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Coulomb Lindhard approximation: Nonlinear excitation effects for fast ions penetrating
a free-electron gas
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We introduce a distorted wave method to calculate the nonlinear excitation effects occurring when a fast bare
ion penetrates a free-electron gas. The central scheme of this work is to replace the undistorted plane waves
leading to the Lindhard dielectric response function~or random phase approximation! by Coulomb waves with
an effective charge. This impulse-type approximation is valid for velocities larger than the Fermi velocity.
Stopping and mean free path are presented for impact of bare multicharged ions on aluminum free-electron gas.
The Barkas effect is theoretically found, i.e., negative heavy particles lose energy at the lower rate than positive
particles of the same velocity do. As the projectile charge increases, the single differential cross section per unit
energy presents two effects: the plasmon peak sharpens and the binary peak starts to be increasingly noticeable.

DOI: 10.1103/PhysRevA.68.022904 PACS number~s!: 34.50.Bw
de
r

e
e

n

ar

e
s
th
ce
m

od
m

igh
re
dl
fa
io
he

e

th
se

ic
ie
ted
es

his

e a
dy
-

is
or-

lts.

as
lf-

y.
in

lid

f-

oxi-
I. INTRODUCTION

As a heavy particle penetrates a free-electron gas~FEG!,
it gives rise to binary as well as collective-oscillations~plas-
mons! excitations. A huge amount of literature has been
voted to the calculation of the linear response; i.e., the fi
order in the projectile chargeZP originally developed by
Lindhard @1#. After the Barkas effect was found@2#, some
efforts have been focused on the calculation of the nonlin
effects @3#. Such theories can be classified, to our und
standing, into four major lines; viz.,~i! the hydrodynamic
models@4–6#, ~ii ! the oscillator model@7#, ~iii ! the binary
scattering method@8,10#, and~iv! the perturbative expansio
@11–17#.

The hydrodynamic as well as the oscillator models
very appealing. With them higher orders inZP can be cal-
culated after some feasible numerical calculations. In spit
a great deal of physical visualizations, the main doubt re
on the validity of such models to represent the details of
real quantum process. The binary scattering method is
tainly an appropriate model to treat stopping power for i
pact velocitiesv less that the Fermi velocitykF of the FEG
@11#. However, for a reason that is not very well understo
this model still produces a notable performance when co
pared with the experiments forv.kF , even though it lacks
collective oscillations@10#. It is well known that collective
excitations provide nearly half of the stopping power at h
impact velocities~equipartition rule! and such processes a
not contained in the binary scattering method. Undoubte
the perturbative expansion is a good starting approach to
the problem, however, after tedious numerical calculat
only it is possible to calculate the first correction to t
Lindhard dielectric function in terms ofZP . Moreover, its
range of validity is not sufficient to predict quantitatively th
experiments of protons (ZP51) @18# and antiprotons (ZP
521) impact@19# at v'kF .

In this paper we attempt a different approach based on
application of the distorted wave methods, commonly u
in the theory of inelastic atomic collisions@20#. The essential
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idea is to start from the formal definition of the dielectr
function, for example, from the one developed by Ritch
@21#, and replace the induced electronic density calcula
with plane waves by the one obtained with Coulomb wav
with an effective charge. This model includesall the pertur-
bative orders, at least in an approximate way. We call t
model the Coulomb Lindhard approximation~CLA!. It is a
typical impulse approximation, which attempts to describ
many-body quantum problem in terms of known two-bo
scattering wave functions@20#. As in the classical counter
part, the basic assumption of the impulse approximation
that the dynamics of the correlations does not play an imp
tant role during the collision, and it happens whenv@kF .

In Sec. II we present the theory and in Sec. III the resu
Atomic units are used.

II. THEORY

Let us consider a projectile of chargeZP moving inside a
FEG. The electrons feel the interaction of the projectile
well as that of the rest of the electrons conforming a se
consistent potentialV(r ) which induces an electron densit
Such an electron density in the projectile frame is defined
the usual way,rK(r )5uFK

1(r )u2 whereK5k2v is the rela-
tive electron momentum with respect to the projectile,k is
the momentum of the electron with respect to the so
frame, v is the ion velocity, andFK

1(r ) is the exact con-
tinuum wave function of the electron in the full sel
consistent unrestrained fieldV(r ) @21#. The Coulomb
Lindhard approximation, here proposed, consists in appr
mating the unknown stateFK

1(r ) by a continuum function of
the Schro¨dinder equation in the Coulomb potentialVC(r )
52ZC /r . Such a Coulomb continuum functionCK

1(r )
reads

CK
1~r !5cK~r !NK1F1~ ia,1,iKh!, h5r 2K̂•r , ~1!

where
©2003 The American Physical Society04-1
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NK5exp~ap/2!G~12 ia !, cK~r !5
exp~ iK•r !

