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We introduce a distorted wave method to calculate the nonlinear excitation effects occurring when a fast bare
ion penetrates a free-electron gas. The central scheme of this work is to replace the undistorted plane waves
leading to the Lindhard dielectric response functionrandom phase approximatioloy Coulomb waves with
an effective charge. This impulse-type approximation is valid for velocities larger than the Fermi velocity.
Stopping and mean free path are presented for impact of bare multicharged ions on aluminum free-electron gas.
The Barkas effect is theoretically found, i.e., negative heavy particles lose energy at the lower rate than positive
particles of the same velocity do. As the projectile charge increases, the single differential cross section per unit
energy presents two effects: the plasmon peak sharpens and the binary peak starts to be increasingly noticeable.
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[. INTRODUCTION idea is to start from the formal definition of the dielectric

function, for example, from the one developed by Ritchie

As a heavy particle penetrates a free-electron(§&3),  [21], and replace the induced electronic density calculated

it gives rise to binary as well as collective-oscillatigpéas- ~ with plane waves by the one obtained with Coulomb waves
mong excitations. A huge amount of literature has been dewith an effective charge. This model includeB the pertur-

voted to the calculation of the linear response; i.e., the firspative orders, at least in an approximate way. We call this
order in the projectile charg&, originally developed by Model the Coulomb Lindhard approximati¢GLA). It is a

Lindhard [1]. After the Barkas effect was foun@], some typical impulse approximation, which attempts to describe a

efforts have been focused on the calculation of the nonlined@ny-body quantum problem in terms of known two-body

effects [3]. Such theories can be classified, to our underScattering wave functiong20]. As in the classical counter-

standing, into four major lines; viz(j) the hydrodynamic part, the basic_assumption of the impulse approxima.tion IS
models[4—6], (ii) the oscillator mode[7], (iii) the binary that the dynamics of the correlations does not play an impor-

. . ; 7 tant role during the collision, and it happens whenk .
Fffiti%ng methof, 10}, and(iv) the perturbative expansion In Sec. Il we present the theory and in Sec. Ill the results.

. . Atomic units are used.
The hydrodynamic as well as the oscillator models are

very appealing. With them higher ordersZp can be cal-

culated after some feasible numerical calculations. In spite of Il. THEORY
a great deal of physical visualizations, the main doubt rests Let us consider a projectile of charge moving inside a
on the validity of such models to represent the details of th%EG The electrons I1?eejl the interaction of thegprojectile as
regl quantum Process. The binary scatter.ing method iS.Ce\r/T/eII és that of the rest of the electrons conforming a self-
Lﬂg%@%ggggﬂggftgﬁﬁ;tg;;?tvsetl%gﬁ;::go??xfr’:?é'm consistent potentiaV(r) which induces an electron density.

. Such an electron density in the projectile frame is defined in

[11]. However, for a reason that is not very well understood i d N2 _ .
this model still produces a notable performance when com)t-.he usual WaypK(r)—|<I>K(r)| whereK =k—v is the rel_a-

. . . tive electron momentum with respect to the projectides
pared with the experiments for>ke, even though it lacks the momentum of the electron with respect to the solid
collective oscillationd10]. It is well known that collective . . ; T €sp
excitations provide nearly half of the stopping power at highfame: v is the ion velocity, andby () is the exact con-
impact velocitiesequipartition rul¢ and such processes are tmuum wave functpn of.the electron in the full self-
not contained in the binary scattering method. Undoubtedlyconsistent unrestrained fiel&/(r) [21]. The Coulomb
the perturbative expansion is a good starting approach to faddndhard approximation, hfre proposed, consists in approxi-
the problem, however, after tedious numerical calculationating the unknown state (r) by a continuum function of
only it is possible to calculate the first correction to thethe Schrdinder equation in the Coulomb potentidl(r)
Lindhard dielectric function in terms ap. Moreover, its =—Zc/r. Such a Coulomb continuum functiot ¢ (r)
range of validity is not sufficient to predict quantitatively the reads
experiments of protonsZ=1) [18] and antiprotons 4p

=—1) impact[19] atv ~k. +ooN L .
In this paper we attempt a different approach based on the V(=g (MONFaiaLliKey), - gp=r=K.r, (1)

application of the distorted wave methods, commonly used
in the theory of inelastic atomic collisiof20]. The essential where
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expiK-r)

