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1. INTRODUCTION

The subject of this paper is the metric geometry of compact Lie groups K: we are in-
terested in the geometry of such a group when it is provided with a Finsler bi-invariant
metric, not necessarily smooth neither strictly convex. The rectifiable distance in K is
defined as the infimum of the lengths of paths joining given endpoints, and a geodesic
in K is a distance minimising path (we also use short). Since the unit sphere can have
faces and corners, there is a zoo of short paths for the distance in K besides the one-
parameter groups. We want to give a full characterization of these geodesics and relate
it with other geometrical invariants of the group and its Lie algebra. Let us recall here
that a Finsler length structure on the group Ham(M,ω) of Hamiltonian diffeomorphisms
of a symplectic manifold M with symplectic form ω, was introduced by Hofer in the
paper [Hof90]. The Lie algebra of this group is the set of Hamiltonian vector fields,
which can be identified (by means of the symplectic gradient) with the set of Hamil-
tonian functions in M (modulo constant functions). The norm of a vector field is then
the quotient L∞(M)-norm of the generating Hamiltonian function (modulo constant func-
tions). A natural problem of current interest in the literature is the study of geodesics
in this Finsler manifold. There has been a significant amount of progress, and fairly
deep work on the properties of this metric, mostly from the point of view of symplectic
topology, see [BiaPol94, LaMcD95a, LaMcD95b, Pol01, PolShe15] and also the textbook
[McDSa17] and the references therein. The results of this paper are for finite dimensional
groups; there is however an interesting relation among them and the Finsler structure of
(M,ω): we will consider (almost) effective Hamiltonian actions of compact semi-simple
Lie groups K on a symplectic manifold (M,ω). This action defines an inclusion (mod-
ulo the discrete kernel of the action) K ↪→ Ham(M,ω), which allows us to introduce a
pull-back Hofer metric on K by means of

‖x‖µ(M) = max
y∈µ(M)

〈y,x〉− min
y∈µ(M)

〈y,x〉.

Here x ∈ k = Lie(K) = T1K and µ is the momentum map of the Hamiltonian action. For
this norm, the intersection of its unit ball with a maximal abelian subalgebra h⊆ k is the
polar dual of a certain polytope P, which is derived from the moment polytope of the
action µ. A main example of this situation is when M = conv(Ow), the convex closure of
the adjoint orbit of w in k, with trivial momentum map and the adjoint action of K.
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The results on geodesics in this article are stated for any Finsler length structure given
by (left or right) translation of an Ad-invariant Finsler norm in k, therefore we include
non-symmetric distances in our discussion; what follows in one of the main results of this
paper:

Theorem A: Let K be a compact semi-simple Lie group with a bi-invariant Finsler
metric, let γ : [a,b]→ K be a piecewise C1 path. If γ is short for the bi-invariant metric,
then for (almost) all t we have ϕ(γ−1

t γ̇t) = ‖γ−1
t γ̇t‖ for some unit norm functional ϕ ∈ k∗.

Reciprocally, if the equality holds for some ϕ and (almost) all t ∈ [t0, t1], and L(γ)t1
t0 ≤ R,

then γ is short in [t0, t1]⊆ [a,b].

Here R is the injectivity radius of the norm. In particular one-parameter groups in K are
always geodesics for these distances, provided their speed is in the domain of injectivity of
the exponential map of K. It is worthwhile mentioning here that the notion of majorization
of real vectors −→v ≺ −→w (identified with the eigenvalues of the operators adv,adw, where
v,w ∈ k) plays a significant role in the proofs concerning minimality of geodesics, and it
is related to the condition v ∈ conv(Ow), where the later set is the convex closure of the
coadjoint orbit of w in k. If we specialize the previous result for a Hofer norm derived
from a Hamiltonian almost effective action K y (M,ω), one-parameter groups in K are
in correspondence to paths in Ham(M,ω) with autonomous Hamiltonian, and we obtain
the following:

Theorem B: Let γ : [a,b]→ K be piecewise C1, and denote its right logarithmic de-
rivative by xt = γ̇tγ

−1
t . If γ is a short path in K, then (µxt )t∈[0,1] is a quasi-autonomous

Hamiltonian path, and if µ is quasi-autonomous, γ is locally short (in each interval of
length ≤ R).

Then, in the final part of the paper, we move on to a finer characterization of geodesics
for some special norms, and we obtain several sharper results. Relevant geometrical prop-
erties of the geodesics can be expressed in terms of the extreme points of Hofer’s polytope
P. Of particular relevance are the polytopes with only regular extreme points in k, which
are fully characterized both in terms of the Lie algebra (by polar duality) and in terms of
the geometry of geodesics in K:

Theorem C: Let B be an Ad-invariant convex body in k containing 0, such that P =

(B∩h)◦ is a polytope (here h is any Cartan subalgebra). Endow K with the Finsler length
structure corresponding to the Minkowski norm of B. Then, all the extreme points of P
are regular if and only if all short curves γ in K have commuting logarithmic derivatives.

We obtain similar results for the pull-back of the one-sided Hofer norm, which is usu-
ally only positively homogeneous.

There are several relevant applications related to this setting of actions of compact Lie
groups: for instance, as shown in [Entov01], the geometry of the canonical Hamiltonian
action SU(n)→ Ham(Grr,n,ω) can be used as a tool to study the eigenvalue inequalities
in the quantum version of Horn’s problem [Bel08]. Here Grr,n is the Grassmannian of
r-dimensional planes in Cn, and ω is the canonical Kirilov-Kostant-Souriau symplectic
form. We plan to extend some of the results in this article to the case of infinite dimen-
sional groups using ideas connected to the results in [BoLeZh99] and [Lar19]. Some
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of the techniques developed in this article might also be relevant to the study of Finsler
length structures derived from mechanics with non-smooth energy.

The article is organized as follows: in Section 2 we define generalized Hofer norms.
We study the faces and norming functionals of the unit balls of these norms, based on two
different theories. We first analyse the structure of these balls with functional analytic
techniques via an embedding in certain function spaces, an approach that will be useful
in the study of the stability under geodesy at the end of Section 5.4. We also study these
norms using results from convex geometry.

In Section 3 we recall basic results on Hamiltonian actions and Hofer’s metric on
groups of Hamiltonian diffeomorphisms, and we pull-back these metrics to compact
groups using the homomorphism K→ Ham(M,ω). These are the motivations and main
examples for the norms and length structures on groups studied in this article. Neverthe-
less, this part of symplectic geometry is not necessary for the understanding of several
results in the article which are solely based on convexity and Finsler length structures.

In Section 4 a characterization of the intersection of the unit balls of the Hofer norms
with maximal abelian algebras is given based on group invariant convex analysis and
symplectic convexity theorems.

In Section 5 we first recall several results obtained in [Lar19] for groups endowed
with Finsler length structures obtained from Ad-invariant norms which are valid for the
groups studied in this article. Then we prove several global results on geodesics in the
case of finite dimensional groups endowed with continuous Finsler metrics. We show that
geodesics in groups K with Hofer’s metric are quasi-autonomous, which provides a link
between the conditions for length minimization in K and the corresponding conditions in
Ham(M,ω).

Finally, in Section 6 we study actions of groups with commuting Hamiltonians. We
start with the important special case of actions on regular coadjoint orbits and related
groups: the Hamiltonians of length minimizing curves have the interesting feature of
"non-crossing of eigenvalues". We characterize the Ad-invariant norms such that in
groups with Finsler structures defined from these norms, all geodesics have commuting
speeds. Based on this result we characterize the compact groups of Hamiltonian diffeo-
morphisms such that length minimizing curves have commuting Hamiltonians. We then
show how conditions on Kirwan’s polytope can characterize this property. The paper
ends with a study of how these properties behave when we consider the direct product of
Hamiltonian actions. It is proved then that it suffices to have geodesics with commuting
Hamiltonians for one of the actions, to obtain the same property for the geometry induced
in K by the direct product of actions.

2. THE GENERALIZED HOFER NORM AND ITS CONVEX GEOMETRY

In this section we define the generalized Hofer norms and we study them with two
approaches. In the first we embed the normed space in a quotient of a space of continuous
functions and use functional analytic techniques. In the second we use the polar duality
from convex geometry.
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Definition 2.1. A subset E ⊆V of a vector space V is called full if it affinely generates the
space. A set B⊆V is a convex body if B is a compact convex set with non empty interior.
If additionally, B is centrally symmetric (v ∈ B⇒−v ∈ B), then it is called a symmetric
convex body. Equivalently, a symmetric convex body is a convex balanced absorbing set
in V .

Definition 2.2. Let (V,〈·, ·〉) be a finite dimensional inner product space and let E ⊆V be
a compact full subset. Consider the norm ‖ · ‖E on V given by the embedding

ι : V ↪→C(E)/R1, x 7→ [ϕx] := ϕx +R1,

where ϕx(y) = 〈x,y〉 for y ∈ E. Then

(2.1) ‖x‖E = max
y∈E

ϕx(y)−min
y∈E

ϕx(y) = 2‖[ϕx]‖∞,

where ‖[ϕx]‖∞ = inf{‖ϕx−λ1‖∞ : λ ∈ R} is the quotient norm. We call ‖ · ‖E a general-
ized Hofer norm.

This is a norm since E is full. If there is a group acting isometrically on V and leaving
the set E invariant then the action is also isometric for the norm ‖ · ‖E .

x

y−1
y−2

y+

y+ ∈ H(x,E) = {ϕx ≡ argmaxE(ϕx)}

ϕx ≡ argminE(ϕx)

E

Fx(E) = H(x,E)∩E

y−1 ∈ conv(argminE(ϕx))

FIGURE 1. Norming functionals, faces and supporting hyperplanes

Remark 2.3. Another (semi)-norm which is invariant for isometric actions on V that we
will consider is the generalized second Hofer norm given by the supremum norm

(2.2) ‖x‖′E = max{max
y∈E

ϕx(y),−min
y∈E

ϕx(y)}= ‖ϕx‖∞.

It is also of interest to consider a third invariant norm which is only a Finsler norm (i.e.
only positively homogeneous), given by

‖x‖+E = max
y∈E

ϕx(y).

We will call this the one-sided Hofer norm. This defines a Finsler norm for a bounded
set E ⊆V such that its convex hull contains 0 in its interior, or equivalently, such that the
cone generated by E is all of V . It is also possible to consider

‖x‖−E =−min
y∈E

ϕx(y).
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but note that this one can be obtained from the previous by replacing E with −E. Clearly
‖x‖′E = max{‖x‖+E ,‖x‖

−
E } is the second Hofer norm and ‖x‖E = ‖x‖+E +‖x‖−E is the first

Hofer norm.

2.1. Maximal faces and norming functionals. We begin studying the faces of the sphere
and the norming functionals of Hofer’s norm by relating this norm on the space V to the
norm on the much larger space C(E)/R1 (where E is a compact full set) by means of the
embedding ι : V ↪→C(E)/R1 given by x 7→ ϕx +R1, where ϕx = 〈x, ·〉.

Definition 2.4. Let V be a normed space and denote ‖ϕ‖ = sup{ϕ(v) : ‖v‖ = 1} for
ϕ ∈ V ∗. The dual space V ∗ with this norm is a Banach space. We say that ϕ ∈ V ∗ is a
norming functional of v ∈V if ϕ(v) = ‖v‖ and ‖ϕ‖= 1. A functional ϕ is extremal if ϕ is
an extreme point of the unit ball BV ∗ . If ‖ · ‖ is only positively homogeneous (to remark
it we say that it is a Finsler norm) the same definitions apply, and the norm given to V ∗ is
only positively homogeneous. In any case we refer to it as the dual norm.

Remark 2.5. Note that the difference between the ball of a norm and that of a Finsler
norm is that the last one might not be balanced (i.e. symmetric). In both cases, it is an
absorbing, open convex set containing 0 ∈V .

Definition 2.6. A face F of the unit ball BV of a normed space V is the intersection of the
unit ball BV with the hyperplane determined by a unit norm functional ϕ ∈ V ∗,‖ϕ‖ = 1,
i.e.

Fϕ = BV ∩{v ∈V : ϕ(v) = 1}.
We say that the face is maximal if ϕ is extremal. Every face is contained in a maximal
face: if ϕ is a unit norm functional then ‖ϕ‖ = 1 and since BV ∗ is compact and convex
there exists by the Krein-Milman theorem extremal functionals {ϕi}i=1,...,n ⊆ BV ∗ such
that ϕ is a convex combination of the ϕi:

ϕ = ∑
i

λiϕi, λi ≥ 0, ∑
i

λi = 1.

It is then easy to check that if ϕ(v) = ‖v‖ then ϕi(v) = ‖v‖ for all i. Therefore if v ∈ Fϕ,
v ∈ Fϕi for all i and in fact Fϕ is the intersection of all the maximal faces that contain it.

The cone generated by a face Fϕ is R+Fϕ. Note that this cone consists exactly of those
v ∈V such that ϕ(v) = ‖v‖.

The following elementary characterization will be useful:

Lemma 2.7. In a vector space V , ‖v1 + · · ·+ vn‖= ‖v1‖+ · · ·+‖vn‖ holds if and only if
v1, . . . ,vn belong to the cone generated by a face.

Proof. If the vi are in the cone of ϕ, then

‖v1‖+ · · ·+‖vn‖ ≥ ‖v1 + · · ·+ vn‖ ≥ ϕ(v1 + · · ·+ vn) = ‖v1‖+ · · ·+‖vn‖.

On the other hand, if ‖v1 + · · ·+ vn‖ = ‖v1‖+ · · ·+ ‖vn‖ holds, by means of Hahn-
Banach’s theorem pick a unit norm functional that norms the sum of the vi, that is ϕ(∑i vi)=

‖∑i vi‖. Then
‖∑

i
vi‖= ϕ(∑

i
vi) = ∑

i
ϕ(vi)≤∑

i
‖vi‖= ‖∑

i
vi‖
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since ϕ(vi) ≤ ‖vi‖ for all i; this is only possible if equality holds for each i. Therefore ϕ

is a norming functional for all the vi. �

2.1.1. Norming functionals as Borel measures. Let X be a compact Hausdorff topological
space and let C(X) be the continuous real valued functions on X . Endow C(X)/R1 with
(twice) the quotient L∞ norm (the factor 2 is there to be consistent with formula (2.1) of
the definition of generalized Hofer norm). By Riesz-Markov’s theorem, its dual space
can be identified with the regular finite Borel signed measures in X such that µ(X) = 0
(that is because the identification µ 7→ ϕµ is given by integration ϕµ( f ) =

∫
X f dµ, and we

require that ϕµ(1) = 0). The norm of ϕµ is given by the total variation of µ, therefore unit
norm functionals are characterized by having total variation equal to two. The following
characterization of norming functionals follows:

Remark 2.8. For f ∈C(X)/R1 different from zero, its norming functionals are given by
ϕ = µ+− µ−, where µ+ and µ− are probability measures in X , supported in argmax( f )
and argmin( f ) respectively. Since the extreme points of the probability measures are the
Dirac measures, the maximal faces are given by norming functionals ϕ = δ+− δ−, with
delta measures δ+,δ− supported in x+,x− ∈ X respectively.

Proposition 2.9. A set { fi}i∈I ⊆C(X)/R1 is a subset of a cone generated by a face if and
only if ∩i∈I argmin( fi) 6= /0 and ∩i∈I argmax( fi) 6= /0. For f ,g ∈C(X)/R1 we have ‖ f +
g‖= ‖ f‖+‖g‖ if and only if argmin( f )∩argmin(g) 6= /0 and argmax( f )∩argmax(g) 6= /0.

Proof. If both intersections are non empty, pick x−,x+ respectively in each of them and
consider ϕ in the dual given by ϕ( f ) = f (x+)− f (x−). Then ϕ is a unit norm functional
and

∑
i
‖ fi‖ ≥ ‖∑

i
fi‖ ≥ ϕ(∑

i
fi) = ∑

i
fi(x+)− fi(x−) = ∑

i
‖ fi‖,

therefore by Lemma 2.7 the fi are in the cone generated by the face given by ϕ. Recip-
rocally, if there are, say, f = fk and g = fl such that the maximal argument of f does not
intersect the maximal argument of g, then max( f +g)< max f +maxg, therefore

‖ f +g‖= max( f +g)−min( f +g)< max f +maxg−min f −ming = ‖ f‖+‖g‖

and the conclusions follows by Lemma 2.7. �

Putting together the previous characterizations (and recalling that the norm we are con-
sidering is twice the quotient norm), it is clear that

Corollary 2.10. The maximal faces of the ball of C(X)/R1 are given by the sets

Fx−,x+ = {[ f ] : ‖[ f ]‖∞ = 2,x− ∈ argmin( f ),x+ ∈ argmax( f )}

for a choice of points x−,x+ ∈ X.

Since a face of the ball of V is contained in a face of C(E)/R1 by means of the map ι

of Definition 2.2, we have the following result (see Figure 2):
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Corollary 2.11. Let V be a vector space with the norm defined by the map ι and the
compact full set E ⊆V . A set S ⊆V is a subset of a cone generated by a face if and only
if ⋂

x∈S

argminE(ϕx) 6= /0 and
⋂
x∈S

argmaxE(ϕx) 6= /0.

Definition 2.12. Given a compact E ⊆V and x−,x+ ∈ E we define the cone

Cx−,x+(E) := {x ∈V : x− ∈ argminE(ϕx) and x+ ∈ argmaxE(ϕx)}.

Proposition 2.13. Each cone generated by a maximal face is equal to Cx−,x+(E) for some
x−,x+ ∈ E.

Proof. Let R+Fmax be the cone generated by a maximal face. By Corollary 2.11 it is
contained in Cx−,x+(E) for some x−,x+ ∈ E. Since Cx−,x+(E) satisfies the condition of
Corollary 2.11 it is contained in the cone R+F generated by a face F . By maximality of
Fmax we get Fmax = F and the conclusion follows. �

The cones of Definition 2.12 have good properties with respect to sum of sets.

Proposition 2.14. Let E1, . . . ,En be compact sets in V and let x−i ,x
+
i ∈ Ei for i = 1, . . . ,n.

If we define E = E1 + · · ·+En, x− = x−1 + · · ·+ x−n and x+ = x+1 + · · ·+ x+n then

Cx−,x+(E) =
⋂

i=1,...,n

Cx−i ,x
+
i
(Ei).

Proof. It is easy to verify that for x ∈ V the functional ϕx has a maximum at x−i ,x
+
i ∈ Ei

in Ei for i = 1, . . . ,n if and only if it has a maximum at x−1 + · · ·+x−n in E1+ · · ·+En. The
same holds for the minimizers and the proof follows. �

Remark 2.15. Similar results can be obtained for the one-sided Hofer norm ‖ · ‖+E (Re-
mark 2.3), for a compact set E such that its convex hull contains 0 in its interior. A set
S⊆V is a subset of a cone generated by a face if and only if⋂

x∈S

argmaxE(ϕx) 6= /0.