~2p!3/2
, ~2!

a5ZC /K is the Coulomb parameter, andZC is an effective
Coulomb charge whose expression will be defined late
Sec. II B. The integral representation of the Fourier transfo
of the Coulomb density reads

r̃K~q!5E dr
exp~2 iq"r !

~2p!3/2
rK~r !

5
uNKu2

~2p!9/2E drexp@2 ilr 2 iq•r2 iKh#

31F1~11 ia,1,iKh!1F1~ ia,1,iKh!, ~3!

where we have used the Kummer transformation, andl
→01. After lengthy algebra involving Nordsieck integra
@22,23#, we obtain

r̃K~q!5
1

~2p!3/2
@CD1d~q!2CD2ṼC~q!#, ~4!

where

ṼC~q!52A2

p

ZC

l21q2
, ~5!

is the Fourier transform ofVC(r ),

A652
2

g0
6d

, C5uNKu2~A1!22ia, d5l21q2, ~6!

g0
65F1

2
k22

1

2
~q6k!26~v1 il!G21

, ~7!

D15G1~112ia !1G2ia~11 ia !S g0
1

g0
2

21D , ~8!

D25N1g0
11N2g0

2 , ~9!

N15G2~11 ia !, N25N112G3 , ~10!

G152F1~12 ia,2 ia,1,X!, ~11!

G252F1~12 ia,2 ia,2,X!, ~12!

G35G12~11 ia !G252 ia2F1~12 ia,12 ia,2,X!,
~13!

and X512A1A2 . It can be proved that ifq50, then
CD1511O(l). It implies that the first term in Eq.~4! nor-
malizes properly to the Dirac delta.

If r̃K(q) were expanded in a perturbative series in pow
of ṼC(q), we would obtain the first order
02290
n

r

r̃K~q!5
1

~2p!3/2
@d~q!2~g0

11g0
2!ṼC~q!#. ~14!

By settingVC̃(q)5Ṽ(q) in Eq. ~14! we obtain the expres
sion of the density leading to the Lindhard dielectric fun
tion.

The first element of Eq.~4! can be dropped since it doe
not involve transitions (q50); it just compensates the back
ground of positive charges. Replacing the density given
Eq. ~4! in the basic equation defining the dielectric functio
«(q) ~for instance, Eq.~2.8! of Ref. @21##, and adding on all
possible states of the FEG, one obtains

@«~q!21#Ṽ~q!5
4p

q2
2E dk

~2p!3
r̃K~q! ~15!

52ṼC~q!
4p

q2

2

~2p!9/2E dkCD2 , ~16!

whereQ5Q(kF2k) and Ṽ(q) is the self-consistent poten
tial.

The central point of this approximation is to chooseZC
5ZC(ZP ,q) so that we can invoke self-consistency by a
serting ṼC(q)>Ṽ(q). We will return later to this point in
Sec. II B. By invoking this identity, we can write the CLA
response function«CL as

«CL~q,v!512
4p

q2
2E dk

~2p!3
Q@G 1Q11G 2Q2#,

~17!

where the 2 in front of the integral accounts for the two sta
of the spins,Q65Q(uq6ku2kF), v5q•v, and

G 15CN1g0
1 , G 25CN2g0

2 . ~18!

Equation~17! is the central finding of this work.
We should stress that the approximation developed he

a nonlinear model. One could expand 1/«CL(q,v) in an in-
finite series in terms ofZP , to give

1

«CL~q,v!
5

1

«L~q,v!
1(

j 51

` ZP
j

« ( j )~q,v,v !
. ~19!

The first element 1/«L(q,v) is the linear Lindhard term. The
next term,j 51, is an approximation to the nonlinear contr
bution developed in recent papers@11,13–17#, and so on.
Performing this expansion is no easy task, since we hav
differentiate the hypergeometric function2F1 with respect to
the parametera, producing nonstandard functions which a
not easy to work with.

As the Coulomb charge vanishes,ZC→0, or v→`, a
5ZC /uk2vu→0, we have from Eq.~17! G1,2→1, N6→1,
uNKu→1, C→1, G 6→g0

6 and so the usual Lindhard dielec
tric function «L is recovered

«L~q,v!512
4p

q2
2E dk

~2p!3
Q@g0

1Q11g0
2Q2#.