(2 [8(a)=(gg +9o)\Ve(@]. (19

N=expam/2)T(1—ia), (r)= 2 pr(Q)=

1
(27T)3/2

a=Zc/K is the Coulomb parameter, ad@g is an effective By settingVe(q)=V(q) in Eq. (14) we obtain the expres-
Coulomb charge whose expression will be defined later irsion of the density leading to the Lindhard dielectric func-

Sec. Il B. The integral representation of the Fourier transforntion.
of the Coulomb density reads The first element of Eq4) can be dropped since it does

not involve transitions@=0); it just compensates the back-
A —igr) ground of positive charges. Replacing the density given by
pK(q)—f dr—PK( ) Eg. (4) in the basic equation defining the dielectric function
)32 e(q) (for instance, Eq(2.8) of Ref.[21]], and adding on all
possible states of the FEG, one obtains

N 2
= | K|9/2f drexgd —iAr—iq-r—iK#] g A dk _
(2m) R 19
T
xX1Fi(1+ia,1iKn),F(ia,1iK p), ()
~ 4 2
where we have used the Kummer transformation, and =—VC(q)—Z—9/2f dkCA,, (16)
—0™". After lengthy algebra involving Nordsieck integrals q° (2m)

[22,23, we obtain where® =0 (ke —k) andV(q) is the self-consistent poten-

tial.

PK(Q) 1 ——_[CA,8(q)— CAch(CI)] (4) The central point of this approximation is to choadsg
)32 =Z:(Zp,q) so that we can invoke self-consistency by as-

sertingVc(g)=V(q). We will return later to this point in

where Sec. 11 B. By invoking this identity, we can write the CLA
response functioec, as
Ve(a) \F Ze (5)
== \N—-7 3
TN+ Q? ecL(q,w)=
is the Fourier transform oV o(r), a7

where the 2 in front of the integral accounts for the two states
C=|Ng|2(A") 22  d=A2+q? (6) Of the spingd~=0(|q=k|—ke), @=g-v, and

G*=CN'gy, ¢~ =CN g (18)

o @) Equation(17) is the central finding of this work.

We should stress that the approximation developed here is
a nonlinear model. One could expand 4/(q,w) in an in-

1 1
Jo = Ekz— PICE: K)2+(w+iN)

_ . (g ) finite series in terms oZp, to give
A;=Gy(1+2ia)+Gyia(l+ia)| ——1], (8) ,
% 1 - zL
ecL(q w) € (q ) Z () ’ (19
A=N*gi +N g5, ) c.(q, L i=1 gY(q,w,v)
The first element %, (q,w) is the linear Lindhard term. The
=Gy(1+ia), N =N"+2G;, (100 next term,j=1, is an approximation to the nonlinear contri-
bution developed in recent papdrsl,13—117, and so on.
G,=5F(1-ia,—ia,1lX), (11) Performing this expansion is no easy task, since we have to
differentiate the hypergeometric functigk; with respect to
G,=,F(1-ia,—ia,2X), (120  the parametea, producing nonstandard functions which are
not easy to work with.
G;=G;—(1+ia)G,=—lia,F(1-ia,1-ia,2X), As the Coulomb charge vanishedz—0, or v—», a
(13  =Zc/|k—v|—0, we have from Eq(17) G; ,—1, N"—1,

_ INk| =1, C—1, G*—g, and so the usual Lindhard dielec-
and X=1—A,A_. It can be proved that iig=0, then ;¢ function e, is recovered

CA;=1+0(N). It implies that the first term in Eq4) nor-
malizes properly to the Dirac delta.

If 7 (q) were expanded in a perturbative series in power ~ £L(4:®@)=
of V¢(q), we would obtain the first order (20

Ot +g,0 1.
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FIG. 1. Ratio of the probability and stopping calculated with the Coulomb-Lindhard approximation to the first-order Lindhard as
function of the impact velocity for two different values of the effective Coulomb cha@ygeZ, andZ-=Z, as indicated. The target is a
free-electron gas witlg=2.09 (aluminum casgand the projectiles are protonZg{=1) and antiprotons4,=—1) as indicated. The
validity of the theory should hold fos >2.