Given a compact E ⊆V and x+ ∈ E we define the cone

Cx+(E) := {x ∈V : x+ ∈ argmaxE(ϕx)}.

Each cone generated by a maximal face is equal to Cx+(E) for some x+ ∈ E. These cones
have also good properties with respect to sum of sets. Let E1, . . . ,En be compact sets in
V and let x+i ∈ Ei for i = 1, . . . ,n. If we define E = E1 + · · ·+En and x+ = x+1 + · · ·+ x+n
then

Cx+(E) =
⋂

i=1,...,n

Cx+i
(Ei).

We now characterize norming functionals for the Hofer norm, see Figure 1 and Figure
2. The convex hull of a set X is denoted by conv(X).

Theorem 2.16. The norming functionals of x ∈ (V,‖ · ‖E) are ϕy+−y− , with

y+ ∈ conv(argmaxE ϕx) and y− ∈ conv(argminE ϕx).
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Proof. Suppose first that y+ ∈ conv(argmaxE ϕx) and y− ∈ conv(argminE ϕx), then we
have ϕx(y+) = maxE(ϕx) and likewise with y−. It is immediate from the definitions that
‖ϕy+−y−‖ ≤ 1, and on the other hand

ϕy+−y−(x) = 〈y+− y−,x〉= max
E

(ϕx)−min
E

(ϕx) = ‖x‖E ,

thus ϕy+−y− has unit norm and it is norming for x. Suppose now ϕ is a norming functional
of x in V ' ι(V ) ⊆ C(E)/R1. We can extend it by the Hahn-Banach theorem to all
C(E)/R1, so that it is given by integration with µ+−µ− for probability measures µ+,µ−

supported in argmax(ϕx) and argmin(ϕx) respectively. Hence

ϕ(z) =
∫

E
〈w,z〉d(µ1−µ2)(w)

= 〈
∫

E
wdµ1(w)−

∫
E

wdµ2(w),z〉

= 〈cent(µ1)− cent(µ2),z〉,

where cent(µ) denotes the center of mass of the probability measure µ. The result follows
if we take y+ = cent(µ1) and y− = cent(µ2). �

x1

y+ ∈ argmaxE(ϕx1)∩ argmaxE(ϕx2)

y− ∈ argminE(ϕx1)∩ argminE(ϕx2)

E

x2

FIGURE 2. ϕ = ϕy+−y− is a norming functional of x1 and x2

In Theorem 2.26 we will give another proof of the previous result, based on polar
duality.

2.2. Convex sets, polar duality and Minkowski norms. We present some basic results
on convex geometry and polar duality which will be used in this section to characterize
the Hofer norms. We refer to Chapter I of [Bron83] for basic results on convex sets and
Chapter II of the same book for basic results on convex polytopes. Another reference is
[Bar02]. Let V be a finite dimensional inner product space. For a non-zero vector x ∈ V
and a scalar a ∈ R we define the hyperplane

Hx,a = {y ∈ H : 〈x,y〉= a}.
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For a = 1 we set Hx := Hx,1. We define the negative halfspace as

H−x,a = {y ∈ H : 〈x,y〉 ≤ a}.

The polar duality is given by the following bijection between non-zero points in V and
hyperplanes in V not containing zero: x 7→ Hx.

Definition 2.17 (Supporting hyperplanes). The support function of a bounded subset E ⊆
V is the function

hE : V → R, hE(u) = sup
x∈E
〈x,u〉.

Note that hE = hconv(E), and that if conv(E) contains 0 in its interior, then hE is a Finsler
norm, our one-sided Hofer norm (Remark 2.3).

If 0 6= x ∈V , the hyperplane given by

H(E,x) := {v ∈V : 〈v,x〉= hE(x)}

is the supporting hyperplane of E for x (See Figure 1). For x ∈ E, the set

Fx(E) := E ∩H(E,x) = argmaxE(ϕx)

is called the face of E defined by x, or also the support set of E for x. For v ∈ Fx(E) we
say that H(E,x) supports E at v.

In the literature the faces defined above are usually called exposed faces.

Definition 2.18 (Minkowski gauge). The Minkowski gauge or gauge of a bounded convex
set B⊆V which contains the origin in its interior is the function

gB : V → R, gB(x) = inf{t > 0 : x ∈ tB}.

The set B is a symmetric convex body (Definition 2.1) if and only if the gauge function
gB is a norm on V whose unit ball is B. Otherwise it is a Finsler norm, i.e. only positively
homogeneous.

Remark 2.19. If x ∈V is such that gB(x) = 1 then Hy = ϕ−1
y (1) = {z ∈V : 〈z,y〉= 1} is

a supporting hyperplane of B at x if and only if ϕy is a norming functional of x.

Definition 2.20. The polar of a nonempty bounded set E ⊆V is

E◦ = {x ∈V : 〈x,y〉 ≤ 1 for all y ∈ E}.

Note that if E is invariant by an isometric action so is its polar E◦. A polytope is the
convex hull of a finite set of points.

These are the result of applying the polar operation to some standard sets

- If Bp is the unit ball of the `p space for 1 ≤ p ≤ ∞ then B◦p = Bq where q is
conjugate to p.

- The polar of an ellipsoid E ⊆ Rn with axes of length a1, . . . ,an is the ellipsoid
with axes of length 1/a1, . . . ,1/an.

- The polar of a polytope P ⊆ V containing 0 in its interior and which has n faces
and k vertices is a polytope with k faces and n vertices.
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Remark 2.21. These are some standard properties that will be used later; let E,F ⊆V be
compact convex sets containing 0 ∈V in the interior, then

(1) E◦◦ = E, this is the bipolar property.
(2) (λE)◦ = λ−1E◦ for λ > 0.
(3) If E ⊆ F , then F◦ ⊆ E◦.
(4) (E ∪F)◦ = E◦∩F◦.
(5) (E ∩F)◦ = conv(E◦∪F◦).
(6) For a polytope E = conv{x1, . . . ,xn} we have

E◦ = {y ∈V : 〈xi,y〉 ≤ 1 for i = 1, . . . ,n}.

(7) For E = {y ∈V : 〈xi,y〉 ≤ 1 for i = 1, . . . ,n} its polar is the polytope

E◦ = conv{0,x1, . . . ,xn}.

The next result can be found in Theorem 6.4 and Corollary 6.5 of [Bron83], and Theo-
rem 14.5 of [Rock70].

Theorem 2.22. Let E ⊆V be a compact convex set containing 0 in its interior. Then
(1) hE = gE◦ and gE = hE◦ .
(2) The supporting hyperplanes of E are the hyperplanes determined by the points of

the boundary bdE◦ of E◦, i.e. Hx with x ∈ bdE◦.
The following are equivalent, see Figure 3

- the hyperplane Hy supports E at x ∈ E.
- the hyperplane Hx supports E◦ at y ∈ E◦.
- x ∈ bdE, y ∈ bdE◦ and 〈x,y〉= 1.

B Hy2

Hy1

z

B◦
y2

y1

Hz

0 0

FIGURE 3. Polar duality and supporting hyperplanes.

The following, which relates the polar operation to orthogonal projections and sections
with subspaces will also be used. Its proof is elementary therefore omitted.

Remark 2.23. If B is a convex body in the inner product space V , W is a subspace of V ,
and pW is the orthogonal projection onto W , then the following holds:

i) (B∩W )◦ = pW (B◦).
ii) B◦∩W = pW (B)◦.

Item ii) actually holds for any subset B of V and item i) follows from polar duality.
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2.3. Convex structure of the unit ball of Hofer norms. In this section, we characterize
the generalized Hofer norms in terms of the supporting and gauge functions hE ,gE .

Proposition 2.24. Let E ⊆V be a compact full set. Then we have

‖y‖E = hE−E(y) = g(E−E)◦(y).

‖y‖′E = hE∪−E(y) = g(E∪−E)◦(y).

If in addition 0 is in the interior of conv(E)

‖y‖+E = hE(y) = gE◦(y).

Proof. For the first Hofer norm observe that

‖y‖E = max
x∈E
〈x,y〉−min

x∈E
〈x,y〉= max

x∈E
〈x,y〉− (−max

x∈E
〈x,−y〉)

= hE(y)− (−hE(−y)) = hE(y)+hE(−y) by Definition 2.17

= hE(y)+h−E(y) = hE−E(y)

= g(E−E)◦(y) by Theorem 2.22.

For the second Hofer norm

‖y‖′E = max{max
x∈E
〈x,y〉,−min

x∈E
〈x,y〉}

= max{max
x∈E
〈x,y〉,max

x∈E
−〈x,y〉}

= max{max
x∈E
〈x,y〉, max

x∈−E
〈x,y〉}= max

x∈E∪−E
〈x,y〉= hE∪−E(y)

= g(E∪−E)◦(y) by Theorem 2.22.

For the one-sided Hofer norm

‖y‖+E = max
x∈E
〈x,y〉= hE(y) = gE◦(y).

�

Remark 2.25. Note that the unit ball of Hofer’s norm is exactly

(E−E)◦ = (conv(E−E))◦ = (conv(E)− conv(E))◦.

Therefore all norms are generalized Hofer norms if we take E = 1
2B◦ where B is the unit

ball of the norm.

With these tools, we give a second proof of the characterization of the norming func-
tionals of vectors in the unit sphere (Theorem 2.16), or equivalently, the supporting hy-
perplanes of the unit ball for points in its sphere.

Theorem 2.26. The norming functionals of x ∈V are given by ϕy+−y− , with

y+ ∈ conv(argmaxE ϕx) and y− ∈ conv(argminE ϕx).

Proof. Rescaling, we can assume that 1 = ‖x‖E = gconv(E−E)◦(x), so that x ∈ bd(E −
E)◦. By Remark 2.19 a functional ϕy is a norming functional of x if and only if the
hyperplane Hy supports (E−E)◦ at x. Theorem 2.22 implies that Hy supports (E−E)◦

at x if and only if Hx supports (E −E)◦◦ = conv(E −E) = conv(E)− conv(E) at y ∈
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conv(E − E). Moreover, Hx supports conv(E − E) at y ∈ conv(E − E) if and only if
y ∈ argmaxconv(E)−conv(E)(ϕx), and this happens if and only if

y ∈ argmaxconv(E)(ϕx)− argminconv(E)(ϕx).

That is, y = y+− y− with

y+ ∈ argmaxconv(E)(ϕx) = conv(argmaxE ϕx)

and likewise with y−. This finishes the proof. �

Remark 2.27. For the one-sided Hofer norm the norming functionals of x ∈V are given
by ϕy+ , with y+ ∈ conv(argmaxE ϕx).

3. HOFER’S METRIC ON COMPACT LIE GROUPS

In this section, we present actions of compact semi-simple Lie groups K on compact
connected manifolds M with symplectic form ω, as a nice setting for the convex geometry
that was discussed in the previous sections. It should serve as motivation and also as a
source of examples. We refer to [PolShe15] for general background on the geometry of
Hamiltonian actions.

3.1. Hamiltonian diffeomorphisms. Let (M,ω) be a connected closed symplectic man-
ifold and let H : [0,1]×M → R be a smooth function. We denote Ht(m) := H(t,m).
This function H induces a time dependent Hamiltonian vector field XHt by Hamilton’s
equations

dHt = ω(·,XHt ) =−ιXHt
ω,(3.1)

and hence an isotopy φH
t : M→M, t ∈ [0,1] by the prescription that

φ
H
0 = φ and

d
dt

φ
H
t (m) = XHt (φ

H
t (m))

for a symplectic map φ. The Hamiltonian diffeomorphism group Ham(M,ω) is by defi-
nition the set of diffeomorphisms φ : M→M which can be written as φ = φH

1 for some H
and φH

0 = id as above.
The set Ham(M,ω) is an infinite dimensional group under composition, all elements

of which are symplectomorphisms of (M,ω). Its Lie algebra are the Hamiltonian vector
fields in X (M), which can be identified with the smooth functions in M modulo constant
functions, via (3.1), hence

Tid Ham(M,ω)' XHam(M)'C∞(M)/R1.

Since ψ∗XH = XH◦ψ the adjoint action in this group is given by Adψ[H] = [H ◦ψ], where
[H] will denote the class of H modulo constant functions. If the Hamiltonian is time
independent, i.e. Ht = H for t ∈ [0,1], it is called autonomous. Note that the flow of such
H is ruled by the equation

d
dt

φt(m) = XH(φt(m)) = D(Rφt )1(XH)

when we interpret the differential of the right translation Rg in the group of diffeomor-
phisms, as composition from the right. Therefore φt is the flow of the right invariant
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field Xg = D(Rg)1(XH) and with the initial condition φ0 = id = 1Ham(M,ω) it is clear that
φ1 = exp(XH), where exp is the exponential map of the group of Hamiltonian diffeomor-
phism. However, this exponential map is not well-suited as a chart for the group, since it
is not a local diffeomorphism in any reasonable neighbourhood of the 0 vector field, see
[PolShe15].

3.1.1. Hofer’s norm. The Ad-invariant L∞ norm

(3.2) ‖[H]‖= max
M

H−min
M

H

on the Lie algebra Tid Ham(M,ω)'C∞(M)/R1 of the group Ham(M,ω) is Hofer’s norm.
It induces a Finsler length structure on curves (φt)t∈[0,1] in Ham(M,ω) by means of

length(φH
t ) =

∫ 1

0
‖ d

dt
φ

H
t ‖dt =

∫ 1

0
‖Ht ◦φ

H
t ‖dt

=
∫ 1

0

(
max

M
Ht−min

M
Ht

)
dt,

and hence a bi-invariant distance

dist(φ0,φ1) = inf
{

length(φt
H) : φ

0
H = φ0, φ

1
H = φ1

}
.

As was shown for R2n in [Hof90] and for general symplectic manifolds in [LaMcD95b],
dist is a non degenerate, bi-invariant metric on Ham(M,ω).

Hofer proved that the path of any autonomous Hamiltonian on Cn is length minimizing
(among homotopic paths with fixed endpoints) as long as the corresponding Hamilton’s
equation has no non-constant time-one periodic orbit. This result was generalized in
[LaMcD95b] to general symplectic manifolds.

Definition 3.1. A path (φt)t∈[0,1] ⊆ Ham(M,ω) is a geodesic of the Hofer metric if each
t ∈ [0,1] has a neighbourhood I such that φ|I is minimal, i.e. no longer than any other
path joining its endpoints. A Hamiltonian Ht is called quasi-autonomous if there exists
two points x−,x+ ∈M such that

Ht(x−) = min
M

Ht , Ht(x+) = max
M

Ht

for all t ∈ [0,1].

In Section 5.1 below we will give a characterization of all short paths for a Finsler
metric in a compact Lie group K (Theorem 5.23). When the metric is the pull-back metric
obtained by the action of K on a symplectic manifold (M,ω) (see Section 3.2.1 below), we
will be able to show that the autonomous Hamiltonians are in correspondence with one-
parameter groups in K, and all other minimizing paths in K are in correspondence with
the quasi-autonomous Hamiltonians (Theorem 5.28). These results should be compared
to the following, obtained by Hofer and others with an entirely different approach (see
[McDSa17, Section 12.3] and the references therein for proofs):

Theorem 3.2. Let (φt)t∈[0,1] ⊆Ham(M,ω) be a regular path (C1 and with non-vanishing
derivative). If φ is short for the Hofer metric, then the corresponding Hamiltonian Ht
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is quasi-autonomous. If the Hamiltonian is quasi-autonomous, then φ is locally short
(locally here refers to the time-variable).

A very similar norm used in the literature is defined without taking the quotient of
the Hamiltonian functions by the constant functions. It is defined via the normalization∫

M Hωn = 0, where ωn is the Liouville measure on M. The norm is the Ad-invariant L∞

norm
‖H‖′ = max{maxH,−minH}= ‖H‖∞

which we are going to relate to the second Hofer norm in Remark 3.8.

3.2. Hamiltonian actions. Let K be compact semi-simple Lie group with Lie algebra
k= T1K and dual space k∗, which we identify with k through the duality pairing given by
the (opposite of) the Ad-invariant Killing form 〈·, ·〉. This is an inner product in k because
k is compact; since it is also Ad-invariant, we can identify the coadjoint action with the
adjoint action. The Lie algebra k acts by skew-symmetric transformations, that is adx is
skew-adjoint for this inner product, for any x ∈ k.

Definition 3.3. Assume that the action of K on M is a symplectic action, that is, there is a
smooth map Φ : K×M→M that we denote Φ(g,m) = g ·m such that for each fixed g∈K,
the automorphism Φg = Φ(g, ·) is a symplectomorphism of M. We also assume that the
action is almost effective (g 7→ Φg has discrete kernel). For fixed m ∈ M we denote by
πm : K→M the map πm(g) = Φ(g,m).

For x ∈ k, let xM(m) = d
dt |t=0 exp(tx) ·m ∈ TmM denote the infinitesimal action on M.

The assumption that the action is almost effective implies that k 3 x 7→ xM ∈ X(M) is in-
jective; the assumption that the action is symplectic implies that the field xM is symplectic,
i.e. LxM ω = 0.

A moment map for a symplectic K action on (M,ω) is a map µ : M→ k∗ defined by

µx(m) = 〈µ(m),x〉, µx : M→ R

such that µ intertwines the K-action on M and the coadjoint action on k∗, i.e. µ(g ·m) =

Adg µ(m) for all g ∈ K,m ∈M, and such that µ satisfies Hamilton’s equation

dµx =−ι(xM)ω =−ω(xM, ·) for all x ∈ k.(3.3)

A symplectic K action is called Hamiltonian if it admits a moment map.

Remark 3.4. A symplectic K action on a symplectic manifold (M,ω) is the same thing as
a homomorphism K→ Symp(M,ω) to the group of symplectomorphisms of (M,ω) such
that the map K×M→M, (g,m)→ g ·m is smooth. The action has a moment map if and
only if the image of the identity component of K is contained in Ham(M,ω), i.e. there
is a map µ : M→ k∗ which satisfies Hamilton’s equations (3.3). Averaging with the Haar
probability measure dk on K yields an equivariant moment map

µ̃(x) =
∫

k∈K
Adk µ(k−1 · x)dk.

Note that if x ∈ k then xM is a Hamiltonian vector field and H = µx is a Hamilton-
ian; from (3.3) it is apparent that Xµx = xM. Also note that the Poisson bracket of the
Hamiltonian functions µx and µy is given by {µx,µy}= µ[x,y] for x,y ∈ k.
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The action defines a homomorphism with discrete kernel

K→ Ham(M,ω).