~20!
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FIG. 1. Ratio of the probability and stopping calculated with the Coulomb-Lindhard approximation to the first-order Lindhar
function of the impact velocity for two different values of the effective Coulomb chargeZC5ZP andZC5Z0 as indicated. The target is
free-electron gas withr S52.09 ~aluminum case! and the projectiles are protons (ZP51) and antiprotons (Zp521) as indicated. The
validity of the theory should hold forv.2.
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Therefore, no mater whichZC we choose, the first order o
«CL(q,v) is always self-consistent and it coincides with t
one of Lindhard.

A. A practical expression

The argument of the hypergeometric functions2F1 can
take values larger than unity. Evaluation in these points
complicated since the usual analytical continuation for la
values ofX cannot be used because the argument of thg
functions is zero@see, for example, Eq.~15.3.7! of Ref. @24##.
In this case, it is more convenient to change the argumen
the hypergeometric function fromX to Y, whereY5X/(X
21). After some algebra not shown here, the dielectric fu
tion «CL(q,v) is found to keep the same form of Eq.~17!,
where now

G 65@NK* A2
1 ia#@K 6g0

6#@A1
2 iaNK#, ~21!

and the kernelsK 6 read

K 15~11 ia !2F1~11 ia,2 ia,2,Y!, ~22!

K 2522F1~ ia,2 ia,1,Y!2K 1. ~23!

At the very end, we conclude that«CL(q,v) is derived from
«L(q,v) by replacingg0

6 by G 6. It is the representation o
02290
is
e
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-

the propagatorG 6, the one that contains the Coulomb p
tential to all orders. For any other potential it is quite po
sible that the structure of the dielectric response funct
remains the same. The mathematical form of the propag
given by Eq.~21! is very common in the theory of atomi
collision when distorted wave methods are used@25#.

B. The Coulomb charge

The use of Coulomb waves lets us handle the algebr
be written down in suitable closed form, but the real intera
tion is not Coulombic but screened due to the reaction of
electron gas. We cast onZC the responsibility to accomplish
the self-consistency whenVC̃(q)>Ṽ(q) was invoked. The
toughest~and unrealistic! approximation would be the cho
senZC5ZP , i.e., where the interactions with the rest of th
electrons are fully neglected.

To include the interaction with the other electrons, o
may resort to an iterative scheme by starting withZC
5ZP /«L(q,v). But this is not an appropriate charge in o
scheme, since it has an imaginary component and so
wave function vanishes at infinity@26#. It implies that it does
not provide the correct asymptotic behavior. ThenZC must
be real and so it should depends only onq ~spherical sym-
metry!. It seemed to us more convenient to use the so-ca
static potential, i.e.,ZC5Z0, where
4-3
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Z05ZPReF 1

«L~q,0!G→H ZP as q→`

0 as q→0,
~24!

which ensures the Coulomb potential at short distancer
→0 ~or q→`), and Fridel oscillations at large distancesr
→` ~or q→0).

We have explored several other alternatives, such as
Yukawa potential ZC5q2/(q21z2), with z25vP

2 /(v2

1kF
2/3) @27#, the Fourier transform of the Nagy and Ec

enique potential@10#, etc. All these results are found to be
betweenZC5ZP and ZC5Z0. Dependence of the stoppin
with ZC will be presented in Fig. 1 below. Two observatio
should be noted.

First, selectingZC5Z0 as given by Eq.~24! doesnot
mean that we are considering the wave function of the
static potential~which has no closed form whatsoever! but
we are only using an effective Coulomb charge so that it
the same Fourier transform of the potential.

Second, one should not forget that we are considerin
projectile with abare punctual Coulomb chargeZP ~here
called the seed! shielded by the factor Re@1/«L(q,0)# which
represents the enhancement of the electronic density o
FEG accompanying the projectile. However, it is well know
that within the solid, the projectile captures and loses e

FIG. 2. ~a! Ratio of the probability of inelastic transitions ca
culated with the Coulomb-Lindhard approximation to the first-ord
Lindhard as a function of the impact velocity for different Coulom
projectile charges, as indicated. The target is a free-electron
with r S52.09 ~aluminum case!. The validity of the theory should
hold for v.2. ~b! Similar to ~a! for the stopping.
02290
he

ll

s

a

he

c-

trons to give rise to different charge states. If this is the ca
we can no longer useZP as the seed charge. One cou
extend the present model by incorporating the projec
electrons. For example, the seed charge may be cha
from ZP→ZPN2S j 51

nP ^w j uexp(iq•r )uw j&, whereZPN is the
projectile nuclear charge,nP is the number of electrons an
w j is the wave function of the bound electrons. Also it cou
be possible to tackle the problem projectiles with structu
@28#.