Therefore, no mater whicBc we choose, the first order of the propagatoG =, the one that contains the Coulomb po-
ecL(Q,w) is always self-consistent and it coincides with thetential to all orders. For any other potential it is quite pos-
one of Lindhard. sible that the structure of the dielectric response function
remains the same. The mathematical form of the propagator
A. A practical expression given by Eq.(21) is very common in the theory of atomic

. . llisi h i h .
The argument of the hypergeometric functiosfs; can collision when distorted wave methods are up2g]

take values larger than unity. Evaluation in these points is
complicated since the usual analytical continuation for large B. The Coulomb charge
values ofX cannot be used because the argument ofjythe
functions is zerdsee, for example, Eq15.3.7 of Ref.[24]].

q

In this case, it is more convenient to change the argument on is not Coulombic but screened due to the reaction of the

the hypergeometric function fro to Y, whereY=X/(X . -
. A electron gas. We cast afy. the responsibility to accomplish
—1). After some algebra not shown here, the dielectric func- 9 ponsibiity bl

tion ec,(q,®) is found to keep the same form of EQ.7), the self-consistency wheX(q)=V(q) was invoked. The

The use of Coulomb waves lets us handle the algebra to
e written down in suitable closed form, but the real interac-

toughest(and unrealistig approximation would be the cho-

where now . . ) .
senZ-.=Zp, i.e., where the interactions with the rest of the
G =[NXATR K g5 I[AT NI, (21)  electrons are fully neglected.
To include the interaction with the other electrons, one
and the kernel& = read may resort to an iterative scheme by starting wih
=Zple (q,w). But this is not an appropriate charge in our
K*=(1+ia),F.(1+ia,—ia,2)Y), (220  scheme, since it has an imaginary component and so the
wave function vanishes at infinif26]. It implies that it does
K~ =2,F(ia,—ia,LY)—K™". (23 not provide the correct asymptotic behavior. Th&n must

be real and so it should depends only @iispherical sym-
At the very end, we conclude that, (q,w) is derived from  metry). It seemed to us more convenient to use the so-called
e.(q,) by replacingg, by G*. It is the representation of static potential, i.e.Zc=2Z,, where
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FIG. 2. (a) Ratio of the probability of inelastic transitions cal-
culated with the Coulomb-Lindhard approximation to the first-order
Lindhard as a function of the impact velocity for different Coulomb
projectile charges, as indicated. The target is a free-electron g
with r¢=2.09 (aluminum case The validity of the theory should
hold forv>2. (b) Similar to (a) for the stopping.

FIG. 3. (a) Probability per unit length of inelastic transitions as
a function of the projectile Coulomb charge for different velocities,
as indicated. The target is a free-electron gas with 2.09 (alumi-

m casg Notation: solid lines, the Coulomb-Lindhard approxima-
tion and dotted lines, the first-order Lindhard resd. Similar to
(a) for the stopping.

2 -7 R 1 B Zp as Q— (24 trons to give rise to different charge states. If this is the case,
0 =P eL(9,0) as q—0, we can no longer us&€p as the seed charge. One could
extend the present model by incorporating the projectile

which ensures the Coulomb potential at short distances, €/€Ctrons. For example, the seed charge may be changed
—.0 (or g—), and Fridel oscillations at large distances oM Zp—Zpn—2,7 (@jlexp(q-r)|¢;), whereZpy is the
—o (or q—0). projectile nuclear chargey is the number of electrons and

We have explored several other alternatives, such as the; is the wave function of the bound electrons. Also it could
Yukawa potential Zc=0q%/(q%+¢?), with §2=w§,/(v2 be possible to tackle the problem projectiles with structured
+k§/3) [27], the Fourier transform of the Nagy and Ech- [28]. )
enique potentigl10], etc. All these results are found to be in  One can prove that the screening of the Coulomb poten-
betweenZ.=Zp and Zo=Z,. Dependence of the stopping t|fal is proportlongl torg* (rgis the Seitz radip If we con-
with Z¢ will be presented in Fig. 1 below. Two observations Sider the screening, for example x ranges from 1/2 to 3/2
should be noted. depending orv. Therefore, ags—0 (high density limi},

First, selectingZc=2Z, as given by Eq(24) doesnot {—%*.Zc~0, and so the plane wave is a good representation
mean that we are considering the wave function of the full@nd the Lindhard linear response holds quite well. On the
static potentialwhich has no closed form whatsoeydut ~ contrary, asrs— (low-density limiy, {—0,Zc~Zp, and
we are only using an effective Coulomb charge so that it ha§0 large correction is expected. This qualitatively estimation
the same Fourier transform of the potential. is in agreement with previous finding$1,14.