At the level of Lie algebras this morphism is injective

T1(K) = k ↪→C∞(M)/R1' Tid Ham(M,ω)(3.4)

x 7→ [µx] = µx +R1 7→ xM.

Given u ∈ K and a path x : [0,1]→ k, t 7→ xt , we calculate the isotopy φt ∈ Ham(M,ω)

given by the initial condition φ0 = Φu and the time dependent Hamiltonian Ht = µxt (as
noted, the Hamiltonian vector fields are (xt)M).

Proposition 3.5. If γ : [0,1]→ K is the smooth solution to γ̇tγ
−1
t = xt and γ0 = u, then the

isotopy is given by φt = Φγt .

Proof. We have to check that φ̇tφ
−1
t = (xt)M: for each m ∈M,

φ̇t(m) = (γt ·m) · = D(πm)γt (γ̇t) = D(πm)γt (xtγt) = D(πm)γt (
d
dr

∣∣∣
r=0

exp(rxt)γt)

=
d
dr

∣∣∣
r=0

πm(erxt γt) =
d
dr

∣∣∣
r=0

(erxt γt) ·m =
d
dr

∣∣∣
r=0

erxt · (γt ·m)

= (xt)M(γt ·m) = (xt)M(φt(m)) = ((xt)M ◦φt)(m),

and therefore φ̇t = (xt)M ◦φt as claimed. �

Remark 3.6. The image of the moment map µ(M) is a union of (co)adjoint orbits in k

which we denote by Oλ =AdK(λ) for λ∈ k. Let T be a maximal torus of K and h its Lie al-
gebra, a Cartan subalgebra. The image of the moment map can therefore be parametrized
by a subset A = µ(M)∩ h+ of a closed positive Weyl chamber h+, corresponding to a
choice positive simple roots. Hence we have

µ(M) =
⊔
λ∈A

AdK(λ) =
⊔
λ∈A

Oλ.

3.2.1. Hofer’s metric given by Hamitonian actions. We use the inclusion of Lie algebras
(3.4) to pull-back the Finsler length structure given by Hofer’s norm. The L∞ norm on
C∞(M)/R1 restricted to the image T1(K) = k is therefore by definition of the Hofer norm
(3.2) given by

‖µx‖= max
m∈M

µx(m)−min
m∈M

µx(m) = max
m∈M
〈µ(m),x〉−min

m∈M
〈µ(m),x〉(3.5)

= max
y∈µ(M)

〈y,x〉− min
y∈µ(M)

〈y,x〉= ‖x‖µ(M),

where the last equality is by definition of the generalized Hofer norm (Definition 2.1) for
the Ad-invariant set E = µ(M)⊆ k.

Remark 3.7 (‖ · ‖µ(M) is a norm). Since M is compact the image of the moment map is
bounded. Also, because the image of the moment map is full in k if and only if the action
is almost effective: The image of the moment map is not full if and only if its image is
contained in a hyperplane, which in turn happens if and only if there exists x ∈ k such
that ϕx is constant on µ(M). This is equivalent to the map µx : M→ R being a constant
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Hamiltonian which generates the zero vector field. Finally, this is also equivalent to the
one-parameter group exp(tx) acting trivially, i.e. the action not being almost effective.

Therefore, the Hofer norm just described is the norm ‖ · ‖µ(M) for a moment map µ :
M→ k∗' k, given by equation (3.5) above. For a general Ad-invariant set E in k we obtain
an Ad-invariant norm ‖ · ‖E in k. This norm is Ad-invariant and induces a bi-invariant
Finsler metric on K by left (or right) translation given by

length(γ) =
∫ 1

0
‖γ̇t‖γt dt =

∫ 1

0
‖γ̇tγ

−1
t ‖µ(M)dt =

∫ 1

0
‖γ−1

t γ̇t‖µ(M)dt,

dist(u,v) := inf{length(γt) : γ0 = u, γ1 = v} .(3.6)

Remark 3.8 (Barycenter). In the case of actions by semi-simple Lie groups, all Hamilto-
nians are normalized in the following sense:∫

M
µx

ω
n = 0.

This is because ∫
M
〈µ,x〉ωn =

∫
µ(M)
〈y,x〉dν(y),

where ν = µ∗(ωn) is the pushforward of the normalized Liouville measure ωn by the
moment map. The measure ν is Ad invariant hence its center of mass is also invariant.
The center of mass is zero since the group is semi-simple, therefore

∫
µ(M)〈y,x〉dν(y) = 0.

The resulting L∞ norm is

(3.7) ‖µx‖∞ = max{ sup
m∈M

µx(m),− inf
m∈M

µx(m)}= ‖x‖µ(M),

by the definition of the second generalized Hofer norm in 2.2 for the Ad-invariant set
E = µ(M) ⊆ k. Therefore, this second Hofer norm just described is the norm defined in
equation (2.2) as ‖ · ‖′µ(M) for a momentum map µ : M→ k∗ ' k.

Remark 3.9. We can define also an Lp-norm for 1≤ p < ∞ via the embedding

ι : V ↪→ Lp(E,ν)/R1, x 7→ [ϕx] = ϕx +R1,

where ν is an Ad-invariant measure. Consider the case of an Lp-norm defined by the
inclusion

ι : k ↪→ Lp(M,ν)/R1.
Since Lp(M,ν) is uniformly convex when 1 < p < ∞, the quotient Lp(M,ν)/R1 is uni-
formly convex. Therefore the Lp-norm is uniformly convex and this implies by [Lar19,
Theorem 4.15] that K with the induced metric is uniquely geodesic. We won’t be pursuing
the geometry of these norms in this paper.

Remark 3.10. Recall that for a compact semisimple group K, each element λ ∈ K is
semi-simple. A regular element λ is such that its commutant h = z(λ) is a maximal
abelian subalgebra; equivalently in this setting, h is a Cartan subalgebra of k.

In the case of K = SU(n), an element of k = su(n) is regular if and only if all its
eigenvalues are distinct.
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Example 3.11 (Coadjoint orbits). An important special case is that of a compact con-
nected semi-simple Lie group K acting via Ad in a Hamiltonian way on a (co)adjoint
orbit Oλ containing λ ∈ k∗ ' k.

For the action to be almost effective, it is necessary and sufficient that λ is non-zero in
each simple summand of k (because in that case each simple factor of K acts nontrivially
on the orbit, and this is equivalent to the fact that the (co)adjoint orbit is full in k (see
[BiGhiHe14, Lemma 17] and Remark 3.7). In particular this occurs if λ is regular.

The adjoint orbit is endowed with the Kostant-Kirillov-Souriau symplectic form ω. The
kernel of this homomorphism is the center Z(K) of K which is a discrete subgroup. We
have therefore an inclusion

K/Z(K) ↪→ Ham(Oλ,ω).

At the level of Lie algebras this inclusion is x 7→ [µx] where µx : Oλ→R is the Hamiltonian
map given by the µx(y) = 〈x,y〉. The Hamiltonian is the component of the moment map
ι : Oλ ↪→ k∗ ' k along x, that is µx = ϕx ◦ ι. Moreover, since the action of K is given by
g 7→ gxg−1, it is apparent that if x ∈ k then the induced Hamiltonian vector field is given
by

xOλ
(m) =

d
dt

∣∣∣
t=0

exp(tx) ·m =
d
dt

∣∣∣
t=0

Adetx(m) = (adx)(m) = [x,m].

The symplectic form is
ωx(yOλ

(x),zOλ
(x)) = 〈x, [y,z]〉

where the pairing is given by the opposite Killing form of k as before. The induced Hofer
norm on T1(K) = k is therefore

‖x‖Oλ
= max

y∈Oλ

µx(y)−min
y∈Oλ

µx(y) = max
k∈K

µx(Adk λ)−min
k∈K

µx(Adk λ)(3.8)

= max
k∈K
〈x,Adk λ〉−min

k∈K
〈x,Adk λ〉.

Since the action is almost effective ‖·‖Oλ
is a norm. Since it is also Ad-invariant it induces

a bi-invariant Finsler metric on K.

Example 3.12. In the case of the special unitary group SU(n) we have the inclusion

SU(n)/Zn ' PUn ↪→ Ham(Oλ,ω)

where Oλ is a (co)adjoint orbit of SU(n) passing through the given diagonal matrix λ =

idiag(λ1, . . . ,λn) ∈ su(n) with λ1 ≤ λ2 ≤ . . .≤ λn. At the Lie algebra level this inclusion
is

T1(SU(n)) = su(n) ↪→C∞(Oλ)/R1' Tid Ham(Oλ,ω)

and µx : Oλ→ R is the linear Hamiltonian given by the opposite Killing form

µx(y) =−2n tr(xy∗) = 2n tr(xy).

The Hofer norm (3.8) is given by

‖v‖Oλ
= 2nmax{tr(λuvu−1) : u ∈ SU(n)}−2nmin{tr(λwvw−1) : w ∈ SU(n)},

which is exactly (2n-times) the λ-numerical diameter of v, see the next remark.
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Example 3.13. The group SU(2)/{id,− id}' SO(3) acts on a nontrivial (co)adjoint orbit
Oλ ' S2 which is the two dimensional sphere endowed with the area form ω. The action
is given by rotations, see Example 1.4.H in [Pol01].

Remark 3.14 (One-sided norms). For fixed 0 6= λ ∈ k, and v ∈ k, consider the function

‖v‖+Oλ
= max

k∈K
〈v,Adk λ〉.

Note that by the Ad-invariance of the norm, this can be also computed as

‖v‖+Oλ
= max

k∈K
〈Adk v,λ〉= max{〈y,λ〉 : y ∈ conv(Ov)}.

When λ is non-zero on each simple-summand of k (in particular if λ is regular), then 0
is in the interior of its closed convex hull (see Remark 5.10 below). Therefore this is a
Finlser norm, in fact it is our one-sided Hofer norm of Remark 2.3. In the context of the
group of Hamiltonian symplectomorphisms, these norms appear in [McD02] where the
name one-sided was used.

4. CONVEX GEOMETRY OF HOFER’S NORM ON CARTAN ALGEBRAS

In this section we study generalized Hofer norms on the Lie algebra of a compact
semisimple Lie group. We use several convexity theorems and the convex analysis of
Ad-invariant convex functions. This convex analysis expresses properties of Ad-invariant
functions in terms of properties of its restrictions to Cartan algebras and positive Weyl
chambers, which are fundamental domains for the adjoint action.

We first recall Kirwan’s nonabelian convexity theorem (see [GuSja05]), which will be
useful for our purposes of characterizing the Hofer norm restricted to a Cartan subalgebra
h⊆ k. As before h+ ⊆ h is a choice of closed positive Weyl chamber.

Theorem 4.1 (Kirwan). If K y M is a Hamiltonian action with K a compact connected
Lie group and (M,ω) compact and connected, then µ(M)∩h+ is a convex polytope, i.e.
the convex hull of a finite set of points x1, . . . ,xn in h+, that is

µ(M)∩h+ = conv{x1, . . . ,xn}.

This theorem is a generalization of the Atiyah-Guillemin-Sternberg theorem, which
states that for a Hamiltonian action of a torus on a compact connected manifold the image
of the moment map is the convex hull of the image of the fixed point set of the action. The
Atiyah-Guillemin-Sternberg theorem is a generalization of Kostant’s convexity theorem
which will be useful here:

Theorem 4.2 (Kostant). If K is a compact Lie group and T is a maximal torus in K and
p : k→ h is the projection of the Lie algebra of K onto the Lie algebra of T , then

p(Oλ) = conv(W .λ),

where W .λ is the Weyl group orbit of λ ∈ k.

The projection p is taken along the orthogonal direction given by (minus) the Killing
form of k.
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4.1. The Hofer polytope. With these tools we characterize the intersection with Cartan
algebras of unit balls (of Hofer norms given by compact, full and Ad-invariant sets E ⊆ k).

Lemma 4.3. If E is Ad-invariant, and p : k→ h is the orthogonal projection, then

p(conv(E)) = conv{w.x : x ∈ E ∩h+, w ∈W },

and if E ∩h+ = conv{x1, . . . ,xn}, then

p(conv(E)) = conv{w.xi : i = 1, . . . ,n, w ∈W }.

Proof. This follows from the identities

p(conv(E)) = p(conv(∪λ∈E∩h+Oλ))

= conv(p(∪λ∈E∩h+Oλ)) since p is affine

= conv(∪λ∈E∩h+ p(Oλ))

= conv(∪λ∈E∩h+{w.λ : w ∈W }) by Theorem 4.2

= conv{w.λ : λ ∈ E ∩h+, w ∈W }.

Now observe that if E ∩h+ = conv{x1, . . . ,xn}

p(conv(E)) = conv(∪λ∈E∩h+{w.λ : w ∈W })
= conv(∪w∈W w.(E ∩h+)) = conv(∪w∈W conv(w.(E ∩h+)))
= conv(∪w∈W conv{w.xi : i = 1, . . . ,n})
= conv{w.xi : i = 1, . . . ,n, w ∈W }

where the third and last equalities follow from basic properties of the convex hull opera-
tion. �

Remark 4.4. Let B ⊆ k be an Ad-invariant convex body, and p : k→ h the orthogonal
projection to a Cartan sub-algebra, then Kostant’s Theorem 4.2 implies that B∩h= p(B).
This follows from p(b) ∈ p(Ob) = conv(Ob∩h)⊆ conv(B∩h) = B∩h for b ∈ B.

Proposition 4.5. Set A = E ∩h+, then

(conv(E)− conv(E))∩h= conv{w1.x1−w2.x2 : x1,x2 ∈ A, w1,w2 ∈W }.
(conv(E ∪−E))∩h= conv{w.x : x ∈ A∪−A,w ∈W }.

conv(E)∩h= conv{w.x : x ∈ A,w ∈W }.

If furthermore A = conv{x1, . . . ,xn} is a polytope, then

(conv(E)− conv(E))∩h= conv{w.x−w′.x′ : x,x′ ∈ {x1, . . . ,xn}, w,w′ ∈W }.
(conv(E)∪ conv(E))∩h= conv{w.x : x ∈ {x1, . . . ,xn,−x1, . . . ,−xn},w ∈W }.

conv(E)∩h= conv{w.x : x ∈ {x1, . . . ,xn},w ∈W }.

Proof. For the first equality note that by the previous remark,

(conv(E)− conv(E))∩h= p(conv(E)− conv(E))

= p(conv(E))− p(conv(E))

= conv{w1.x1−w2.x2 : x1,x2 ∈ A, w1,w2 ∈W }
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where the last equality is due to Lemma 4.3. For the fourth assertion note that

(conv(E)− conv(E))∩h= p(conv(E)− conv(E)) = p(conv(E))− p(conv(E))

= conv{w.x−w′.x′ : x,x′ ∈ {x1, . . . ,xn}, w,w′ ∈W }

holds, where we used the second assertion of Lemma 4.3 in the last equality.
For the second equality note that by Remark 4.4,

(conv(E ∪−E)∩h= p(conv(E ∪−E))

= p(conv(conv(E)∪ conv(−E)))

= conv(p(conv(E)∪ conv(−E)))

= conv(p(conv(E))∪ p(conv(−E)))

= conv(p(conv(E))∪−p(conv(E)))

= conv({w.x : x ∈ A, w ∈W }∪−{w.x : x ∈ A, w ∈W })
= conv({w.x : x ∈ A∪−A, w ∈W })

where the penultimate equality is due to Lemma 4.3. For the fifth assertion note that

(conv(E ∪−E)∩h= p(conv(E ∪−E))

= conv{±w.x : x ∈ conv{x1, . . . ,xn}, w ∈W }
= conv{w.x : x ∈ {x1, . . . ,xn,−x1, . . . ,−xn}, w ∈W }

holds, where we used the previous identity and properties of the convex hull operation.
The proof of the third and fourth equalities is simpler and we omit it. �

Oλ∩h −Oλ∩h ext(P)∪{0}

FIGURE 4. Extremal points of the Hofer norm polytope.

In Figure 4 we illustrate the first couple of equalities of Proposition 4.5 in the case
E = Oλ where λ ∈ su(3) is singular and non zero.

Definition 4.6. For E ∩h+ = conv{x1, . . . ,xn}, we call the polytope

P = conv{w.x−w′.x′ : x,x′ ∈ {x1, . . . ,xn}, w,w′ ∈W }

of Proposition 4.5 the Hofer norm polytope. We call

P′ = conv{w.x : x ∈ {x1, . . . ,xn,−x1, . . . ,−xn}, w ∈W }

the second Hofer norm polytope. Finally, we call

P+ = conv{w.x : x ∈ {x1, . . . ,xn}, w ∈W }

the one-sided Hofer norm polytope.
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Remark 4.7 (Polytopes, norms, unit balls). If ext(P) = {y1, . . . ,ym} are the extreme
points of the Hofer norm polytope P then this set is Weyl group invariant. If

B = (conv(E)− conv(E))◦

is the unit ball of the Hofer norm (Remark 2.25), from Remarks 2.23 and 4.4, we obtain

(4.1) B∩h= (conv(E)− conv(E))◦∩h= P◦.

The same holds for the other Hofer norms with B′ = (conv(E)∩−conv(E))◦ and B+ =

conv(E)◦ and the polytopes P′ and P+ respectively (for the second Hofer norm and the
one-sided Hofer norm, see Remark 2.3). The polytopes P and P′ are centrally symmetric,
and in general P+ is not.

From (4.1) and Proposition 2.24 we obtain the following

Corollary 4.8. Let ‖ · ‖µ(M) be the Hofer norm derived from the Ad-invariant set E =

µ(M), and let P be the corresponding Hofer norm polytope. Then Hofer norm restricted
to the Cartan subalgebra h is given by the Minkowski gauge gP◦ , that is

‖x‖µ(M) = gP◦(x) = inf{t > 0 : x ∈ tP◦} ∀x ∈ h.

Remark 4.9. From Remark 2.21 it follows that

P◦ = {x ∈V : 〈yi,x〉 ≤ 1 for i = 1, . . . ,m}.

4.1.1. Direct sums of manifolds and polytopes. If M1, . . . ,Mn are symplectic manifolds
equipped with Hamiltonian actions of K, with moment maps µ1, . . . ,µn, then the induced
action on M1× ·· · ×Mn is also Hamiltonian with moment map µ : M1× ·· · ×Mn → k

given by
µ(m1, . . . ,mn) = µ1(m1)+ · · ·+µn(mn).