One can prove that the screening of the Coulomb pot
tial is proportional tor S

2x (r S is the Seitz radio!. If we con-
sider the screeningz, for example,x ranges from 1/2 to 3/2
depending onv. Therefore, asr S→0 ~high density limit!,
z→`,ZC;0, and so the plane wave is a good representa
and the Lindhard linear response holds quite well. On
contrary, asr S→` ~low-density limit!, z→0,ZC;ZP , and
so large correction is expected. This qualitatively estimat
is in agreement with previous findings@11,14#.

III. RESULTS

A three-dimensional integral onk is required to obtain
«CL(q,v) from @Eq. ~17!#. Two further integrals onq andv
are involved in the calculation of

r

as

FIG. 3. ~a! Probability per unit length of inelastic transitions a
a function of the projectile Coulomb charge for different velocitie
as indicated. The target is a free-electron gas withr S52.09 ~alumi-
num case!. Notation: solid lines, the Coulomb-Lindhard approxim
tion and dotted lines, the first-order Lindhard result.~b! Similar to
~a! for the stopping.
4-4
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Pj
(n)5S0E

0

`

dvvnE
v/v

` dq

q
ImF 1

« j~q,v,Z0!G , ~25!

with S0522ZP
2 /(pv2), to obtain the stoppingS5P(1), or

the probability~the inverse of the mean free path! P5P(0),
per unit path length. The subindexesj 5CL and L will be
used to denote the calculation with our CLA and t
Lindhard first order, respectively. The numerical calculat
of the CLA approximation is very difficult since the inte
grand involves the hypergeometric function2F1 which in
some cases has to be evaluated by solving its differen
equation. Two weeks of CPU time in a cluster of 4 PC of 1
GHz each have been required to obtain the results here
sented. To calculate the integrations, an adaptive nume
code has been used with a relative error less than 1%.
we have found some regions where the obtained curve
not have the optimal smoothness. We have found the s
pathology of the second-order dielectric formalism@17#: for
ZP,0, the probability was found to be slightly negative in
region at high values ofv, where the contribution to the
integrated value is rather negligible. Anyway, as in Ref.@17#,
we have replaced such negative values by zero. The fi
order Lindhard results were calculated from Eq.~20! in the
same way, i.e., with the five-dimensional numerical integ

We will focus on a FEG characterized byr S52.09 (kF
50.92,vp50.566) andl50.0375, which corresponds to th
conducting electrons of aluminum. Integer values of
chargeZP ranging from21 to 5 ~and alsoZP50.5), and
integer values of the velocityv from 1 to 10 were consid-
ered. In all cases we expect the results to be valid fov
@kF , sayv.2.

FIG. 4. Ratio of the stopping to the first-order Lindhard as
function of the projectile Coulomb charge for different impact v
locities, as indicated. The target is a free-electron gas withr S

52.09~aluminum case!. Impact velocitiesv50.1 ~full squares! and
0.6 ~empty squares! are the results of Salinet al. using the DFT
@27#. The values forv51 ~triangles! correspond to theestimated
experiments@31# for protons and antiprotons on aluminum alon
with the theoretical results ofa particles impact@32#. The solid
lines are the results using the Coulomb-Lindhard approxima
calculated for integer Coulomb charges andZP50.5. The interpo-
lated lines are just to help visualization.
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In Fig. 1, we plot the ratio between the Coulom
Lindhard and the Lindhard results for the probability a
stopping of protons and antiprotons on aluminum FEG
two different values of the Coulomb chargesZC5ZP and
ZC5Z0 as given by Eq.~24!. Although differences are ob
served, the same qualitative behaviors are present. For
ample, in both cases the Barkas effect is clearly spo
~stopping of protons are larger than antiprotons!. Although
we include results forv51, it is important to recall that CL
values are expected to be valid, at least, forv.2. From now
on we will concentrate on the use ofZC5Z0 .

In Fig. 2, we plot the ratio between the Coulom
Lindhard and the Lindhard results for the probability a
stopping of different projectile charges as a function of t
impact velocity. Some oscillations are observed for the fi
positive charges. For the stopping the convergence to uni
large velocities decreases with the projectile charge.