Second, one should not forget that we are considering a
projectile with abare punctual Coulomb charg&, (here
called the seddshielded by the factor Ré&/e (q,0)] which
represents the enhancement of the electronic density of the A three-dimensional integral ok is required to obtain
FEG accompanying the projectile. However, it is well known e (q,w) from [Eq. (17)]. Two further integrals om and
that within the solid, the projectile captures and loses elecare involved in the calculation of

Ill. RESULTS
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L L In Fig. 1, we plot the ratio between the Coulomb-
Z on FEG (r;=2.09) 1 Lindhard and the Lindhard results for the probability and
stopping of protons and antiprotons on aluminum FEG for
two different values of the Coulomb chargés=27, and
Zc=Z, as given by Eq(24). Although differences are ob-
served, the same qualitative behaviors are present. For ex-
ample, in both cases the Barkas effect is clearly spotted
(stopping of protons are larger than antiprojosthough

we include results fop =1, it is important to recall that CL
values are expected to be valid, at least,ufor2. From now

on we will concentrate on the use BE=2,.

In Fig. 2, we plot the ratio between the Coulomb-
Lindhard and the Lindhard results for the probability and
stopping of different projectile charges as a function of the
Z,(au) impact velocity. Some oscillations are observed for the first
positive charges. For the stopping the convergence to unity at
large velocities decreases with the projectile charge.

-1 4] 1 2 3 4

FIG. 4. Ratio of the stopping to the first-order Lindhard as a

function of the projectile Coulomb charge for different impact ve- - L
locities, as indicated. The target is a free-electron gas with Figure 3 shows the absolute values of the probability and

=2.09(aluminum casg Impact velocitiew = 0.1 (full square$ and stopzping along with the Lindhard ‘?”es that are proportional
0.6 (empty squardsare the results of Saliet al. using the DFT 10 Zp. The CLA departures from this tendency. It produces a
[27]. The values forw=1 (triangle$ correspond to thestimated ~Saturation effect, i.e., the results seem to tend to a constant.
experimentg31] for protons and antiprotons on aluminum along The departure from th&2 law depends on the velocity; the
with the theoretical results of particles impac{32]. The solid larger the velocity, the larger the charge where departure oc-
lines are the results using the Coulomb-Lindhard approximatiorcurs. This behavior witlZp is similar to the one found in
calculated for integer Coulomb charges af=0.5. The interpo- ion-atom excitation and ionizatiof30], and perhaps the
lated lines are just to help visualization. same physics is involved. One can then expect that, as in the
ionization case, saturation starts #¥~v. The saturation is
(" _ j“’d nf“ d_qI a consequence of thefinite series in terms oZp. If we
=% R O q m &j(q,®,Zo) |’ kept the first correctionj=1) in Eq.( 19) the probabilities
as well as the stopping would divergeZ%.
with Sy=—2Z32/(mv?), to obtain the stopping=P®Y, or In Fig. 4 we compare our results with the ones reported by
the probability(the inverse of the mean free path=P(®), Salinet al.[29] by plotting the raticS¢, /S, as a function of
per unit path length. The subindexgs CL andL will be  Zp. These authors have used a very refined method. They
used to denote the calculation with our CLA and theemployed the density-functional theoffpFT) to describe
Lindhard first order, respectively. The numerical calculationthe electron density, and so the corresponding induced poten-
of the CLA approximation is very difficult since the inte- tial was derived. This potentigwith cylindric symmetry
grand involves the hypergeometric functigif; which in  was expanded in harmonic spherics solving the equations for
some cases has to be evaluated by solving its differentis@ach angular orbital. This method holds for small velocities,
equation. Two weeks of CPU time in a cluster of 4 PC of 1.6v <Kg, because both, the DFT cannot describe the kinetics at
GHz each have been required to obtain the results here préigh energies and the collisional model used does not ac-
sented. To calculate the integrations, an adaptive numericabunt for collective oscillatioiplasmong which for protons
code has been used with a relative error less than 1%. Stitin aluminum starts at 40 ke\wE1.3). The CLA seems to
we have found some regions where the obtained curves deontinue reasonably the tendency from low velocity (
not have the optimal smoothness. We have found the same0.1-0.8 a.u.) to the high velocity regiom¥2). In the
pathology of the second-order dielectric formaligh7]: for ~ high velocity limit, we expect the ratio to tend to the unity,
Zp<0, the probability was found to be slightly negative in ai.e., S¢| /S, —1 asv—oe. Just to show the link between the
region at high values ofv, where the contribution to the DFT (valid for v<kg) and our CLA(valid for v>kg), we
integrated value is rather negligible. Anyway, as in R&¥],  show forv=1=k=0.92 a curve interpolated by the esti-
we have replaced such negative values by zero. The firsthated experimerji31] for antiproton o= —1) and protons
order Lindhard results were calculated from E2Q) in the  (Zp=1) from Refs.[18] and[19], and the theoretical result
same way, i.e., with the five-dimensional numerical integralfor « particles impactZ,=2) [32].