Therefore the image of µ is given by

µ(M1×·· ·×Mn) = µ1(M1)+ · · ·+µn(Mn).(4.2)

To find the Hofer norm polytope of this action we need the following

Lemma 4.10. If E1, . . . ,En are Ad-invariant and compact subsets of k, and p : k→ h is
the orthogonal projection, then

(conv(E1 + · · ·+En)− conv(E1 + · · ·+En))∩h
= (conv(E1)− conv(E1))∩h+ · · ·+(conv(En)− conv(En))∩h.

Proof. Again, by Remark 4.4

(conv(E1 + · · ·+En)− conv(E1 + · · ·+En))∩h
= p((conv(E1 + · · ·+En)− conv(E1 + · · ·+En)))

= p((conv(E1)− conv(E1))+ · · ·+(conv(En)− conv(En)))

= p(conv(E1)− conv(E1))+ · · ·+ p(conv(En)− conv(En))

= (conv(E1)− conv(E1))∩h+ · · ·+(conv(En)− conv(En))∩h.

�
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The next proposition is now a straightforward consequence of Lemma 4.10.

Proposition 4.11. If M1, . . . ,Mn are symplectic manifolds equipped with Hamiltonian
almost effective actions of a compact semi-simple group K such that the Hofer norm poly-
topes are P1, . . . ,Pn. Then the induced action on M1×·· ·×Mn has Hofer norm polytope
P1 + · · ·+Pn.

Remark 4.12. Proposition 4.11 is also valid in the case of the one-sided Hofer Finsler
norm (Remark 3.14), with polytopes P+

1 , . . . ,P+
n and P+

1 + · · ·+P+
n .

4.1.2. Faces of balls of Ad-invariant norms. In this section we will use Lewis’ results
on convex analysis of Ad-invariant functions and their restriction to Cartan subalgebras
[Lew00] to describe the faces of the ball of Ad-invariant norms.

Since Lewis’ results are stated in terms of subgradients of gauge function we provide
next the correspondence between the faces of the balls and the gradients of the gauge
functions: the subdifferential of a gauge gB at a unit norm x corresponds via y 7→ ϕy to
the supporting functionals of the polar of the ball at x.

Recall that the subdifferential of a convex function f : V → R at x0 ∈V is defined as

∂ f (x0) = {y ∈V : f (x)− f (x0)≥ 〈x− x0,y〉 ∀x ∈V}.

Each such y which satisfies the condition stated above is called a subgradient. It defines
a supporting hyperplane to the graph of f at (x0, f (x0)).

Proposition 4.13. Let B⊆V be a convex body containing 0 ∈V and let gB be the gauge
function associated to B. For a non-zero x ∈V

∂gB(x) = Fx(B◦) and ∂gB◦(x) = Fx(B)

i.e. ∂gB(x) is the exposed face of B◦ defined by x.

Proof. If x 6= 0, we first claim that

∂gB(x) = {y ∈V : 〈y,x〉= gB(x),gB◦(y) = 1}.

This is Corollary 23.5.3 in [Rock70], we give a direct proof for the convenience of the
reader. Note that since gB = hB◦ (Proposition 2.24), 〈y,x〉 = gB(x) and gB◦(y) = 1 imply
〈x,y〉 = supw∈B◦〈x,w〉 = gB(x) and 〈y,z〉 ≤ gB(z) ∀z ∈ V respectively. Thus for such
y ∈V and any z ∈V , we have 〈z,y〉−〈x,y〉 ≤ gB(z)−gB(x) which shows that y ∈ ∂gB(x).
Reciprocally, if y ∈ ∂gB(x), then replacing with z = 0 and z = 2x in

sup
w∈B◦
〈w,z〉− sup

w∈B◦
〈w,x〉= gB(z)−gB(x)≥ 〈z,y〉−〈x,y〉,

we obtain gB(x) = 〈x,y〉; in particular gB◦(y)≥ 1. But then from gB(z)≥ 〈z,y〉 for all z it
also follow that gB◦(y)≤ 1, thus proving the claim.
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Therefore, noting that x/gB(x) ∈ bdB

∂gB(x) = {y ∈V : 〈y,x〉= gB(x),gB◦(y) = 1}
= {y ∈V : 〈y,x〉= gB(x),y ∈ bdB◦}
= {y ∈V : 〈y,x/gB(x)〉= 1,y ∈ bdB◦}
= {y ∈V : Hx/gB(x) supports B◦ at y} by Theorem 2.22

= Fx/gB(x)(B
◦) = Fx(B◦). by Definition 2.17

The other identity is immediate from the polar duality. �

The next theorem relates the subdifferential of the gauges to the subdifferentials of the
gauges restricted to Cartan subalgebras h. It’s proof can be found in [Lew00, Theorem
3.5]. We define the map δ : k→ h+ by Ox∩h+ = {δ(x)}, that is, δ(x) is the unique element
in the positive Weyl chamber h+ that is Ad-conjugated to x.

Theorem 4.14 (Lewis). Let K be a semi-simple compact group and let gk : k→R+ be an
Ad-invariant gauge function. Then y ∈ ∂gk(x) if and only if δ(y) ∈ ∂gh(δ(x)) and there is
u ∈ K such that Adu(x),Adu(y) ∈ h+.

If g = k⊕ p is the Cartan decomposition of a semi-simple Lie algebra g, then Lewis’
theorem was stated for an Ad invariant gauge on p. We can take the complexified Lie
algebra g = k⊕ ik and apply the theorem to p = ik. In the case K = SU(n), the matrices
x and y such that there is u ∈ K with Adu(x),Adu(y) ∈ h+ are said to be simultaneously
ordered diagonalizable.

We now restate Lewis’ theorem in a form convenient to its application in Section 6;
there is a related formulation due to Lewis in [Lew98] for the orthogonal group of matri-
ces.

Theorem 4.15. Let K be a semi-simple compact group, let B be an Ad-invariant convex
body in k containing 0, and let h be a Cartan algebra in k and h+ a positive Weyl chamber.
Then for non-zero x ∈ h+

Fx(B) = AdZ(x)(Fx(B∩h)∩h+),

and for general x′ ∈ k, if v ∈ K is such that Adv(x′) ∈ h+, then

Fx′(B) = Adv−1 AdZ(Adv(x′))(FAdv(x′)(B∩h)∩h+).

Proof. We restate Theorem 4.14 in the case that x∈ h+. Let g = gB be the gauge function,
see Definition 2.18. The theorem states that y ∈ ∂g(x) if and only if γ(y) ∈ ∂gh(x) and for
some u ∈ K we have Adu(x),Adu(y) ∈ h+. Observe that Adu(x) ∈ h+ for u ∈ K if and
only if u ∈ Z(x), so the condition Adu(y) ∈ h+ reduces to y ∈ AdZ(x)h+. The conditions
γ(y) ∈ ∂gh(x) and y ∈ AdZ(x)h+ are equivalent to y ∈ AdZ(x)(∂gh(x)∩h+). Hence

∂g(x) = AdZ(x)(∂gh(x)∩h+).

For a general x′ ∈ k take v ∈ K such that Adv(x′) ∈ h+. Then, since the adjoint action is
isometric for the norm g we get

∂g(x′) = Adv−1 AdZ(Adv(x′))(∂gh(Adv(x′))∩h+).
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In the case that g = gB and gh = gB∩h we have

Fx(B◦) = ∂B(x) = AdZ(x)(∂gB∩h(x)∩h+) = AdZ(x)(Fx(B◦∩h)∩h+),

where we used Fx(B◦) = ∂B(x) and Fx(B◦ ∩ h) = ∂gB∩h (this follows from Proposition
4.13). If we take polars, by Remark 2.23 and the bipolar property, we obtain the required
statement. �

If B = conv(E−E)◦, then B∩h= conv(E−E)◦∩h= (conv(E−E)∩h)◦ = P◦, so we
get the following:

Corollary 4.16. If B = conv(E−E)◦ is the unit ball of Hofer’s norm and P = conv(E−
E)∩h is Hofer’s norm polytope then for non-zero x ∈ h+

Fx(B) = AdZ(x)(Fx(P◦)∩h+).

The same characterization holds for the one-sided Hofer norm and its polytope P+.

5. THE GEOMETRY OF GROUPS WITH BI-INVARIANT FINSLER METRICS

In this section we focus our study of geodesics of Lie groups with Finsler metrics
obtained by (left or right) translation of Ad-invariant Finsler norms. We want to em-
phasize that in this section, we only require that norms are positively homogeneous, i.e.
‖λx‖= λ‖x‖ for λ≥ 0, thus including our one-sided Hofer norms. Therefore the distance
obtained is not necessarily symmetric.

We need to begin this section with some remarks concerning compact semi-simple Lie
algebras and their root decomposition.

Remark 5.1. A connected finite dimensional Lie group K admits a bi-invariant Riemann-
ian metric if and only if it is isomorphic to the cartesian product of a compact group and
an additive vector group (see [Mil76, Lemma 7.5]). Therefore in that case k ' k0⊕ a

where a is an abelian sub-algebra and k0 is semi-simple. To simplify the discussion, we
will only consider here compact groups K with semisimple Lie algebra k. Thus K is al-
ways unimodular, in particular tradv = 0 for any v ∈ k. The Ad-invariant inner product is
given by (minus) the Killing form of k, as before, and for this Ad-invariant inner product,
the operator adv is skew-adjoint for any v ∈ k ([Mil76, Lemmas 6.3 & 7.2]).

What follows, in the form of a Remark, is in fact a recollection of useful facts that we
will use about the real root decomposition of a real semi-simple Lie algebra. It will also
help to fix and clarify the notation.

Remark 5.2 (Real root decomposition). Let ∆ be the set of (real) roots of k with respect
to a fixed Cartan subalgebra h, and denote ∆+ the positive roots. There is an orthonormal
set (the real root vectors)

{uα,vα : α ∈ ∆+} ⊆ k

with respect to this inner product, such that for each h ∈ h

[h,uα] =−α(h)vα [h,vα] = α(h)uα [uα,vα] = hα,(5.1)
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where hα ∈ h is the unique element such that 〈hα, ·〉 = −α(·) (see for instance [Kna02,
Chapter 6]). Set

Zα = Ruα⊕Rvα.

Then k= h⊕
⊕

α∈∆+
Zα, and moreover for each h ∈ h, we have

(5.2) adh = i ∑
α∈∆+

α(h)(uα⊗ vα− vα⊗uα) = i ∑
α∈∆+

α(h)Tα

were we write Tα = (uα⊗ vα− vα⊗uα) for short. Note that TαTβ = 0 when α 6= β.

Remark 5.3. The Weyl group of K acts transitively on the roots (see the remark in
[Serre01, p. 47]). Thus, if σ is a permutation of the roots, there exists kσ ∈ K such
that Adkσ

uα = uσα and likewise with vα. Let w ∈ h, and assume that Tσ is the linear
transform in k obtained by permuting the eigenvalues of adw, then

Tσ = i ∑
α∈∆+

σα(w)(uα⊗ vα− vα⊗uα) = i ∑
α∈∆+

α(w)(uσα⊗ vσα− vσα⊗uσα)

= Adkσ
i ∑

α∈∆+

α(w)(uα⊗ vα− vα⊗uα)Ad−1
kσ

= Adkσ
adwAd−1

kσ
= ad(Adkσ

w).

Then Tσ = ad(Adkσ
w). It is clear that Tσ commutes with adw, and since k is semi-simple,

Adkσ
w commutes with w and in particular wσ = Adkσ

w ∈ h.

5.1. Geodesics of groups with bi-invariant Finsler metrics. First we recall here some
useful facts regarding norming functionals in k, their proofs are quite elementary and can
be found in [Lar19, Section 4].

Remark 5.4 (Gauss’ Lemma). Let k be the Lie algebra of K equipped with an Ad-
invariant norm (or Finsler norm). As mentioned in the introduction, it is relevant to
remark here that the norm does not need to be homogeneous, it is only necessary that
it is positively homogeneous. For v ∈ k let ϕ be a norming functional of v or −v. Then

(1) We have ϕ([w,v]) = 0 for all w ∈ k. Equivalently, ϕ◦ adv≡ 0 on k.
(2) ϕ(eλadvw) = ϕ(w) for all w ∈ k and λ ∈ R.
(3) ϕ(e−vDexpv w) = ϕ(w) for all w ∈ k.

When the norm ‖ · ‖ is a norm derived from an inner product, the third item above is
in fact Gauss’ Lemma of Riemannian geometry (it is well-known that the Riemannian
exponential map, for a bi-invariant Riemannian metric in a Lie group, coincides with the
group exponential). We next show how to describe the boundary of a ball in K. We first
recall a definition.

Definition 5.5. Let B be a convex body in a vector space V and let v ∈ bdB. The solid
tangent cone at v is

TCv :=
⋂
{H−v : Hv is a supporting hyperplane of B at v}.

If v ∈ (V,‖ · ‖) and ‖v‖= r > 0, then taking B = Br(0) it is apparent that

TCv :=
⋂
{ϕ−1(−∞,r] : ϕ is a norming functional of v}.
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Therefore, by Gauss’ Lemma above, for each 0 6= v ∈ k, if w ∈ TCv then e−vDexpv w ∈
TCv. Moreover, if v is such that the differential of the exponential map is invertible (for
instance, if v is smaller that the injectivity radius of K, see Definition 5.11 below), then it
is clear that

Dexpv(TCv) = evTCv.

Geometrically, the differential of the exponential map at v acts on the tangent cone at v as
the left translation.

Remark 5.6. Any functional ϕ can be described as ϕ(v) = 〈v,a〉 for some a ∈ k, via the
inner product in k (Remark 5.1). That is ϕ = − tr(ada · ). If ϕ(z) = ‖z‖ for some z ∈ k,
then ϕ([v,z]) = 0 for all v ∈ k (Remark 5.4). Thus for any v ∈ k,

0 = ϕ([v,z]) = 〈[v,z],a〉= 〈v, [z,a]〉

and then [z,a] = 0. Therefore ada and adz commute, and they are simultaneously diago-
nalizable. Let {ei}i=1,...,N be an orthonormal basis of kC that diagonalizes both simultane-
ously, let qi, j = ei⊗e j and qi = qi,i the corresponding rank-one orthogonal projections. If
adz = i∑ j∈J z jq j is the spectral decomposition of the skew-adjoint operator adz, we can
write

A = ada = i ∑
j∈J

a jq j + iB

for certain a j ∈ R and B∗ = B = ∑k,l /∈J Bklqkl , with Bq j = 0 for all j ∈ J.

Lemma 5.7 (Supporting norming functionals). If ϕ norms z∈ k as in the previous remark,
and ‖ϕ‖ = 1, drop the term B and all the a j = 0, and consider ψ = − tr(Ã ·), where
Ã = i∑ j a jq j. Then ψ is still norming for z and has unit norm.

Proof. Note first that ψ is still norming for z:

ψ(z) = ∑
j

a jz j tr(q j) = tr(A◦ adz) = ϕ(z) = ‖z‖.

Now for any x ∈ k, write adx as a block matrix in terms of the q j and its orthogonal
complement,

A = ada =

(
ia j 0
0 B

)
Ã =

(
ia j 0
0 0

)
adx =

(
xi j ∗
∗ x0

)
where x0q j = 0 for all j. Then

1 = ‖ϕ‖= sup
‖x‖=1

ϕ(x) = sup
‖x‖=1

− tr(ada◦ adx) = sup
‖x‖=1

∑
j

a jx j j + tr(Bx0)

≥ sup
‖x‖=1,x0=0

∑
j

a jx j j + tr(Bx0) = sup
‖x‖=1,x0=0

∑
j

a jx j j

= sup
‖x‖=1

∑
j

a jx j j = sup
‖x‖=1

− tr(Ã◦ adx) = sup
‖x‖=1

ψ(x) = ‖ψ‖.

This proves that ‖ψ‖ ≤ 1, but since ψ(z) = ‖z‖, it must be ‖ψ‖= 1. �
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We now charachterize the linear order given by Finsler Ad-invariant norms; results
in the same vein can be found in [AtBo83, Section 12], [BhaHo89, Proposition 6] and
[HoTa99, Proposition 2.8]. For z,w ∈ k we denote −→w = (w1,w2, . . . ,wN) the string of real
numbers such that iw j are the eigenvalues of adw in the complexification kC of k, and
likewise with −→z .

Proposition 5.8 (Majorization and norms). Let z,w ∈ k, let N = dim(k). The following
are equivalent:

(1) z ∈ convOw, more precisely there exist (at most) N + 1 points ki ∈ K and N + 1
real numbers λi ≥ 0 with ∑i λi = 1 such that

z =
N+1

∑
i=1

λi Adki w.

(2) −→z ≺−→w (strong majorization).
(3) ‖z‖ ≤ ‖w‖ for all Ad-invariant Finsler norms in k.
(4) maxk∈K〈z,Adk x〉 ≤maxk∈K〈w,Adk x〉 for all x ∈ k.

If moreover equality holds for some Finsler norm, then z and all the Adki w lie in the same
face of the ball for that norm (and in fact lie in the intersection of all the faces that z lies
in). If that norm is strictly convex then z = Adk w for some k ∈ K.

Proof. The fact that any element in the orbit can be written with a prescribed number of
combinations (N + 1) is a consequence of Caratheodory’s theorem. Let us establish first
the equivalence (1)⇔ (2). Assume (1), passing to the adjoint representation we have

adz =
N

∑
i=1

λi Adki adwAd−1
ki

.

Each Adki is a unitary operator acting in kC therefore adz belongs to the convex hull of
the coadjoint orbit of adw, and this in turn (and by Schur-Horn’s theorem) implies that
strong majorization −→z ≺ −→w holds. Now assume (2) holds, let h be a Cartan subalgebra
containing w, let ∆+ be the positive simple roots and let k ∈ K such that Adk z ∈ h. The
spectrum of

ad(Adk z) = Adk adzAd−1
k

is also the string −→z , and the assumption implies −→z is in the convex hull of the permu-
tations of the eigenvalues of adw (see [Bhatia97, Theorem II.1.10]). Equivalently (and
again invoking Caratheodory’s theorem), there are N +1 such elements with

ad(Adk z) =
N+1

∑
i=1

λiTσi

for a certain string of non-negative numbers (λi)i=1,...,N+1 such that ∑i λi = 1. Now each
Tσi is obtained permuting the eigenvalues of adw or equivalently, permuting the roots
α ∈ ∆+. By Remark 5.3, any such permutation is obtained by an inner automorphism,
therefore

ad(Adk z) =
N+1

∑
i=1

λi ad(Adhi w) = ad(
N+1

∑
i=1

λi Adhi w),

and by the semi-simplicity of k, we obtain z=∑
N+1
i=1 λi Adki w∈ convOw, where ki = k−1hi.
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Clearly (1)⇒ (3), and (3)⇒ (4) when x ∈ k is a regular element (so we obtain a
non-degenerate Finsler norm, see Remarks 3.14 and 5.10). Since regular elements are
dense in k, it is straightforward to see that (4) must then hold for any x ∈ k, if (3) holds.
Now assume that (1) does not hold, then by Hahn-Banach’s theorem there exists a linear
functional ϕ separating z and the convex capsule of the orbit, i.e.

