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Abstract

Detection of SARS-CoV-2 has created an enormous workload for laboratories worldwide

resulting in a restriction at the time of massive testing. Pool testing is a strategy that reduces

time and costs. However, beyond the detection of infectious diseases in blood banks, this

approach is rarely implemented in routine laboratories. Therefore, what was learned from

the SARS-CoV-2 pool testing should represent an opportunity to increase diagnostic capa-

bilities. The present work, carried out in the context of a diagnostic laboratory of a public hos-

pital during the COVID-19 pandemic, represents a contribution to this end. The main

limitation of pool testing is the risk of false negatives that could have been identified by indi-

vidual tests. These limitations are the dilution of samples with a low virus load during pooling

and that the integrity of the sample may be affected by the quality of the sample collection.

Fortunately, both limitations coincide with the main strengths of droplet digital PCR

(ddPCR). ddPCR is a third-generation PCR that splits the amplification into thousands of

droplets that work in parallel, increasing sensitivity and resistance to inhibitors. Therefore,

ddPCR is particularly useful for pool testing. Here we show how to factor between test sensi-

tivity and savings in test time and resources. We have identified and optimized critical

parameters for pool testing. The present study, which analyzed 1000 nasopharyngeal sam-

ples, showed that the pool testing could detect even a single positive sample with a CT

value of up to 30 in pools of 34 samples. This test was performed using three different stan-

dard extraction methods, the simplest being heating only, which resulted in substantial sav-

ings of extraction reagents in addition to PCR reagents. Moreover, we show that pooling can

be extended to use saliva, which is less invasive and allows self-collection, reducing the risk

for health personnel.
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Introduction

The updated analysis shows that the COVID-19 pandemic has caused more than 6 million deaths

to-date reported to the World Health Organization (WHO) becoming a great threat to public health

worldwide [1, 2]. Moreover, the International Monetary Fund projected a global cumulative output

loss of nearly $13.8 trillion through 2024 [3, 4]. Today, it continues to be a hazard as variants keep

emerging with increased transmissibility and severity, reduced effectiveness of treatments and partial

resistance to vaccines [5, 6]. Therefore, the implementation of national plans for the detection of

positive cases was necessary to guarantee timely care for the patients and stop further spread of the

virus. The high percentage of asymptomatic patients complicates the situation since it is not possible

to base the diagnosis solely on the clinic, requiring a laboratory diagnosis [7].

Vaccination was shown to reduce the viral load and the spread of the disease, but even when vac-

cination campaigns are showing excellent results [8], a close follow-up to check for their efficacy is

needed [2]. Thus, scaling up and maintaining large testing capacities worldwide remains a challenge,

due to high costs, limited reagents, and scarcity of test equipment and laboratory staff [9].

Real Time quantitative polymerase chain reaction q-PCR (RT-qPCR) is the gold standard

method for infectious disease detection like COVID-19 as it is a highly specific and sensitive

diagnostic [10]. One possibility to increase the number of tests to detect SARS-CoV-2 is to

adopt the pool testing strategy developed by Dorfman [11, 12]. Pool testing is a method of

grouping several samples to be analyzed in a single reaction test. Practical experience shows

that countries that carried out massive testing campaigns were the most effective in controlling

the pandemic [13]. Therefore, pool testing has become an appealing method that has been

explored by many laboratories using RT-qPCR [13–24].

Even when it possesses several advantages (it is cost-effective at low prevalence of the virus [15]

and expands screening capacities [21]), pool testing by RT-qPCR also presents limitations like low

sensitivity due to dilution effect [15] and inhibitions [16] associated to this method. Both limita-

tions could be circumvented by a third-generation PCR: the droplet digital PCR (ddPCR). In this

end-point PCR, the sample is divided into thousands of nanodrops, amplified, counted by a drop-

let reader and the result is analyzed by a Poisson distribution. Therefore, quantification by ddPCR

is absolute, more resistant to inhibitors and more sensitive than RT-qPCR, favoring its use for

pool testing [1]. Although ddPCR doubles the costs of RT-qPCR, the use of pooling reduces the

cost when three or more samples are pooled, and then the fall of the operational costs has an

inverse correlation with the number of samples mixed in the pools [25]. An additional advantage

of ddPCR is that since worldwide SARS-CoV-2 detection is mainly done by RT-qPCR and

resources are often lacking, ddPCR makes available a different diagnostic approach.

There are many different strategies to calculate the optimum size of the pool for a given

prevalence [26–28]. In general, the lower the prevalence, the bigger the size, as long as the sen-

sitivity of the method allows it. Therefore, at a low level of prevalence, ddPCR pool testing

would be useful as an epidemiological surveillance system for the early detection and isolation

of confined outbreaks caused by new SARS-CoV-2 variants, and recursively tracking each con-

tact to control a possible epidemic focus.

