 

the Early Cretaceous until the end of the Oligocene the tectonic regime at the 

Southern Andes yielded continuous contraction, variable from ~E-W in the 

Patagonian Andes to ~N-S in the Fuegian Andes, defining a radial strain field. 

A direct implication of this study is that the uplift and exhumation of the Cordillera 

Darwin metamorphic complex occurred within a compressive regional tectonic 

regime, rather than in extension or strike-sip settings, as alternatively proposed. 

In the attempt of explaining the occurrence of a radial strain field in the primary arc of 

the Magallanes fold-and-thrust belt, and stimulating new research on this topic, we 

propose a kinematic model whereby reactivation of pre-existing Jurassic faults at the 

South American margin, oriented sub-parallel to the present-day grain of the orogen, 
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controlled the Late Cretaceous to Cenozoic deformation of the Magallanes foreland 

basin. 

As a final remark, considering the available paleomagnetic constraints from the 

Southern Andes, we find the broadly used term ‘Patagonian Orocline’ to be 

misleading, and propose using the more generic term of ‘Patagonian Arc’. 
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Figure caption 

 
Figure 1. Simplified tectonic setting of the Southern Andes showing the main 
tectonic features and structural domain. 
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Figure 2. Regional geological map of the Fuegian Andes showing the main 
tectono-stratigraphic domains, and the sampling area. CDMC, Cordillera Darwin 
metamorphic complex. 
 
Figure 3. Geological map of the study area showing the sampled sites giving well-
defined directions of the site mean magnetic lineation (blue arrows). 
  
Figure 4. Schmidt equal-area projections, lower hemisphere, of the (in-situ 
coordinates) principal axes (kmax, kint, and kmin) of the AMS ellipsoid from all 
sampled sites. Mean values of the three susceptibility axes (larger symbols) and 
relative 95% confidence ellipses are shown for each diagram. Measured bedding 
plane and relative pole are also shown. All sites are subdivided into four main 
age groups. 
 
Figure 5. (a) Frequency distribution of the magnetic susceptibility (k) from all 
the sampled specimens; (b) site mean susceptibility versus corrected anisotropy 
degree (P’) for all the sampled sites; (c) shape factor (T) versus corrected 
anisotropy degree (P’) diagram compared to the typical trend expected from 
increasing deformation degrees. 
 
Figure 6. Schmidt equal-area projections, lower hemisphere, of the mean 
lineations (kmax) and associated 95% confidence ellipses calculated for four age 
groups. For each group, mean declination (D) and inclination (I) of the lineation, 
and error associated to the declination (e12) are reported. 
  
Figure 7. Four-stage evolution of the paleostrain pattern (black arrows on the 
stereonets) inferred at the Magallanes fold-thust belt in the Southern Andes 
based on our new and published AMS data. Stereonets in each sub-figure show 
the site mean lineations (black dots), and local bedding planes (great circles). 
CDMC, Cordillera Darwin metamorphic complex. 
 
Figure 8. Proposed kinematic model for the evolution of the Southern Andes. 
Thick black arrows indicate the direction of the regional strain field. Thin black 
arrows indicate the displacement vectors of the basement-rooted faulted blocks 
within the Central Belt; thin grey arrows indicate the fault-normal and fault-
perpendicular components resulting from slip partitioning propagating into the 
Magallanes foreland basin and leading to the formation of the fold-thrust belt.  
 
Table 1. Geographic coordinates use WGS84 datum. N, number of studied 
samples at a site. km, site mean susceptibility expressed in 10-4 SI. Magnetic 
lineation (L), magnetic foliation (F), corrected anisotropy degree (P’), and shape 
factor (T) according to Jelinek (1978). D and I are the in-situ site-mean 
declination and inclination, respectively, of the maximum susceptibility axis. e12, 
semi-angle of the 95% confidence ellipse around the declination of the mean 
lineation. ‘AMS origin’ indicates the interpreted nature of the AMS (T = tectonic, S 
= sedimentary), and related tectonic style (c = compressive). 
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Table 1. Anisotropy of magnetic susceptibility (AMS) results from the internal domains of the 
Magallanes fold-thrust belt. 
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Geographic coordinates use WGS84 datum. Bedding is expressed as dip 
direction/dip. N, number of studied samples at a site. NRM, natural remanent 
magnetization expressed in mA/m. km, site mean susceptibility in 10-4 SI. 
Magnetic lineation (L), magnetic foliation (F), corrected anisotropy degree (P’), 
and shape factor (T) according to Jelinek (1981). D and I are the in-situ site-mean 
declination and inclination, respectively, of the maximum susceptibility axis. e12, 
semi-angle of the 95% confidence ellipse around the declination of the mean 
lineation. ‘AMS origin’ indicates the interpreted nature of the AMS (T = tectonic, S 
= sedimentary), and related tectonic style (c = compressive). 
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Highlights 
 Anisotropy of magnetic susceptibility analyses were performed in the 

Southern Andes 
 Continuous (late Cretaceous-Oligocene) contraction affected the Southern 

Andes 
 Cordillera Darwin exhumation occurred under compressive tectonic regime 
 Deformation in the Magallanes fold-and-thrust belt defines a radial strain 

field 
 Reactivation of Jurassic faults controlled the formation of orogen’s curvature 