ϕ(y)≤ r < ϕ(z) ∀y ∈ conv(Ow).

Let x ∈ k such that ϕ = 〈x, ·〉, then by Remark 3.14

max
k∈K
〈w,Adk x〉= max

k∈K
〈Adk w,x〉= max{〈y,x〉 : y ∈ conv(Ow)} ≤ r < 〈z,x〉.

This shows that (4) cannot hold, finishing the proof of the equivalences. Now assume
that any of the conditions hold, and we have equality of norms ‖z‖= ‖w‖ holds for some
norm, then

‖w‖= ‖z‖= ‖∑λi Adki w‖ ≤∑λi‖Adki w‖= ∑λi‖w‖ ≤ ‖w‖.

We note that there is a common norming functional ϕ for all the λi Adki w by Lemma 2.7;
since λi ≥ 0 this amounts for the Adki w in the same face of a sphere of the norm. Then
also

ϕ(z) = ϕ(∑
i

λi Adki w) = ∑λiϕ(Adki w) = ∑λi‖w‖= ‖w‖= ‖z‖.

If ϕ is any functional norming z, then

‖z‖= ϕ(z) = ∑λiϕ(Adki w)≤∑λi‖Adki w‖= ‖w‖= ‖z‖

shows that it must be ϕ(Adki w) = ‖Adki w‖ for all i, thus these vectors are in fact in the
intersection of all the faces where z lives. If the norm is strictly convex all the Adki w are
aligned, but being normed by the same functional they must be equal therefore z = Adk w
as claimed. �

Remark 5.9. It suffices to check condition (3) above only for strictly convex norms to
obtain the equivalences. This is because any Ad-invariant Finsler norm ‖ · ‖ can be ap-
proximated explicitly with a strictly convex (Ad-invariant, Finsler) norm by means of

‖x‖ε = ‖x‖+ ε‖x‖2.

Here ‖x‖2
2 =− tr(adx◦ adx) is the norm derived from the Killing form of k. Likewise, it

suffices to check (4) for regular x ∈ k.

Remark 5.10 (One-sided norms). Since K is compact it is unimodular and then 0 =

∑ j w j = i tr(adw) (Remark 5.1). This easily implies that all the partial sums ∑
m
k=1 wk,

with the wk rearranged in decreasing order, must be non-negative. Thus the vector −→w
strongly majorizes the zero vector in RN , i.e.

−→
0 ≺ −→w , and by the previous proposition,

0 ∈ conv(Ow) for any w ∈ k. In particular the one-sided Hofer norms (Remark 3.14) are
in fact-nonnegative, regardless their degeneracy or non-degeneracy. Assumming that the
orbit Ow is full, then 0 must be an interior point of conv(Ow), and then we obtain a true
Finlser norm. This can be seen using the argument in [BiGhiHe14, Lemma 6]: if 0 is in
the boundary of conv(Ow), by Hahn-Banach’s separation theorem, there exists 0 6= x ∈ k
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such that ϕx(0) = 0 and ϕx(conv(Ow)) ≥ 0. But then it must be ϕx(Ow) = 0 because
otherwise ∫

k∈K
ϕx(Adk(w))dk = ϕx(

∫
k∈K

Adk(w)dk)> 0

contradicting that
∫

k∈K Adk(w)dk is a fixed point of the adjoint action, therefore it is 0
because k is semi-simple. Since ϕx(Ow) = 0, the orbit is not full.

5.1.1. Domain of injectivity of the exponential. Since K is a finite-dimensional Lie group,
the exponential map of K is a local diffeomorphism for some open ball of the norm ‖ · ‖.
More precisely, let D ⊆ k be a maximal open convex Ad-invariant set, such that V =

exp(D) is open in k and exp : D→V is a diffeomorphism. It will be convenient to denote
‖ · ‖∞ to the Minkowski gauge of the set D; it is an Ad-invariant Finsler norm in k and we
will refer to it as the uniform norm. Then we also define

Definition 5.11. Let K be a Lie group, ‖ · ‖ an Ad-invariant Finsler norm on k, and for
R > 0 let BR = {v ∈ k : ‖v‖ < R}, VR = exp(BR). If exp : BR→ VR is a diffeomorphism
between open sets and R is maximal, we call R the radius of injectivity for the given norm.

Note that if BR⊆D then exp : BR→VR is a diffeomorphism between open sets, thus one
looks for balls of the given norm that fit inside the domain of injectivity of the exponential
map.

Remark 5.12. The condition BR ⊆D is equivalent to BR∩h⊆D∩h. In the case of Hofer
norms BR ∩ h = R{y1, . . . ,ym}◦, where {y1, . . . ,ym} are the extreme points of the Hofer
norm polytope. Note also that D∩h can be taken as the interior of ∪w∈W w.C, where C is
a Weyl alcove.

Example 5.13. For the group SU(n) we take D = {z ∈ sun : ‖z‖∞ < π} where ‖ · ‖∞ now
is exactly the usual spectral norm. Equivalently, D∩h is

{diag(x1, . . . ,xn) ∈ h : |xi|< π, for i = 1, . . . ,n}.

For the group SU(n)/Zn we take

D∩h= {diag(x1, . . . ,xn) ∈ h : |xi|< π/n, for i = 1, . . . ,n}.

We now show that the convex body D (which depends only on K) is optimal in terms
of lengths of segments (one-parameter subgroups), for any bi-invariant distance:

Theorem 5.14 (Exponential map and Finsler norms). Let z,w ∈ k such that ez = ew. As-
sume that z ∈ D/2, Then w commutes with z and ‖z‖ ≤ ‖w‖ for any Ad-invariant Finsler
norm ‖ · ‖ in k. If equality of norms holds for a strictly convex norm, then w = z.

Proof. Assume first that w is regular, let z(w) = h denote the Cartan subalgebra. Note that

exp(et adwz) = exp(Adetw z) = etweze−tw = etwewe−tw = ew.

Therefore, differentiating at t = 0 we obtain Dexpz([w,z]) = 0, and since z ∈ D, we con-
clude that [w,z] = 0, and z ∈ h. Since eadw = eadz, then exp(ad(w− z)) = exp(adw−



HOFER’S METRIC IN COMPACT LIE GROUPS 31

adz) = 1, implying that σ(ad(w− z))⊆ 2πiZ. This implies, using equation (5.2), that we
can write

i ∑
α∈∆+

wαTα = adw = i ∑
α∈∆+

(zα +2πnα)Tα

wiht wα,zα ∈ R and nα ∈ Z. It will be convenient to number the roots, so we let J =

card(∆+) and we have w j = z j +2πn j for all j ∈ J, where some of the z j might be zero.
Note that since z ∈ D/2, then 2z ∈ D therefore the exponential map is injective and a
diffeomorphism in t2z for t ∈ [−1,1], and in particular it must be σ(ad2z)⊆ (−2πi,2πi)
(by inspection of the formula of the differential of the exponential map, see Remark 5.4
below). Thus we have |2z j| < 2π for all j ∈ J or equivalently −π < z j < π. We can
asumme that the z j are given in order z1 ≥ z2 ≥ ·· · ≥ zJ (recall also ∑z j = 0). Let us
reorder the w j in decreasing order also, so there is a permutation σ of {1, . . . ,J} such that
if v j = wσ j then v1 ≥ v2 ≥ ·· · ≥ vJ (and we also have ∑v j = 0). From here it is also clear
that ∑n j = 0. Let’s spare for a moment those j such that n j = 0, and for the others, note
that if n j > 0 and nr < 0 then

z j +2πn j >−π+2π = π >−π =−2π+π > 2πnr + zr.

This shows that the v j = zσ j +2πnσ j, with positive nσ j, are always bigger than those with
negative nσ j. We split the indices in two sets: let j0 be such that if j ∈ 1, . . . , j0 then
nσ j > 0 and otherwise nσ j < 0 when j0 +1≤ j ≤ J. We compute the sum of the z j up to
any such 1≤ j ≤ j0, we have

j

∑
k=1

zk ≤
j

∑
k=1

π≤ jπ.

On the other hand, it is clear that the sum of the first j bigger vk, for k ≤ j, must be of
those vk with nσk > 0, therefore

j

∑
k=1

v j =
j

∑
k=1

zσk +2πnσk ≥− jπ+2π j = jπ.

Thus if j ≤ j0,

(5.3) z1 + z2 + · · ·+ z j ≤ v1 + v2 + · · ·+ v j.

Now assume that j ≥ j0 +1, and note that
j

∑
k=1

zk =−
N

∑
k= j+1

zk < π(N− ( j+1)).

Likewise
j

∑
k=1

vk =−
N

∑
k= j+1

vk =−
N

∑
k= j+1

(zσk +2πnσk)

and note that now all the nσk ≤−1, since k ≥ j+1≥ j0 +1 > j0. Therefore
j

∑
k=1

vk ≥−π(N− ( j+1))+2π(N− ( j+1)) = π(N− ( j+1)),

and equation (5.3) is also valid for j ≥ j0. Let −→v = (v1,v2, . . . ,vN) and likewise −→z =

(z1,z2, . . . ,zN). Then equation (5.3) together with ∑z j = ∑v j = 0 tells us that −→z ≺ −→v ,
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that is −→v majorizes −→z . Then by [Bhatia97, Theorem II.1.10], −→z is in the convex hull
of all vectors obtained by permutating the coordinates of −→v . Clearly, we can add those
w j such that w j = z j (n j = 0) and this still holds true. Since the v j are just a permutation
of the w j, then −→z is in fact in the convex hull of all vectors obtained permutating the
coordinates of −→w = (w1,w2, . . . ,wJ). By Remark 5.3, we have

adz = ∑
σ

λσ ad(Adkσ
w) = ad(∑

σ

λσ Adkσ
w),

and since k is semi-simple, it must be z = ∑λσ Adkσ
w. Then

‖z‖ ≤∑λσ‖Adkσ
w‖= ∑λσ‖w‖= ‖w‖

proving the claim for regular w. If w is not regular, fix the bi-invariant distance in K
given by the uniform norm (the Minkowski Finsler norm of the convex set D). For each
ε > 0 pick wε ∈ k such that ‖wε‖∞ < ε and w+wε is regular (regular elements are dense).
Observe that

dist(ew,ew+wε)≤ ‖wε‖∞ < ε

by Theorem 5.18. Therefore there exists yε ∈ k such that eweyε = ew+wε . Again, note that

‖yε‖∞ = dist(1,eyε) = dist(1,e−wew+wε) = dist(ew,ew+wε)≤ ‖w‖∞ < ε.

Now consider the map f : v 7→ ez+v. Since f (0) = ez and D f0 = Dexpz, the hypotesis
z ∈ D/2 guarantees that f is a local diffeomorphism from a 0-neighbourhood to a neigh-
bourhood of ez. Therefore there exists a unique zε ∈ k in that neighbourhood, such that
ez+zε = ezeyε . Note also that when yε→ 0, then also zε→ 0. In particular, for small ε > 0,
z+ zε ∈ D/2 just like z. Then from

ez+zε = ezeyε = eweyε = ew+wε .

and the previous proof, we can conclude that ‖z+ zε‖ ≤ ‖w+wε‖ for any Ad-invariant
Finsler norm in k. Letting ε→ 0 gives us the desired inequality ‖z‖ ≤ ‖w‖.

Now assume that there is an equality of norms for a strictly convex norm, then by
Proposition 5.8, z = Adk w for some k ∈ K, and in particular w ∈ D/2 also. But ew = ez

and the injectivity of the exponential map implies z = w. �

Remark 5.15. If z,w are as in the previous theorem, then by Proposition 5.8, we have

z =
N+1

∑
i=1

λi Adki w,

for some ki ∈K, λi≥ 0 with ∑i λi = 1. We also mention here that the proof of the previous
theorem shows that when w is regular, the ki are in the Weyl group of K.

For linear Lie groups such as K = SU(n), the passage to the adjoint representation is
unnecessary. Thus from ez = ew with z ∈ D we can conclude that [w,z] = 0 and therefore

w = z+2πi∑
j

n jq j.

With the same proof as the previous theorem, we now obtain the same result for z ∈ D,
i.e. ‖z‖∞ < π (and not just z ∈ D/2):
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Corollary 5.16 (Linear groups). Let K ⊆ Mn(C) be compact semi-simple linear Lie
group. Let z,w ∈ k such that ez = ew, and assume that z ∈ D. Then ‖z‖ ≤ ‖w‖ for any
Ad-invariant Finsler norm ‖ · ‖ in k, and if equality of norms holds for a strictly convex
norm, then w = z.

5.1.2. Local Hopf-Rinow theorem and the characterization of geodesics. Let us take a
look at geodesics of a Lie group with a bi-invariant Finsler metric. We recall here the fun-
damental results about geodesics, for proofs see [Lar19, Section 4]. For a given Finsler
norm, let R > 0 be an injectivity radius. The results are stated in terms of the left logarith-
mic derivatives γ

−1
t γ̇t and hold also if stated in terms of the right logarithmic derivative

since the norm is Ad-invariant.

Definition 5.17 (Short paths). We call a curve γ : [0,1]→ K short or we say that γ is a
geodesic if it minimizes the length functional

L(γ) = length(γ) =
∫ b

a
‖γ̇t‖γt dt =

∫ b

a
‖γ̇tγ

−1
t ‖dt =

∫ b

a
‖γ−1

t γ̇t‖dt

among all curves in K with the same endpoints.

Theorem 5.18 (Geodesics). Let u0,u1 = u0ez ∈ K with ‖z‖< R.
(1) If δ(t) = u0etz, t ∈ [0,1], then δ is shorter than any other piecewise C1 path γ in K

joining u0,u1 and dist(u0,u1) = ‖z‖.
(2) If v,w ∈ k then

dist(ev,ew)≤ ‖w− v‖
and if w,v commute and ‖w− v‖ ≤ R, then equality holds (this is known as the
exponential metric decreasing property).

(3) Let Γ : [a,b] → k be a piecewise C1 short path joining 0,z, let γ = eΓ. Then
‖γ−1

t γ̇t‖= ‖Γ̇t‖ for all t, and γ is short in K with the same length than Γ. Moreover
if ϕ is norming functional for z, then

ϕ(γ−1
t γ̇t) = ‖γ−1

t γ̇t‖= ‖Γ̇t‖= ϕ(Γ̇t) ∀t ∈ [a,b],

thus γ−1γ̇ (normalized) sits inside a face of the unit sphere of the norm.
(4) γ : [a,b]→ K is a piecewise C1 short path joining 1,ez in K if and only if γ = eΓ

for a piecewise C1 path Γ : [a,b]→ k joining 0,z (with ‖Γt‖ ≤ R) and

ϕ(Γ̇t) = ‖γ−1
t γ̇t‖= ϕ(γ−1

t γ̇t)

for some unit norm functional ϕ and all t ∈ [a,b] (and then this holds for any
norming functional of z).

(5) If z/‖z‖ is an extremal point of the unit sphere of k, then the only short piecewise
C1 path joining 1,ez in K is (a reparametrization of) the segment δ(t) = etz.

These results were established in [Lar19] with some generality; for finite dimensional
groups we can improve the existence of short paths invoking the metric version of Hopf-
Rinow’s theorem. As usual, here K denotes a connected compact Lie group with semi-
simple Lie algebra k. The last item of this theorem extends significanly (to this family of
Lie groups) the results obtained in [AnLVa14] for the group U(n).
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Theorem 5.19. Let dist be a bi-invariant metric in K (i.e. from an Ad-invariant Finsler
norm ‖ · ‖ in k). Then

(1) For each u1,u2 ∈ K there exists a short polygonal path δ joining them, i.e. a
concatenation of segments t 7→ uietzi such that ‖zi‖< R and

L(δ) = ∑‖zi‖= dist(u1,u2).

(2) If the norm is strictly convex, there exists w∈ k such that ‖w‖= dist(u1,u2) and the
segment t 7→ u1etw is a short path joining them. Any short path is a reparametriza-
tion of a segment, and if dist(u1,u2)<R, there is exactly one short segment joining
them.

(3) If z ∈ D/2 (z ∈ D for linear Lie groups), then dist(1,ez) = ‖z‖. If the norm is
strictly convex, t 7→ etz is the unique short path joining them.

Proof. Let distg denote the bi-invariant distance induced by the Ad-invariant metric given
by the Killing form in k. It is well-known that such distg metric has one-parameter groups
as Riemannian geodesics, therefore it is geodesically complete. By Hopf-Rinow’s theo-
rem (K,distg) is metrically complete, and therefore (K,dist) is metrically complete since
both metrics are uniformly equivalent (since both are bi-invariant and the tangent norms
are uniformly equivalent, k being finite dimensional). Since any of these metrics induce
the original topology of K, and since K is a finite dimensional manifold, it is locally com-
pact and we can apply Cohn-Vossen’s theorem [BuBuIv01, Theorem 2.5.28] to the metric
space (K,dist). This theorem tells us that any approximating sequence of paths in K has
a limit point γ : [0,1]→ K such that γ is rectifiable and L(γ) = dist(u1,u2). Partition γ

into finite pieces, in points denoted γi = γti , such that dist(γi,γi+1)< R. Write γi+1 = γiezi

using Theorem 5.18(1), hence if δ is the concatenation of these paths,

L(δ) = ∑‖zi‖= ∑dist(γi,γi+1) = dist(u1,u2)

which shows that δ is minimizing. If the norm is strictly convex, it can be shown that the zi

commute, hence we can replace the concatenation of segments with a segment; the proof
of this and the local uniqueness can be found in [Lar19, Theorem 4.15]. Now assume that
z is in (half of) the domain of injectivity of the exponential map. Assume first that the
norm is strictly convex. By the previous item of this theorem, there exists w ∈ k such that
t 7→ etw joins 1,ez and such that ‖w‖ = dist(1,ez) ≤ ‖z‖. But Theorem 5.14 also tells us
that ‖z‖ ≤ ‖w‖, therefore ‖z‖= ‖w‖= dist(1,ez). Now let ‖·‖ be any Ad-invariant norm,
let ε > 0 and let ‖v‖g =

√
〈v,v〉 be an Ad-invariant Riemannian metric in k. Consider

|v|ε = ‖v‖+ ε‖v‖g,

and note that | · |ε is Ad-invariant and strictly convex. Therefore by what we just proved,
if z ∈ D/2 then

‖z‖ ≤ |z|ε = distε(1,ez)≤ Lε(γ) = L(γ)+ εLg(γ)

for any piecewise smooth path γ joining 1,ez in K. Letting ε→ 0+ first, and taking the
infimum over the paths γ, shows that ‖z‖ ≤ dist(1,ez) as claimed. If the norm is strictly
convex, any other short path is also a segment t 7→ etw by the second item of this theorem.
Thus ew = ez and ‖w‖ = ‖z‖, and by Theorem 5.14, we conclude that w = z. For linear
Lie groups we can replace half of D with the full set D by Corollary 5.16. �
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From the last assertion of the theorem we can give a nice characterization of the product
of exponentials. This is connected with the noncommutative Horn inequalities as studied
by Belkale et al, see [Bel08, Entov01] and the references therein.