We will focus on a FEG characterized by=2.09 (ke Figure 5 shows the single differential cross section for
=0.92w,=0.566) and\ =0.0375, which corresponds to the multicharged bare ions on aluminum FEGuat 3 a.u. as a
conducting electrons of aluminum. Integer values of thefunction of the projectile energy loss. For low projectile
chargeZp ranging from—1 to 5 (and alsoZp,=0.5), and charges Zp=1), the spectra show a single peak near the
integer values of the velocity from 1 to 10 were consid- plasmon energyd~0.6). To understand the mechanism in-
ered. In all cases we expect the results to be validufor volved in this structure, it is convenient to extract the binary
>Kke, sayv>2. contribution from the total value which includes also the

(29
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collective excitations. The binary contribution can be esti-
mated simply by inserting the step function

(a.u.)

0(9%kE— (w—g%2)?),

in the integrand of Eq(25). This factor reduces the integra-

tion to the region where energy and momentum are con-~

served in a collision with a single electron. Binary contribu-
tions to the probability are included in Fig. 5 for Lindhard
(dot-dashed linesand Coulomb-Lindharddotted line$ ap-
proximations. AsZp increases two effects can be observed:
the plasmon peak at~ 0.6 sharpens and the binary peak at
»w~0.85 starts to be increasingly noticeable. Possibly, it

dP/dw (a.u.)

could be explained as a two-or-more step processes includin

a plasmon as an intermediate state. Even though (batlary
and collectiveé peaks sharpen, we have found that the equi-
partition rule still holds within numerical uncertainties. It is

PHYSICAL REVIEW A 68, 022904 (2003

FIG. 5. Projectile energy loss distributions for
different projectile charges as indicated for
=3. The target is a free-electron gas with
=2.09 (aluminum cask Notation: solid(dashegl
lines, the full (binary along contribution of the
Coulomb-Lindhard approximation; dottédash-
dotted lines, the full(binary along contribution
of the Lindhard first order.

0.2

0.2
w (a.u.)

interesting to study the dependence of these structures on the g, 6. Projectile energy loss distributions for different projec-
projectile charge as shown in Fig. 6. The enhancement of thgie charges as indicated for=3. The target is a free-electron gas
binary peak only occurs for large positive charges but it iswith r=2.09 (aluminum case Notation: solid linegdot-dashey

not present for larg¢and unrealistic negative charge. The the full contribution of the Coulomb-Lindhard approximation for
physical interpretation may be found in the fact that positivepositive (negative projectile charge and dotted lines, the first-order

charges attract the electrons and forces them to collide with itindhard term.
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in the next step, while negative charges repel the electronons. It complements the binary scattering mdd®] valid
and so no further collisions take place. These findings ar¢or vy <kg, where collective oscillations are absent, and ex-

present only in a nonperturbative model since it necessarilyands the range of validity of the perturbation thefy, 13—
involves high perturbative orders. Jr7] for vk

In conclusion we have developed a distorted wave mode
based on the impulse approximation to calculate the nonlin-
ear effects(including all the order inZp) when a heavy
projectile penetrates a FEG. The method should be reliable | would like to thank M.S. Gravielle and D.G. Arbior
for large velocity impact, i.e., foo>kg, and includes not the important contributions to the present theory. The support
only the plasmon and binary excitations separately but alsof the Grant Nos. UBACyT X044, PICT99 0306249, and
the processes involving the mixture of both types of excitaPICT98 0303579 is acknowledged.
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