The information provided in this study may serve other laboratories to establish a platform

for the detection of SARS-CoV-2 in pooled samples of nasopharyngeal swabs and saliva by

droplet digital PCR as a cost-effective method [29].

Materials and methods

Sample collection

Both Nasopharyngeal and saliva samples were collected between 1st April and 31st July 2021.

Nasopharyngeal swabs were collected by healthcare providers, mixed with 2 mL saline
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57191007-8) https://www.argentina.gob.ar/ciencia

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0271860
https://www.argentina.gob.ar/ciencia


solution, and sent to the Hospital Provincial de Rosario’s molecular biology laboratory. For the

saliva samples, we followed a protocol designed previously in our facilities. Briefly, saliva was

collected after 3 hours of fasting by passive drooling. All samples were stored at 4˚C until

extraction. In Biosafety Level 2 containment, RNA was inactivated and then extracted using

the Applied Biosystems™ MagMAX™ Viral/Pathogen II (MVP II) Nucleic Acid Isolation Kit

(Cat# A48383) and the KingFisher™ Flex Purification System, SmartStart, 96 deep-well head

(Cat#5400610). When validating the robustness of the method, two other extraction methods

were used in parallel: manual extraction with Tiagen1 columns (Cat#DP315-R) and an in-

house heat-developed method (10 min at 95˚C).

Individual RT-qPCR test

RT-qPCR was performed in the clinical laboratory to detect the presence of SARS-CoV-2

RNA with the PerkinElmer SARS-CoV-2 RT-qPCR Reagent kit1 (Cat # 3515–0010), follow-

ing manufacturer instructions. We received deidentified positive and negative samples with a

code. The RT-qPCR step was critical as it was used to prepare negative pools. These pools were

tested by ddPCR to assure their negativity. Samples with CT 30 (nasopharyngeal swabs) and

CT 33 (saliva) were used as positive samples to spike the negative pools. The size of the pools

varied depending on the experiment.

Pooling preparation

Two different protocols were applied to determine which was the most sensitive pool prepara-

tion. For pooling after RNA extraction, RNA extraction was done individually with the

Thermo Scientific™ KingFisher™ purification system prior sample grouping. Negative samples

were pooled and aliquoted and a single positive sample was added. Pools were analyzed by

ddPCR. For pooling before extraction, 1 single positive sample (nasopharyngeal swab in saline

solution) was pooled with negative samples before automatic RNA extraction. Saliva samples

were pooled after RNA extraction.

Pooled ddPCR test

All procedures followed the manufacturer’s instructions for the Bio-Rad SARS-CoV-2 ddPCR

Kit (Cat#12013743) unless otherwise specified. In a 96-well PCR plate, 5,5 μL of the extracted

patient sample (representing 200 μL of the original sample), pool sample, or control were

added to 16,5 μL of master mix for each reaction. Droplet generation was done in the QX200

AUTO DG (Cat#12001630) following the manufacturer’s instructions. Then, the samples were

placed on a Bio-Rad TX100 Touch Thermal Cycler for reverse transcription and PCR amplifi-

cation. The plate was read on a Bio-Rad QX200 Droplet Reader and analyzed using the Quan-

taSoft™ Analysis Pro 1.0.596 software.

Primers and probes for the N1 and N2 gene targets were present, along with ribonuclease P

protein subunit p30 (RNAse P) as an internal control for endogenous human RNA. The N1

probe was labeled with carboxyfluorescein (FAM), the N2 probe was labeled with HEX and

FAM, and the RNAse P probe was labeled with HEX fluorophore. Each case was reviewed for

automated droplet count and then reviewed manually to determine whether positive droplets

fell outside gating parameters. As specified in results, samples that had 3 or more copies/20μL

for both N1 and N2 genes were considered positive. Besides the cut-off determined and

according to manufacturer instructions, a minimum number of accepted droplets is required

to ensure optimal detection in the analysis: positive assays must have at least 6,000 accepted

droplets, negative assays must have 10,000 or more, and samples with fewer than 10 positive
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droplets for RNAse P gene are considered invalid. If this is not accomplished, then the test

must be repeated.

Statistical analysis

Analysis of the ddPCR data was performed with QuantaSoft analysis software v.1.7.4.0917

(Bio-Rad) to calculate the concentration of the targets. Regarding statistical analysis, to assess

significant differences Wilcoxon and Friedman’s tests were performed with GraphPad Prism

8.00. A p-value <0.05 was considered statistically significant.

Ethical approval

The study protocol was approved on December 10th, 2020 by the Bioethics Committee of Uni-

versidad Nacional de Rosario, Facultad de Ciencias Médicas (FCM) (resolution: 3733/2022).

Signed informed consent was not necessary as deidentified samples of SARS-CoV-2 tests by

Rosario Provincial Hospital were used. This study was conducted in accordance with the prin-

ciples of the 1964 Declaration of Helsinki.