Corollary 5.20 (Product of exponentials). Let x,y,z ∈ k with z ∈D/2 such that exey = ez.
Then

(1) ‖z‖ ≤ ‖x+ y‖ for any Ad-invariant Finsler norm in k.
(2) Let N = dim(k), then there exist (at most) N + 1 points ki ∈ K and N + 1 real

numbers λi ≥ 0 with ∑i λi = 1 such that

z =
N+1

∑
i=1

λi Adki(x+ y).

(3) If equality holds for some Finsler norm, then z and all the Adki(x+ y) lie in the
same face of the ball for that norm (in fact, in the intersection of all the faces
where z sits).

(4) If equality holds for a strictly convex norm then x,y commute, z = Adk(x+ y) for
some k ∈ K (thus x+ y ∈ D/2) and k commutes with ez. If moreover z ∈ D/2 then
x,y commute and z = x+ y.

Proof. Let β(t) = etxety, which joins 1,ez in K. Note that β
−1
t β̇t = e−t ady(x+y) therefore

L(β) = ‖x+y‖ for any Ad-invariant Finsler norm in k. By the previous theorem, the third
assertion also holds for the closure of D/2 therefore we must have

‖z‖ ≤ L(β) = ‖x+ y‖

for any such Finsler norm. Assertions 2 and 3 follow from Proposition 5.8. If the
norm is strictly convex then z = Adk(x+ y) by Proposition 5.8, but also x,y commute
by [Lar19, Theorem 4.17]. This implies ez = eAdk(x+y) = kex+yk−1 = kexeyk−1 = kezk−1

thus k commutes with ez. When z ∈ D/2, the condition eAdk z = ez is only possible if
Adk z = z = Adk(x+ y) therefore z = x+ y. �

Remark 5.21. For linear Lie groups such as K = SU(n), and by Corollary 5.16, the same
results stated in the previous corollary hold for z∈D, i.e. ‖z‖∞≤ π (and not just z∈D/2).

5.2. Characterization of all short paths. Before we proceed with the characterization
of other short paths (for the case of non-strictly convex norms), we recall two results
concerning the exponential map and the adjoint representation of the group K and its
differentials:

Remark 5.22. If gt is a smooth path in K,

(5.4)
d
dt

Adgt v = Adgt [g
−1
t ġt ,v] ∀v ∈ k.

This follows by noting that to compute the derivative we can take gt = g0etg−1
0 ġ0 , and

differentiate at t = 0, thus

Adgt v = Adg0 Ad
etg−1

0 ġ0
v = Adg0 et adg−1

0 ġ0v = Adg0 v+ t Adg0 ad(g−1
0 ġ0)v+o(t2).
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On the other hand if v,w ∈ k then it is well-known that

(5.5) e−vDexpv w =
∫ 1

0
e−λadvwdλ = F(adv)w

where F(λ) = 1−e−λ

λ
is extended by F(0) = 1 to be an holomorphic function in C. In

particular, note that if v ∈ D (the domain of injectivity of exp), then F(adv) must be
nonsingular and in particular ±2πi /∈ σ(adv); otherwise we would have 0 ∈ σ(F(adv)).
Moreover, it must be σ(adv) ⊆ i(−2π,2π), otherwise replacing v with tv for some t ∈
(0,1) we would obtain a contradiction (recall that D is convex).

With these tools at hand we now characterize short paths γ without the restriction of
having length less that the radius of inyectivity of the group. In the next theorem K is
a connected compact semi-simple Lie group with the metric induced by an Ad-invariant
Finsler norm in k.

Theorem 5.23 (Characterization of geodesics). Let γ : [a,b]→ K be a piecewise C1 path
in K. If γ is short for the bi-invariant metric, then for (almost) all t

(5.6) ϕ(γ−1
t γ̇t) = ‖γ−1

t γ̇t‖

for some unit norm functional ϕ. Reciprocally, if the equality holds for some ϕ and (al-
most) all t ∈ [t0, t1], and L(γ)t1

t0 ≤ R, then γ is short in [t0, t1]⊆ [a,b].

Proof. By the invariance of the metric, it suffices in all cases to consider paths starting at
u = 1. If γ is short, assume first that its length is smaller than R, then for any t ∈ [a,b]
we have dist(γ(a),γ(t)) = L(γ)t

a < R. Therefore we can lift γt = eΓt for a rectifiable path
Γ : [a,b]→ k, which does not leave the ball BR. Then by Theorem 5.18, for any norming
functional of z and any t we have

ϕ(Γt) =
∫ t

a
ϕ(Γ̇) =

∫ t

a
‖γ−1

γ̇‖= L(γ)t
a = dist(γa,γaeΓt ) = ‖Γt‖.

Therefore again by the previous theorem and by Gauss’ Lemma 5.4,

‖z‖= ϕ(z) =
∫ b

a
ϕ(Γ̇s)ds =

∫ b

a
ϕ(e−ΓsDexpΓs

Γ̇s)ds =
∫ b

a
ϕ(γ−1

s γ̇s)ds

≤
∫ b

a
‖γ−1

s γ̇s‖ds = L(γ)b
a = dist(1,ez) = ‖z‖,

and this is only possible if ϕ(γ−1
t γ̇t) = ‖γ−1

t γ̇t‖ for (almost) all t. If γ is short but its longer
than R, we can still partition γ in pieces of length smaller than R and its still short on each
piece, in any of these intervals [ai,ai+1] (i = 1, . . . ,k). There we have dist(γ(ai),γ(t)) ≤
L(γ)t

ai
< R. Write γai+1 = γaie

zi , thus we can lift γt = γaie
Γi

t for a rectifiable Γi : [ai,ai+1]→
k, which does not leave the ball BR. Using the translation invariance of the metric (from
γai to 1), and repeating the argument above, we have for each i

(5.7) ϕi(γ
−1
t γ̇t) = ‖γ−1

t γ̇t‖ if ϕi norms zi and ‖ϕi‖= 1,

for (almost) all t ∈ [ai,ai+1]. Now let β(s) = esz1esz2 . . .eszk , then β(0) = 1 = γ(0), β(1) =
γ(1) and

dist(1,γ1)≤ L(β)≤∑
i
‖zi‖= ∑

i
dist(γi,γi+1) = ∑

i
L(γ|[ai,bi]) = L(γ)b

a = dist(1,γ1),
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therefore β is short also. Since β is smooth, there exists c ∈ (0,1) such that

∑
i
‖zi‖= dist(1,γ1) = L(β) =

∫ 1

0
‖β−1

s β̇s‖ds = ‖β−1
c β̇c‖.

Now let w0 = zk, w1 = e−cadzkzk−1, w2 = e−cadzke−cadzk−1zk−2 and in general

w j = e−cadzke−cadzk−1 . . .e−cadzk− j+1zk− j

for j = 0, . . . ,k−1. Note that ‖w j‖ = ‖zk− j‖ for each j. A straightforward computation
shows that

β
−1
c β̇c =

k−1

∑
j=0

w j,

therefore

∑
j
‖w j‖= ∑

i
‖zi‖= L(β) = ‖β−1

c β̇c‖= ‖∑
j

w j‖,

and by Lemmma 2.7, there exists a unit norm functional such that ϕ(w j) = ‖w j‖ for all
j = 0, . . . ,k−1. In particular ϕ(zk) = ϕ(w0) = ‖w0‖= ‖zk‖, thus also by Gauss’ Lemma
(Remark 5.4) we have

ϕ(zk−1) = ϕ(e−cadzkzk−1) = ϕ(w1) = ‖w1‖= ‖zk−1‖.

Proceedings backwards in this fashion, we can conclude that ϕ(zi) = ‖zi‖ for all i =
1, . . . ,k. Thus by (5.7) we have that (5.6) holds for this ϕ, for (almost) all t ∈ [a,b].

Now assume that (5.6) holds for some ϕ, described as ϕ(v) = 〈v,a〉 = − tr(adv ◦ ada)
for some a ∈ k (Remark 5.6), and let t0 ≤ t ≤ t1 then dist(γt0,γt) ≤ L(γ)t

t0 ≤ L(γ)t1
t0 =

R. Using the invariance of the metric, we can assume that γt0 = 1. Then there exists a
rectifiable lift Γ of γ such that Γ⊆BR, Γt0 = 0, eΓt1 = γt1 . Note that ‖Γt1‖=R= dist(1,γt1).
By Remark 5.6, since ϕ norms γ

−1
t γ̇t , we have that γ

−1
t γ̇t and a commute for all t. By

formula (5.4) of Remark 5.22
d
dt

Adγt a = Adγt [γ
−1
t γ̇t ,a] = 0,

which shows that Adγt a = a for all t (since γt0 = 1). Then by the formula (5.5) for the
differential of the exponential map of K,

e−Γt DexpΓt
[Γt ,a] = (

∫ 1

0
e−λadΓt adΓt dλ)(a) =−e−λadΓt

∣∣∣1
0
(a)

=−e−adΓt a+a =−Ad
γ
−1
t

a+a = 0.

Since Γt is inside the injectivity radius of the exponential map, it follows that [Γt ,a] = 0
for all t ∈ [t0, t1]. Then for fixed t, the operators adΓt and ada commute, and since they
are both skew-adjoint operators acting on k, they can be simultaneously diagonalized in an
orthonormal basis, say {e1, . . . ,ek} of k. Let pi = ei⊗ ei denote the rank-one orthogonal
projection with range ei, then ada = ∑

k
i=1 ai pi and adΓt = ∑i λi pi. Note that Adγt =

eadΓt = ∑i eλi pi. Now we apply the formula (5.5) for the differential of the exponential
map to the path t 7→ eadΓt , and noting that ad Γ̇t = (adΓt)

· we obtain

e−adΓt DexpadΓt
ad Γ̇t =

∫ 1

0
e−sad(adΓt) ad Γ̇tds =

∫ 1

0
e−sadΓt ad Γ̇tesadΓt ds.
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Due to (5.4) we also have

(5.8) adγ
−1
t γ̇t = Ad

γ
−1
t

d
dt

Adγt = e−adΓt DexpadΓt
(ad Γ̇t).

Then since ada and eadΓt are diagonal in the orthonormal basis {ei}i=1,...,k (for this par-
ticular t), we have

pi(e−sadΓt ad Γ̇tesadΓt ◦ ada)pi = e−sλi pi ad Γ̇t esλi ai pi = pi ad Γ̇t ai pi

= ai(ad Γ̇t)ii pi = pi(ada◦ ad Γ̇t)pi.

Integrating s in [0,1] it follows that

(ada◦ e−adΓt DexpadΓt
ad Γ̇t)ii = (ada◦ ad Γ̇t)ii

and using (5.8) shows that

(ada◦ (adγ
−1
t γ̇t))ii = (ada◦ ad Γ̇t)ii

for all i. Thus

ϕ(γ−1
t γ̇t) = 〈a,γ−1

t γ̇t〉=− tr(adγ
−1
t γ̇t ◦ ada) =−∑

i
(adγ

−1
t γ̇t ◦ ada)ii

=−∑
i
(ada◦ ad Γ̇t)ii =− tr(ada◦ ad Γ̇t) = 〈Γ̇t ,a〉= ϕ(Γ̇t).

Since this holds for any t ∈ [t0, t1], we have ϕ(Γ̇t) = ‖γ−1
t γ̇t‖ there, and then

dist(γt0,γt1) = ‖Γt1‖ ≥ ϕ(Γt1) = ϕ(
∫ t1

t0
Γ̇t dt) =

∫ t1

t0
ϕ(Γ̇t)dt =

∫ t1

t0
‖γ−1

t γ̇t‖dt = Lt1
t0(γ)

which proves that γ is short in that interval. �

Remark 5.24. It is clear from the proof of the previous theorem, that

i) If γ = eΓ is short, then there exists a ∈ k such that adΓt (and then also ad Γ̇t , Adγt ,
adγ
−1
t γ̇t) commute with ada for all t. From the faithfulness of the adjoint repre-

sentation, this is equivalent to Γt , Γ̇t ,γt ,γ
−1
t γ̇t commuting with a for each t. For

linear Lie groups it then follows that a and Γt can be simultaneously diagonalized
for each t, and this basis also diagonalizes γt = eΓt . However, a word of caution:
the orthonormal basis depends on t.

ii) Once γ is short in a certain interval [a,b], and assuming that we first write γb =

γaez1ez2 . . .ezk , with γ(ti+1) = γ(ti)ezi , and the zi giving the distance among the end-
points and ‖zi‖ ≤ R, then the equality (5.6) if fulfilled for any norming functional
of z1 + · · ·+ zn. If γb = γaez with z ∈ D, when can we ensure that z and the zi are
in the same face of the sphere? Equivalently, z and γ−1γ̇ are in the same face of
the sphere? If ‖z‖< R this follows from Theorem 5.18, see also the next remark.

iii) If γ0 = 1,γ1 = ez with z ∈ D, and γ is short for a given norm, does it follow that
γ = eΓ with Γ ⊂ D? The argument used in repeated occasions is that if ‖z‖ < R
and γ is short for that norm, then there is a lift Γ⊂ BR; but this radius depends on
the norm.
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Remark 5.25 (Non-optimal lifts). By Theorem 5.18, we know that if Γ is short in k for
a given norm, then its exponential γ = eΓ is short in K for the bi-invariant metric of that
norm. Is there any concrete example of Lie group K with Ad-invariant Finsler norm such
that: there exists a path γ = eΓ : [a,b]→ K, with γ short in K joining 1,ez but Γ (which
joins 0,z in k) not short in k? For strictly convex norms this is not possible since the only
short paths are segments; as we will see in the next section it is also impossible if all the
faces of the unit sphere are abelian (Corollary 5.27). Another relevant example, studied
by Antezana, Ghighlioni and Stojanoff in [AnGhiSt19] is the full unitary group (or in
our setting, K = SUn) with the spectral norm: examining [AnGhiSt19, Theorem 2.1] it is
apparent that lifted short paths are also short there.

5.3. Norms with abelian faces. In Theorem 5.19 we showed that when the faces of the
unit ball are singletons, the short paths are one-parameter groups. We will show here that
the situation is somewhat similar if we allow the faces of the unit ball to be inside abelian
subalgebras of k. In Section 6 we will give a full characterization of those norms with this
important structural property.

Proposition 5.26. Let B the unit ball of the bi-invariant norm in k. Then all the faces
of B are abelian if and only if for all piecewise C1 short curves γ ⊆ K, the logarithmic
derivatives xt = γ

−1
t γ̇t of γ commute for all t.

Proof. Assume first that each face of the unit ball is abelian. By Theorem 5.23, if γ is
short, it has logarithmic derivative (after normalizing) inside a face of the ball, and these
commute for all t.

Now assume that for some w ∈ k the face Fw(B) is non-abelian. Let x,y ∈ Fw(B) with
[x,y] 6= 0. Let R > 0 be the radius of injectivity and for 0 < b < R let γ : [0,b]→ K be the
path which solves

γ
−1
t γ̇t = tx+(b− t)y

for t ∈ [0,b]. Then by Theorem 5.23 γ is a geodesics, furthermore the logarithmic deriva-
tives γ

−1
0 γ̇0 = x and γ

−1
b γ̇b = y do not commute. �

Corollary 5.27. Let B be the unit ball of the bi-invariant norm in k and assume that the
faces of B are all abelian. Let γ : [a,b]→ K be a short piecewise C1 path. Then

i) There exists z ∈ k such that δt = γaetz is also short with the same endpoints.
ii) If L(γ) ≤ R (thus γb = γaez for some ‖z‖ ≤ R), then γ = γaeΓ where Γ : [a,b]→ k

and [Γt ,Γs] = 0 for all s, t ∈ [a,b], thus γ
−1
t γ̇t = Γ̇t . In particular the logarithmic

derivatives of γ commute and Γ is short in k, with the same length than γ.

Proof. As always we can assume that γa = 1, partition γ in small pieces such that γ(ti+1) =

γ(ti)ezi with ‖zi‖ ≤ R as in the proof of Theorem 5.23. Let β(s) = esz1esz2 , then β joins
1,ez1ez2 = γ(t2) and L(β) = ‖z1 + z2‖, thus

dist(1,γt2)≤ L(β)≤ ‖z1‖+‖z2‖= dist(1,γt1)+dist(γt1 ,γt2) = dist(1,γt2),

which shows that β is short among its endpoints. For small s, let βs = eBs with Bs = s(z1+

z2)+
s2

2 [z1,z2]+o(s3), then by Theorem 5.18(1), ‖Bs‖= dist(1,βs) = Ls
0(β) = s‖z1+z2‖.

On the other hand, by Theorem 5.18(4), we also have ϕ(Ḃs) = ‖β−1
s β̇s‖= ‖z1 + z2‖, then
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integrating we have ϕ(Bs) = s‖z1 + z2‖ = ‖Bs‖, and this shows that Bs (normalized) is
inside a face of the ball, which implies that the Bs commute for all (small) s (therefore
they also commute with Ḃs). Then using the formula (5.5) we have

e−sadz2(z1 + z2) = β
−1
s β̇s = e−BsDexpBs

Ḃs = Ḃs = z1 + z2 + s[z1,z2]+o(s2).

Differentiating at s = 0 shows that [z1,z2] = 0. Thus γ(t2) = ez1ez2 = ez1+z2 and γ(t3) =
ez1ez2ez3 = ez1+z2ez3 . We repeat the argument now using βs = es(z1+z2)esz3 , this shows
that [z3,z1 + z2] = 0. Thus γb = ez1ez2ez3 . . .ezk = e∑zi , and if we let z = ∑zi, then ‖z‖ =
∑‖zi‖= dist(γa,γb) and the first claim follows.