Figure 3 shows the absolute values of the probability a
stopping along with the Lindhard ones that are proportio
to ZP

2 . The CLA departures from this tendency. It produce
saturation effect, i.e., the results seem to tend to a cons
The departure from theZP

2 law depends on the velocity; th
larger the velocity, the larger the charge where departure
curs. This behavior withZP is similar to the one found in
ion-atom excitation and ionization@30#, and perhaps the
same physics is involved. One can then expect that, as in
ionization case, saturation starts forZP;v. The saturation is
a consequence of theinfinite series in terms ofZP . If we
kept the first correction (j 51) in Eq. ~ 19! the probabilities
as well as the stopping would diverge asZP

3 .
In Fig. 4 we compare our results with the ones reported

Salinet al. @29# by plotting the ratioSCL /SL as a function of
ZP . These authors have used a very refined method. T
employed the density-functional theory~DFT! to describe
the electron density, and so the corresponding induced po
tial was derived. This potential~with cylindric symmetry!
was expanded in harmonic spherics solving the equations
each angular orbital. This method holds for small velociti
v,kF , because both, the DFT cannot describe the kinetic
high energies and the collisional model used does not
count for collective oscillation~plasmons!, which for protons
on aluminum starts at 40 keV (v51.3). The CLA seems to
continue reasonably the tendency from low velocityv
50.1–0.8 a.u.) to the high velocity region (v.2). In the
high velocity limit, we expect the ratio to tend to the unit
i.e., SCL /SL→1 asv→`. Just to show the link between th
DFT ~valid for v!kF) and our CLA~valid for v@kF), we
show for v51.kF50.92 a curve interpolated by the est
mated experiment@31# for antiproton (ZP521) and protons
(ZP51) from Refs.@18# and @19#, and the theoretical resul
for a particles impact (ZP52) @32#.

Figure 5 shows the single differential cross section
multicharged bare ions on aluminum FEG atv53 a.u. as a
function of the projectile energy lossv. For low projectile
charges (ZP51), the spectra show a single peak near
plasmon energy (v;0.6). To understand the mechanism i
volved in this structure, it is convenient to extract the bina
contribution from the total value which includes also t

n

4-5



r

J. E. MIRAGLIA PHYSICAL REVIEW A 68, 022904 ~2003!
FIG. 5. Projectile energy loss distributions fo
different projectile charges as indicated forv
53. The target is a free-electron gas withr S

52.09 ~aluminum case!. Notation: solid~dashed!
lines, the full ~binary alone! contribution of the
Coulomb-Lindhard approximation; dotted~dash-
dotted! lines, the full ~binary alone! contribution
of the Lindhard first order.
ti

-
on
u
rd

d
a

,
di

u
is
n
th

t i

iv
th

c-
s

r
er
collective excitations. The binary contribution can be es
mated simply by inserting the step function

Q„q2kF
22~v2q2/2!2

…, ~26!

in the integrand of Eq.~25!. This factor reduces the integra
tion to the region where energy and momentum are c
served in a collision with a single electron. Binary contrib
tions to the probability are included in Fig. 5 for Lindha
~dot-dashed lines! and Coulomb-Lindhard~dotted lines! ap-
proximations. AsZP increases two effects can be observe
the plasmon peak atv;0.6 sharpens and the binary peak
v;0.85 starts to be increasingly noticeable. Possibly
could be explained as a two-or-more step processes inclu
a plasmon as an intermediate state. Even though both~binary
and collective! peaks sharpen, we have found that the eq
partition rule still holds within numerical uncertainties. It
interesting to study the dependence of these structures o
projectile charge as shown in Fig. 6. The enhancement of
binary peak only occurs for large positive charges but i
not present for large~and unrealistic! negative charge. The
physical interpretation may be found in the fact that posit
charges attract the electrons and forces them to collide wi
02290
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FIG. 6. Projectile energy loss distributions for different proje
tile charges as indicated forv53. The target is a free-electron ga
with r S52.09 ~aluminum case!. Notation: solid lines~dot-dashed!,
the full contribution of the Coulomb-Lindhard approximation fo
positive~negative! projectile charge and dotted lines, the first-ord
Lindhard term.
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COULOMB LINDHARD APPROXIMATION: NONLINEAR . . . PHYSICAL REVIEW A 68, 022904 ~2003!
in the next step, while negative charges repel the electr
and so no further collisions take place. These findings
present only in a nonperturbative model since it necessa
involves high perturbative orders.

In conclusion we have developed a distorted wave mo
based on the impulse approximation to calculate the non
ear effects~including all the order inZP) when a heavy
projectile penetrates a FEG. The method should be relia
for large velocity impact, i.e., forv@kF , and includes not
only the plasmon and binary excitations separately but a
the processes involving the mixture of both types of exc
ett

uc

es

Eu

. B

e

h,
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tions. It complements the binary scattering model@8,9# valid
for v!kF , where collective oscillations are absent, and e
tends the range of validity of the perturbation theory@11,13–
17# for v@kF .
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