For the second assertion let Γ be the smooth lift of γ, Γa = 0, then by Theorem 5.18(4)
we have ϕ(Γ̇t) = ‖γ−1

t γ̇t‖ for some unit norm ϕ, and again integrating ϕ(Γt) = Lt
0(γ) =

dist(1,eΓt ) = ‖Γt‖ shows that Γt (normalized) is inside a face of the sphere, which by
hypothesis is abelian. But then Γt and Γ̇t also commute for all t and it is apparent that

L(Γ) =
∫ b

a
‖Γ̇‖dt =

∫ b

a
‖e−ΓDexpΓ Γ̇‖dt =

∫ b

a
‖γ−1

γ̇‖dt = L(γ)

thus if Γb = z then ‖z‖ ≤ L(Γ) = L(γ) = dist(1,ez) = ‖z‖ and Γ is short. �

5.4. Geodesic are quasi-autonomous. Throughout, the action of the semi-simple com-
pact group K on the symplectic manifold M complies the hypothesis of Section 3.2.
Recall (Definition 3.1) that a Hamiltonian Ht is called quasi-autonomous if there exists
x−,x+ ∈M such that Ht(x−) = minM Ht , Ht(x+) = maxM Ht for all t ∈ [a,b]. As before,
we use R to indicate the injectivity radius of the exponential map of K, for the given norm.
In the next theorem, the geometry of the group K is the one given by the generalized Hofer
norm (3.5) obtained by the almost effective action.

Theorem 5.28. Let K y (M,ω) be a Hamiltonian almost effective action. Let γ : [a,b]→
K be piecewise C1, and denote its right logarithmic derivative by xt = γ̇tγ

−1
t . Then if γ is

short, (µxt )t∈[0,1] is a quasi-autonomous Hamiltonian, and if µ is quasi-autonomous, γ is
locally short (in each interval of length ≤ R).

Proof. By Theorem 5.23, γ is locally short if and only if there is a common norming
functional for xt = γ̇tγ

−1
t , for all t. By Corollary 2.11 the set of logarithmic derivatives

{xt}t∈[0,1]⊆ k is contained in a cone generated by a face if and only if there exist x− and x+

such that x− ∈ ∩t∈[0,1] argmin(ϕxt ) and x+ ∈ ∩t∈[0,1] argmax(ϕxt ), where ϕxt : µ(M)→ R.
We can choose m−,m+ ∈M such that x− = µ(m−) and x+ = µ(m+). The result follows
since µxt = ϕxt ◦µ for all t ∈ [0,1]. �

Remark 5.29. A similar characterization of geodesics (in fact, of their logarithmic deriv-
ative γ

−1
t γ̇t = xt) can be obtained for the one-sided norm induced by the action of K in M,

if one replaces the condition of quasi-autonomous for the Hamiltonian Ht = µxt , with the
condition that there exists a point x+ ∈M such that Ht(x+) = maxM Ht for all t ∈ [a,b].

6. SPHERES WITH ABELIAN FACES

In this section we characterize those Ad-invariant norms which have unit balls with
abelian faces in terms of conditions on its intersection with a Cartan subalgebra. When
this intersection is a polytope the condition reduces to the regularity of the extreme points
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of its polar dual. Based on this result and Kirwan’s Theorem 4.1 we characterize the
compact semi-simple groups of Hamiltonian diffeomorphims such that geodesics have
commuting Hamiltonians. We start with the important special case of Hofer norms de-
rived from coadjoint actions on regular coadjoint orbits. Groups with length structures
derived from these norms have the property that the logarithmic speed of its geodesics lie
in a Weyl chamber.

6.1. Regular coadjoint actions and non-crossing of eigenvalues. In this section we
follow the setting of Example 3.11 on (co)adjoint orbits in O ⊆ k' k∗.

Definition 6.1. The (co)adjoint orbit O = Oλ ⊆ k of the action is regular if λ ∈ k is a
regular element (Remark 3.10).

In order to characterize the faces of the unit ball in k via Corollary 2.11 we need to
study, for a nonzero x in k, the sets argmaxO(ϕx) and argminO(ϕx) of ϕx = µx : O →
R. Let mt = Adetv m be a path through m ∈ O with ṁ0 = [v,m] ∈ TmO, differentiating
ϕx(mt) = 〈x,mt〉 at t = 0 we obtain

D(ϕx)m(ṁ0) = 〈x, [v,m]〉=−〈x, [m,v]〉= 〈[m,x],v〉,

since adm is skew-adjoint for the Killing form. Since v ∈ k is arbitrary, this implies that
m ∈ O is a critical point of ϕx if and only if m ∈ z(x), where z(x) is the centralizer of x,
i.e.

(6.1) Crit(ϕx) = O ∩ z(x).

The proof of following proposition can be found in [BiGhiHe14, Lemma 23].

Proposition 6.2. Fix a maximal torus T ⊆K, a nonzero vector x∈ h= Lie(T ) and a point
m ∈ O ∩h; thus m ∈Crit(ϕx). Then m is a maximum point of ϕx if and only if there is a
Weyl chamber in h whose closure contains both x and m.

With these tools at hand, we next characterize the faces of the unit ball of ‖ · ‖O .

Proposition 6.3. Let O be a regular (co)adjoint orbit and let ‖ ·‖O be the associated Ad-
invariant Hofer norm. A set of vectors has a common norming functional if and only if
it is contained in a Weyl chamber (given by a choice of torus and positive simple roots).
Hence, the maximal cones generated by faces of the unit ball are Weyl chambers.

Proof. By Corollary 2.11 a set of elements S⊆ k have the same norming functional if and
only if the set {ϕu : u ∈ S} has a common maximizer x+ ∈ O and a common minimizer
x− ∈ O.

We denote by h+ the Weyl chamber that contains x+, it is unique since x+ is regular. If
u ∈ S, then the functional ϕu has a maximum at x+, hence by equation (6.1) u commutes
with x and therefore u ∈ h. By Proposition 6.2 we conclude that u ∈ h+ if and only if
the functional ϕu has a maximum at x+. Let us denote by x′ ∈ k the element defined by
{x′}= O∩−h+ , that is, the element of O in the opposite Weyl chamber. A functional ϕu

has a minimum at x′ if and only if ϕ−u has a maximum at x′. This holds if and only if −u
and x′ belong to the same Weyl chamber, which is equivalent to u ∈ h+. Hence, ϕu has
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a maximum at x+ and ϕu has a minimum at x′, are both equivalent to u ∈ h+. If we take
x− = x′ as the common minimizer we get a maximal face which is h+.

If h+ is a Weyl chamber we denote by x+ and x− the elements defined by {x+}=O∩h+
and {x−} = O ∩−h+. Then we can reverse the argument in the previous paragraph to
conclude that the functionals ϕu with u ∈ h+ have x+ ∈ O as maximizer and x− ∈ O as
minimizer. �

From this characterization of the faces of the unit ball in k we can determine the
geodesics in K. Let γ : [a,b]→ K be a curve in a group K endowed with the length struc-
ture obtained from Hofer’s norm ‖·‖O for a regular (co)adjoint orbit O. As a combination
of the previous proposition and Theorem 5.23, we obtain

Theorem 6.4. If γ is short then all its logarithmic derivatives are contained in the same
Weyl chamber h+ (given by a choice of torus and positive simple roots). If its derivatives
are contained in a Weyl chamber, then γ is locally short (in each interval of length ≤ R,
where R is the injectivity radius of the norm).

Example 6.5 (K = SU(n) and the non-crossing of eigenvalues). Consider the case of
SU(n) acting on a regular (co)adjoint orbit Oλ containing λ= idiag(λ1, . . . ,λn), with λ1 <

· · ·< λn. Recall that here we obtain in k the λ-numerical radius as Hofer norm (Example
3.12). The local condition for the logarithmic derivatives to be the speeds of geodesics is
that there exist a fixed orthonormal basis such that the speeds are simultaneously diagonal
in this basis for all t (Corollary 5.27) and if xi(t) are the eigenvalues of xt = γ̇tγ

−1
t , then

x1(t)≤ ·· · ≤ xn(t) ∀t ∈ [a,b].

This is because in SU(n) the condition of being in the same Weyl chamber is given by the
non-crossing of the eigenvalues.

Remark 6.6. The Hofer norm associated to singular (co)adjoint orbits can be studied
using the following result on maximizers and minimizers of linear functionals restricted
to the orbits, see [BiGhiHe14, Lemma 22]. Let Z(x) be the centraliser of x in K and let
Fx(O) be the face of O defined by x. Then

• argmax(ϕx) is a Z(x)-orbit,
• ext(Fx(conv(O)) = argmax(ϕx), so ext(Fx(conv(O)) is a Z(x)-orbit.
• Fx(conv(O))⊆ z(x).

6.2. Invariant norms with abelian faces. Let K be a compact connected semi-simple
Lie group and let 〈·, ·〉 be as usual the opposite Killing form of kC restricted to k. Let ∆ be
the set of (real) roots of k with respect to a fixed Cartan subalgebra h, as in Remark 5.2.
For x ∈ h we have

z(x) = h⊕
⊕

α∈∆+,α(x)=0

Zα,(6.2)

here z(x) is the Lie algebra of Z(x) as usual (the centralizer of x ∈ k). We define the
smallest Weyl chamber wall containing x as the linear space

Wx =
⋂

{α∈∆+:α(x)=0}
ker(α).
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Theorem 6.7. Let K be a semi-simple compact connected group and let B be an Ad-
invariant convex body in k containing 0. Let h be a Cartan algebra in k and h+ a positive
Weyl chamber. Then all faces of B are abelian if and only if for all x ∈ h+ we have

Fx(B∩h)∩h+ ⊆Wx,

and in this case Fx(B) = Fx(B∩h)∩h+.

Proof. We assume for simplicity that x ∈ h+. Theorem 4.15 states that

Fx(B) = AdZ(x)(Fx(B∩h)∩h+).

Next we show that this set is abelian when the inclusion stated in the theorem holds. If
x is in the interior of the Weyl chamber then Z(x) is trivial and Fx(B) = Fx(B∩ h)∩ h+,
hence the face is abelian. If x is not regular, and hence Z(x) is not trivial, then by (5.1) and
(6.2) the centralizer Z(x) acts trivially on Wx. Therefore, the inclusion Fx(B∩h)∩h+⊆Wx

implies that Fx(B) = AdZ(x)(Fx(B∩h)∩h+) = Fx(B∩h)∩h+, so the face is abelian. Note
also that the last assertion of the theorem follows from this argument.

If the inclusion in the statement of the theorem is not satisfied there exists y ∈ Fx(B∩
h)∩h+ such that y /∈Wx; it follows that there exists α such that α(y) 6= 0 and α(x) = 0.
Consider the orbit AdZ(x)(y) ⊆ k as a submanifold with its differentiable structure, and
observe that

[z(x),y]⊆ Ty(AdZ(x)(y)).

By (6.2), we have vα,uα ∈ z(x); the equations [y,uα] =−α(y)vα and [y,vα] = α(y)uα hold
by (5.1), therefore we conclude that

{uα,vα} ⊆ Ty(AdZ(x)(y)).

Since [uα,vα] = hα 6= 0 the tangent Ty(AdZ(x)(y)) is not an abelian space, so that AdZ(x)(y)
cannot be an abelian set. The inclusion AdZ(x)(y)⊆ AdZ(x)(Fx(B∩h)∩h+) = Fx(B) im-
plies that Fx(B) is not an abelian set. �

Remark 6.8. From the previous theorem we know that if the faces of B are abelian then

Fx(B) = Fx(B∩h)∩h+
for a Weyl chamber h+ given by a choice of torus and positive simple roots such that
x ∈ h+. Therefore the balls of the norms studied in Section 6.1 have maximal commuting
cones generated by faces.

6.3. Polytopes with regular extreme points. The aim of this section is to prove the
following theorem. Note that an element x ∈ k is regular if and only if α(x) 6= 0 for all
α ∈ ∆+.

Theorem 6.9. Let K be a semi-simple compact connected group, let B be an Ad-invariant
convex body in k containing 0, such that B∩h= P◦ is a polytope. Then all faces of B are
abelian if and only if all extreme points of P are regular.

For the proof of this theorem we need a couple of preliminary lemmas on polytopes
invariant under finite reflection groups. These lemmas will be later applied to the Hofer
norm polytopes defined in Definition 4.6, which are polytopes invariant under the Weyl
group.
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FIGURE 5. Mirror hyperplane and extreme points of a polytope P.

Definition 6.10 (Finite reflection groups). Let W be a finite reflection group acting
isometrically on an inner product vector space (V,〈·, ·〉) and generated by reflections
{ru}u∈Φ. Here ru is the refection which fixes the mirror hyperplane Mu = {u}⊥ and Φ is a
finite subset of the unit sphere that is called the positive root system. For a finite reflection
group the space can be subdivided into chambers bounded by mirror hyperplanes. We can
choose any (closed) chamber C and call it the fundamental chamber. Given a positive root
system Φ, a fundamental chamber is given by

C = {x ∈V : 〈x,u〉 ≥ 0 for all u ∈Φ}.

Let P be a polytope with extreme points ext(P) = {y1, . . . ,ym} and assume that P is in-
variant under W .

Lemma 6.11. Let Π ⊆ Φ and assume that ∪u∈ΠMu∩{y1, . . . ,ym} = /0. If Hx supports P
at y and y ∈ ∩u∈ΠMu it follows that x ∈ ∩u∈ΠMu.

Proof. Assume P is invariant under a reflection ru and the mirror hyperplane does not
contain any extreme point of P, i.e. Mu∩{y1, . . . ,ym}= /0, see Figure 5. Then, if Hx is a
hyperplane that supports P at an y ∈Mu we claim that x ∈Mu. To prove this we write y as
a convex combination of the y1, . . . ,ym, i.e. y= λ1y1+ . . .λnyn, with n≤m, λ1, . . . ,λn > 0,
and ∑

n
i=1 λi = 1. If we write

y =
1
2

y+
1
2

ru(y) =
1
2
(λ1y1 + . . .λnyn)+

1
2

ru(λ1y1 + . . .λnyn),

we see that we can assume that y = λ1y1 + . . .λnyn, with λ1, . . . ,λn > 0, ∑
n
i=1 λi = 1 and

ru(y j) ∈ {y1, . . . ,yn} for i = 1, . . . ,n. Since Hx supports P at y ∈ Mu we get ϕx(y) = 1
and ϕx(y1), . . .ϕx(ym) ≤ 1. From y = λ1y1 + · · ·+λnyn, with λ1, . . . ,λn > 0, ∑

n
i=1 λi = 1,

it follows that ϕx(y1), . . . ,ϕx(yn) = 1. Since y1 /∈Mu we know that ru(y1) ∈ {y2, . . . ,yn}
so that y1− ru(y1) is non zero. Since y1− ru(y1) is orthogonal to the mirror Mu and
ϕx(y1− ru(y1)) = 1−1 = 0 we conclude that x is orthogonal to y1− ru(y1) and is there-
fore contained in Mu. The Lemma follows by applying this result to each of the mirrors
{Mu}u∈Π. �

Lemma 6.12. Assume that there is an extreme point y1 of P such that y1 ∈ C and y1 is
contained in a mirror. Then there is a supporting hyperplane Hx′ of P at y1 such that x′ is
in the interior of the fundamental chamber.
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Proof. By assumption Π := {u ∈ Φ : y1 ∈ Mu} 6= /0. The set of reflections {ru : u ∈ Π}
generates the stabilizer Stab(y1) of y1 (see e.g. [BoBo10, Theorem 12.6]). Since P is
a polytope there exists x which determines a supporting hyperplane of P at y1 such that
ϕx(y1) = 1 and ϕx(y j)< 1 for j = 2, . . . ,m. If we denote by x′ the average

x′ =
1

|Stab(y1)| ∑
w∈Stab(y1)

w.x,

then ϕx′(y1) = 1, ϕx′(y j)< 1 for j = 2, . . . ,m, and x′ ∈ ∩u∈ΠMu. To show that x′ ∈C we
need to verify that 〈x′,u〉 ≥ 0 for all u ∈Φ. If u is not in Π then y1 is not in Mu, therefore
ϕx′(y1) = 1 and ϕx′(ru(y1)) < 1 which implies that ϕx′(y1− ru(y1)) > 0. On the other
hand, since y1 is in the positive chamber C it follows that y1− ru(y1) = d.u for d > 0.
Hence ϕx′(d.u)> 0 which is equivalent to 〈x′,u〉> 0.

The x′ can be perturbed so that Hx′ is a supporting hyperplane of P at y1 and x′ is in the
interior of the fundamental chamber. �

Proof. (of Theorem 6.9). We apply the previous lemmas to the Weyl group action on h.
It is easy to check that the condition of Theorem 6.7 can be stated using the more general
notation of the previous lemmas as follows:

Fy(P◦)∩C ⊆Wy :=
⋂

u∈Φ:y∈Mu

Mu

for all nonzero y in C = h+. Here, for example, Mhα
= ker(α), with hα as in (5.1). We

can multiply y by a positive scalar and assume that it is in bdP. Then by Theorem 2.22

Fy(P◦) = {x ∈V : Hy supports P◦ at x}
= {x ∈V : Hx supports P at y}.

By Lemma 6.11, if the extreme points of P are all regular and y ∈Wy =
⋂

u∈Φ:y∈Mu
Mu,

then x ∈Wy holds when Hx supports P at y, i.e. x is in Fy(P◦).
If there is a non-regular extreme point of P then by invariance of P under the reflection

group W we can choose a non-regular extreme point y1 of P in C. Lemma 6.12 implies
that there is a supporting hyperplane Hx′ of P at y1 such that x′ is in the interior of C. Then
x′ ∈ Fy(P◦)∩C and x′ does not belong to Wy, so that the condition of Theorem 6.7 is not
satisfied and there is a face of B which is not abelian. �

Let K be a semi-simple compact connected group, let B be an Ad-invariant convex body
in k containing 0, such that B∩h= P◦ is a polytope. Let gB be the associated Ad-invariant
norm and endow K with the corresponding Finsler length structure.

Theorem 6.13. The extreme points of P are regular if and only if all short curves γ in K
have commuting logarithmic derivatives.

Proof. By Theorem 6.9 the extreme points of P are regular if and only if B has abelian
faces, and by Proposition 5.26 this holds if and only if all short curves have commuting
logarithmic derivatives. �

We now specialize Theorem 6.13 to compact semi-simple groups of Hamiltonian dif-
feomorphisms.
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Theorem 6.14. Let K y M be an almost effective Hamiltonian action with moment map
µ : M→ k∗ ' k and endow K with the pullback metric of Section 3.2.1. Let µ(M)∩h+ =

conv{x1, . . . ,xn} be Kirwan’s polytope given by Theorem 4.1, and let

P = conv{w.x−w′.x′ : x,x′ ∈ {x1, . . . ,xn}, w,w′ ∈W }

be the Hofer norm polytope derived from it. Then all short curves in K have commuting
Hamiltonians if and only if all the extreme points of P are regular.

Proof. By Proposition 3.5 a curve γ has Hamiltonians µxt , where xt = γ̇tγ
−1
t is the right

logarithmic derivative. Recalling that {µxs,µxt}= µ[xs,xt ] the theorem follows. �

Note that the same result Holds if we endow K → Ham(M,ω) with the second Hofer
norm by taking the second Hofer norm polytope

P′ = conv({w.x : x ∈ {x1, . . . ,xn,−x1, . . . ,−xn}, w ∈W })

of Definition 4.6, and also if we consider the one-sided Finlser Hofer norm with its poly-
tope

P+ = conv{w.x : x ∈ {x1, . . . ,xn}, w ∈W }.

Example 6.15. An example of a group K with non-commuting Hamiltonians is SU(4)
acting on the singular (co)adjoint orbit containing x = idiag(3,−1,−1,−1). The Hofer
norm polytope is the convex hull of the permutations of the matrix idiag(4,0,0,−4). Its
extreme points are the permutations of the matrix given by idiag(4,0,0,−4), which are all
singular. We can give a short informal explanation for this which is similar to the proof of
Proposition 6.3. If the maximum of ϕx is at x+ = idiag(3,−1,−1,−1) and the minimum
is at x− = idiag(−1,−1,−1,3) then x+ block diagonalizes x and x− block diagonalizes
x, so that

x = i(λ1PCe1⊕A⊕λ4PCe4),

with A a selfadjoint operator on Ce2⊕Ce3 such that its spectrum spec(A) satisfies λ1 ≥
spec(A)≥ λ4.

6.4. Properties determined by Kirwan’s polytope and product actions. In Section 6.3
we characterized Hofer norms with abelian faces using the regularity of the norm polytope
(Theorem 6.9), and before that in Section 6.1 we studied the case of faces generating
maximal abelian cones. In this section we show how conditions on Kirwan’s polytope can
characterize these properties, and then to finish the paper we study how these properties
behave if we take products of Hamiltonian actions.

We are here in the context of finite reflection groups of Section 6.3, in particular see
Definition 6.10. We recall from [EaPe77, Section 4] or [MOZZ03, Lemma 2.9] the fol-
lowing generalization of the rearrangement inequality

n

∑
i=1

xπ(i)yi ≤
n

∑
i=1

xiyi

for x1 ≤ ·· · ≤ xn, y1 ≤, · · · ≤ yn and certain permutations π.
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Lemma 6.16. Suppose x,y ∈V , then

sup
w∈W
〈x,w.y〉= 〈x,y〉

if and only if x and y belong to the same Weyl chamber. In this case

〈x,w.y〉= 〈x,y〉

if and only if there exists w′ ∈ Stab(x) such that w.y = w′.y. That is, the set of maximizers
of ϕx in W .y is exactly Stab(x).y.

Definition 6.17. Let E ⊆ V be a convex set with x ∈ E. The normal cone to E at x is
defined as

N(x,E) := {y ∈V : 〈y,z− x〉 ≤ 0 for all z ∈ E}.
It is a closed convex cone.

We will also need the following simple fact about a polytope and its normal cones.

Lemma 6.18. Let P⊆V be a convex polytope. If A⊆ ext(P) and⋃
y∈A

N(y,P) =V

then A = ext(P).

Note that if P is a convex polytope that contains 0 in its interior, then for y ∈ ext(P) we
have R+Fy(P◦) = N(y,P).

6.4.1. Conditions on Kirwan’s polytope. If a Hamiltonian action has the same Hofer
norm polytope as the action on a regular (co)adjoint orbit, then it has the same geodesics;
therefore they are characterized by Theorem 6.4. We next characterize the Hofer norm
polytopes which are derived from regular coadjoint orbits.

Definition 6.19. Given a Weyl chamber h+ let−h+ = w∗.h+ be the opposite Weyl cham-
ber (there is a unique such w∗ ∈W ). We say that y ∈ h+ is symmetric if w∗.y =−y.

Proposition 6.20. A W -invariant symmetric polytope P is the Hofer norm polytope of
‖ · ‖O for a coadjoint orbit O if and only if ext(P) = W .y for a symmetric y ∈ h+.

A W -invariant symmetric polytope P is the Hofer norm polytope of ‖ · ‖O with O a
regular coadjoint orbit if and only if ext(P) = W .y for a symmetric regular y ∈ h+.

Proof. For x ∈ h+ let Ox be a coadjoint orbit. The Hofer norm polytope of ‖ · ‖Ox is given
by

P = conv{w.x−w′.x : w,w′ ∈W }.
If we take y = x−w∗x ∈ h+ we claim that P has an extreme point at y ∈ h+ with normal
cone at this point which equals ∪w∈Stab(y)w.h+. To see this note that by Lemma 6.16 for
z ∈ h+ and w ∈W

ϕz(x)≥ ϕz(w.x),

and
ϕz(−w∗.x) = ϕ−z(w∗.x)≥ ϕ−z(ww∗.x) = ϕz(−ww∗.x).
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Therefore
ϕz(x−w∗.x)≥ ϕz(w.x−w′.x),

for w,w′ ∈W and we conclude that the normal cone to P at y includes h+.
Since this argument is Weyl group invariant, for w ∈W the normal cone to P at w.y

includes w.h+. In the case of singular y there can be repetitions: if Stab(y) is not trivial
then the normal cone to P at y includes ∪w∈Stab(y)w.h+. We have ∪w∈W w.h+ = h, hence
by Lemma 6.18 W .y are all the extreme points of P and the normal cone to P at w′.y is
w′.∪w∈Stab(y) w.h+.

If y is symmetric then we can take O(1/2)y and the Hofer norm polytope of ‖ · ‖O(1/2)y

satisfies ext(P) = W .y.
The proof of the second assertion is similar and we omit it. �

Theorem 6.21. Let E ⊆ k be an Ad-invariant set such that E ∩ h+ = conv{x1, . . . ,xn}.
The Hofer norm polytope derived from E has extreme points W .y for regular y if there is
an xi, say x1, such that

• The point x1−w∗.x1 ∈ h+ is regular.
• For x ∈ h+ we have ϕx(x1)≥ ϕx(x j) for j ∈ {2, . . . ,n}, that is, h+ is contained in

the normal cone of conv{x1, . . . ,xn} ⊆ h at x1.

Proof. The Hofer norm polytope is given by

P = conv{w.x−w′.x′ : x,x′ ∈ {x1, . . . ,xn}, w,w′ ∈W }.

We are going to prove that ext(P) = W .(x1−w∗.x1). Since x1−w∗.x1 is regular W .(x1−
w∗.x1) has |W | points. We claim that P has an extreme point at x1−w∗.x1 ∈ h+ with a
normal cone at this point which equals h+. To see this note that by the second assumption
in the statement of the theorem and by Lemma 6.16 for x ∈ h+, j ∈ {1, . . . ,n} and w ∈W

ϕx(x1)≥ ϕx(x j)≥ ϕx(w.x j),

and

ϕx(−w∗.x1) = ϕ−x(w∗.x1)≥ ϕ−x(w∗.x j)≥ ϕ−x(ww∗.x j) = ϕx(−ww∗.x j).

Therefore
ϕx(x1−w∗.x1)≥ ϕx(w.x−w′.x′),

for x,x′ ∈ {x1, . . . ,xn} and w,w′ ∈W and we conclude that the normal cone to P at x1−
w∗.x1 includes h+. Since this argument is Weyl group invariant, for w ∈W the normal
cone to P at w.(x1−w∗.x1) includes w.h+. We have ∪w∈W w.h+ = h, hence by Lemma
6.18 the orbit W .(x1−w∗.x1) are all the extreme points of P and the normal cone to P at
w.(x1−w∗.x1) is w.h+. �

Example 6.22. An example of this is the action of SU(3) on the singular (co)adjoint
orbit containing λ = idiag(2,−1,−1). The Hofer norm polytope is the convex hull
of 0 and the permutations of idiag(3,0,−3). Its extreme points are the permutations
of idiag(3,0,−3). This is the same Hofer norm polytope as the one derived from the
(co)adjoint action on the regular (co)adjoint orbit containing i

2 diag(−3,0,3). Several
other examples can be computed from the cases of SU(3) acting on products of P2 stud-
ied in [MoSha18]. In fact, it is easy to see from all the figures in [MoSha18] that all
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the Kirwan polytopes listed there lead by Theorem 6.21 to Hofer norm polytopes with
extreme points W .y for regular y.

Corollary 6.23. Let Ox for x ∈ h+ be a coadjoint orbit. The Hofer norm polytope derived
from O has extreme points W .y for regular y if and only if x−w∗.x ∈ h+ is regular.

Example 6.24. An example of the previous corollary is the case of (co)adjoint orbits of
SU(n). Let y be an extreme point of P. The set of x such that ϕx has a unique maximum
at y is an open cone so we can assume that all eigenvalues of x are different, and without
loss of generality we assume that they are ordered increasingly: x1 < · · · < xn. Hence if
the eigenvalues of the (co)adjoint orbit are λ1 ≤ ·· · ≤ λn the extreme point of the Hofer
norm polytope which maximizes ϕx is

idiag(λ1, . . . ,λn)− idiag(λn, . . . ,λ1) = idiag(λ1−λn,λ2−λn−1, . . . ,λn−λ1).

This is the same maximum as the one that would be obtained from looking at the Hofer
norm polytope derived from the (co)adjoint orbit with eigenvalues x1 = i

2(λ1− λn) <

· · · < xn =
i
2(λn−λ1). If these eigenvalues are all distinct then the Hofer norm polytope

is equal to the Hofer norm polytope of a regular (co)adjoint orbit.

Remark 6.25. For the one-sided Hofer norm polytope the condition for being derived
from a regular coadjoint orbit, is that there exists a regular xi ∈ P+, say x1 such that for
x ∈ h+ we have ϕx(x1)≥ ϕx(x j) for j ∈ {2, . . . ,n}, where

P+ = conv{w.x : x ∈ {x1, . . . ,xn}, w ∈W }.

The extreme points of the Hofer norm polytope are Weyl group invariant, so we can
partition them into orbits

ext(P) = W .y1t·· ·tW .ym

for y1, . . . ,ym ∈ h+. If y1, . . . ,ym are regular then by Theorem 6.9 the unit ball B has
abelian faces. We next give a sharper characterization of these faces.

Proposition 6.26. If ext(P) = W .y1 t ·· · tW .ym for regular y1, . . . ,ym ∈ h+, then for
i ∈ {1, . . . ,m}

Fyi(B) = {x ∈ h+ : ϕx(yi) = 1 and ϕx(yi)≤ 1 for i 6= j}.

Proof. From Theorem 6.7 we know that if the faces of B are abelian then

Fx(B) = Fx(B∩h)∩h+
for a Weyl chamber h+ given by a choice of torus and positive simple roots such that
x ∈ h+. We take for simplicity yi = y1, note that

Fy1(B) = Fy1(B∩h)∩h+ = Fy1(P
◦)∩h+

= {x ∈ bdP◦ : Hy1 supports P◦ at x}
= {x ∈ bdP◦ : Hx supports P at y1}
= {x ∈ h+ : ϕx(y1) = 1 and ϕx(y j)≤ 1 for j = 2, . . . ,n}.

Note that Hx supports P at y1 is equivalent to ϕx(y1) = 1 and ϕx(w.y j) ≤ 1 for w ∈W
and j = 1, . . . ,n. This in turn is equivalent by Lemma 6.16 to ϕx(y1) = 1 and ϕx(y j)≤ 1
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for w ∈W and j = 2, . . . ,n since x ∈ h+. This establishes the last equality. The third and
fourth equalities follow from previous results on polar duality. �

Remark 6.27. We now have an alternative proof of Proposition 6.3: the extreme points of
the Hofer norm polytope are W .y for a regular y ∈ h+, hence Fy(B) = {x ∈ h+ : ϕx(y) =
1}. The cone generated by this face is h+.

Next we obtain conditions in terms of Kirwan’s polytope which imply that y1, . . . ,ym ∈
h+ are regular. This follows from the previous discussion therefore we omit the proof.

Theorem 6.28. Let E ⊆ k be an Ad-invariant set such that E ∩ h+ = conv{x1, . . . ,xn}.
The Hofer norm polytope derived from E has regular extreme points if the extreme points
y of

A = conv{xi−w∗.x j : i, j = 1, . . . ,n}

such that the normal cone N(y,A) intersects the interior of h+ are all regular.

6.4.2. Products of actions. We now study products of Hamiltonian actions where the
image of the moment map is given by (4.2). A property of regularity on one of the factors
implies the same property in the product, in the following two cases:

Consider the case of the Hofer norm ‖ · ‖O1+···+On for coadjoint orbits O1, . . . ,On. This
norm arises by (4.2) from the canonical symplectic action of K on O1×·· ·×On.

Proposition 6.29. Let P1, . . . ,Pn be W -invariant convex polytopes in h such that ext(Pi) =

W .yi for yi ∈ h+ and i = 1, . . . ,n. Then ext(P1 + · · ·+Pn) = W .(y1 + · · ·+ yn). Hence,
if there is a yi that is regular, then the extreme points of P1 + · · ·+Pn are the Weyl group
orbit of a regular element.

Proof. Let x be a point in the interior of h+. Then, by Lemma 6.16 ϕx(yi) > ϕx(w.yi)

for i = 1, . . . ,n and w ∈W \Stab(yi). Hence ϕx has a unique maximum in Pi at yi. This
implies that ϕx has a unique maximum in P1 + · · ·+Pn at y1 + · · ·+yn, i.e. y1 + · · ·+yn is
an extreme point of P1 + · · ·+Pn and x ∈ N(P1 + · · ·+Pn,y1 + · · ·+yn). Since the normal
cones are closed h+⊆N(P1+ · · ·+Pn,y1+ · · ·+yn) and since this argument is Weyl group
invariant

w.h+ ⊆ N(P1 + · · ·+Pn,w.(y1 + · · ·+ yn))

for w ∈W . By Lemma 6.18 all the extreme points are W .(y1 + · · ·+ yn). If there is a
j ∈ {1, . . . ,n} such that y j is regular, then this point is in the interior of the cone h+ so
that y1 + · · ·+ yn is also in the interior, i.e. is regular. �

From Proposition 6.20 we get the following

Corollary 6.30. Let O1, . . . ,On be (co)adjoint orbits and let ‖ · ‖O1+···+On be the Ad-
invariant Hofer norm defined by O1 + · · ·+On. If at least one coadjoint orbit is regular,
then the Hofer norm polytope derived from ‖ ·‖O1+···+On has extreme points equal to W .y
for a symmetric regular y ∈ h+, i.e. it is the Hofer norm polytope derived from a regular
coadjoint orbit.



HOFER’S METRIC IN COMPACT LIE GROUPS 51

Remark 6.31. By Corollary 2.11 a cone C ⊆ k generated by a face has the same norming
functional, so the set {ϕx : x ∈ C} has a common maximizer x+ ∈ O1 + · · ·+ On and
a common minimizer x− ∈ O1 + · · ·+On. Let us write x− = x−1 + · · ·+ x−n and x+ =

x+1 + · · ·+ x+n with x−i ,x
+
i ∈ Oi for i = 1, . . . ,n. Then by Proposition 2.14

Cx−,x+(O1 + · · ·+On) =
⋂

i=1,...,n

Cx−i ,x
+
i
(Oi).

If O1 is regular then by Theorem 6.3 Cx−1 ,x
+
1
(O1) is contained in a Weyl chamber (given

by a choice of torus and positive simple roots).
Conversely, if h+ is a Weyl chamber (given by a choice of torus and positive simple

roots) we choose x+i to be the intersection of Oi with h+ and x−i to be the intersection
of Oi with −h+. By Proposition 6.2 the Weyl chamber h+ is contained in Cx−i ,x

+
i
(Oi) for

i= 2, . . . ,n and by Proposition 6.3 Cx−1 ,x
+
1
(O1) = h+. Hence if we write x−= x−1 + · · ·+x−n

and x+ = x+1 + · · ·+ x+n we get by Proposition 2.14

Cx−,x+(O1 + · · ·+On) =
⋂

i=1,...,n

Cx−i ,x
+
i
(Oi) = h+,

which is a set with the same norming functionals. We conclude again that the Weyl
chambers (given by a choice of torus and positive simple roots) are the cones generated
by maximal faces.

We now turn to W -invariant polytopes such that its extreme points are more than one
W -orbit.

Proposition 6.32. Let P1, . . . ,Pn be W -invariant convex polytopes in h. If the extreme
points of one of the polytopes are all regular then the extreme points of P1 + · · ·+Pn are
all regular.

Proof. Let y be an extreme point of P1+ · · ·+Pn. There exists an x∈ h such that ϕx attains
its unique maximum in P1+ · · ·+Pn at y. Since the normal cone to the polytope P1+ · · ·+
Pn at y is open we can chose a regular x, therefore Stab(x) is trivial. This regular x is in a
unique Weyl chamber which we denote by h+. We have y = y1+ · · ·+yn, where y1, . . . ,yn

are points where ϕx attains its unique maximums in P1, . . . ,Pn respectively. Since for
i = 1, . . . ,n we have W .yi ⊆ Pi and ϕx attains a maximum at yi Lemma 6.16 implies
that y1, . . . ,yn are in h+. Since one of the yi is in the interior of h+ so is their sum
y = y1 + · · ·+ yn, hence y is regular. �

To finish this paper, from Proposition 6.32 and Theorem 6.14 we obtain the following
structural property of geodesics (with different metrics) in the group K:

Theorem 6.33. Let Let K y M1, . . . ,K y Mn be Hamiltonian almost effective actions
of a compact semi-simple group K and let K y M1× ·· · ×Mn be the product action.
Endow K with the pullback metrics of Section 3.2.1. Assume that each short curve in K
with the metric derived from the action on one factor has commuting Hamiltonians: then
all short curves in K with the metric derived from the product action have commuting
Hamiltonians.
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Remark 6.34. Another proof of the previous theorem can be given as follows. If the
extreme point of one of the Hofer norm polytopes, say P1, are regular, then all the
maximal faces of the sphere of the norm ‖ · ‖µ1(M) are abelian. The cones of the form
Cx−1 ,x

+
1
(µ1(M)) for x−1 ,x

+
1 ∈ µ1(M) are contained in cones generated by faces and are

therefore abelian. The cone generated by faces of the sphere of the norm ‖ · ‖µ(M) are
contained in Cx−,x+(µ(M)) for x−,x+ ∈ µ(M). Also

Cx−,x+(µ(M)) =
⋂

i=1,...,n

Cx−i ,x
+
i
(µi(M))

for x−i ,x
+
i ∈ µi(M) and i = 1, . . . ,n by Proposition 2.14. Since the first set of the intersec-

tion is abelian the result follows.
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