Results

Specificity

According to European pharmacopeia [29], specificity is the ability to unequivocally evaluate

nucleic acid in the presence of components expected to be present in the sample. To determine

the specificity, first, we needed to define our cut-off limit (background). This number repre-

sents the positive drops that could appear unspecifically in a negative sample. In order to

define our cut-off, we measured 50 samples that contain only the RNAse P gene. Thus, the cut-

off limit was determined as the maximum number of positive molecules/20μL (which in this

case correspond to copies for the N1 and N2 genes/reaction). Table 1 shows that when the 50

reactions containing only the RNAse P gene were dosed, they presented less than 3 copies/

20μL for the N1 and N2 sequences of the N gene. This cut-off limit was used to analyze the

specificity of the assay.

To test the specificity, 100 negative pools were prepared using negative samples previously

determined by RT-qPCR. These negative pools were tested by ddPCR and the cut-off limit was

used to define positive and negative pools. When this assay was executed for the first time

some drawbacks appeared regarding our system. As defined by Alteri et al. [30]: “ddPCR-

based assay can allow an efficient detection of SARS-CoV-2 at low copy number in

Table 1. Summary of cut off- and specificity determination.

Assessment N gene Total assays per

assessment

Number of assays that meet the tested criteria

0 copy/20μL for both

genes

<1 copy/20μL for both

genes

<2 copies/20μL for both

genes

<3 copies/20μL for both

genes

Cut- off RNAse P N1 50 40 40 48 50

N2 50 39 39 48 50

Specificity Negative

pool

N1 100 92 92 100 100

N2 100 84 84 98 100

Initially, a positive control of RNAse P RNA was used to set up the cut-off limit. As there was certainty that no SARS-CoV-2 genome was present in these samples, any

molecule detected by the system must have been nonspecific, thus the cut-off chosen was the one that determined all 50 assays as negatives. With the cut-off assessment,

it was possible to differentiate positive samples (those with 3 or more copies/20μL for the N1 and N2 sequences of the N gene) from negative ones. Then, this cut-off

limit was used to determine the specificity by testing 100 negative pools. The specificity was 100%.

https://doi.org/10.1371/journal.pone.0271860.t001
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symptomatic cases resulting negative by standard RT-qPCR.” When our assumed negative

pools were tested with ddPCR, some resulted in positive pools. These pools were opened and

tested individually by ddPCR. There was at least one positive sample in each of these positive

pools. Ideally, we should have used samples from patients from before the pandemic to prepare

the negative pools but that was not possible as our laboratory emerged due to the pandemic.

Then, new negative pools were prepared after individual ddPCR analysis. The assay was

repeated using the cut-off previously set, (less than 3 copies/20μL for both sequences N1 and

N2), and specificity resulted in 100%. Results are shown in Table 1.

Maximum pool size

The maximum pool size refers to the higher number of negative samples that can be grouped

with a positive sample in a pool and still detected the positive sample in 95% of the tests. It was

important to select a positive sample with a clinically relevant CT. Bullard et al. observed that

the infectious virus was detected only on samples with a high concentration of viral RNA (RT-

qPCR positive at cycle threshold (CT) < 24) [31] and reported only 12% residual infectivity

after CT 30. Furthermore, in van Kampel work, CT values were converted to Log10 RNA cop-

ies/mL [32], founding that the probability of isolating infectious virus was less than 5% when

viral RNA load was below 4x106 RNA copies/mL. This cut-off was similar to the cut-off of

3x106 RNA copies/mL reported by Wolfel et al. [33]. In our study, we decided to use as positive

sample the ones with the highest CT that is considered clinically relevant. Therefore, we made

the correlation between the CT and copy number obtained by RT-qPCR and ddPCR, respec-

tively and decided to use as a positive sample the ones with CT = 30 as this CT corresponds to

4x104 RNA copies/mL.

Originally, three different size pools were made with samples previously tested: 1/10 (1 posi-

tive and 9 negatives), 1/24 (1 positive and 23 negatives) and 1/32 (1 positive and 31 negatives).

Six different pools of each size were prepared and tested by ddPCR. Table 2 shows that even in

the bigger size pool (1/32), the positive sample (CT = 30) was still detected. Thus, the size of the

pools was increased to 1/34 (1 positive and 33 negatives) and 1/36 (1 positive and 35 negatives).

For these new size pools, 24 repetitions of each one was performed. Table 2 shows that the 1/34

pool was detected in 100% of the cases, while the percentage of positivity for the 1/36 pool was

less than 95%. Therefore, the maximum number of samples per pool was defined as 34.

Robustness of the method

Robustness is the ability to withstand small but deliberate variations in method parameters. To

determine that, we evaluated the following variations: pooling order, different extraction

methods and cross-contamination.

Table 2. Maximum grouping determination.

Pool dilutions D ND Repetitions Positivity

1/10 6 0 6 100%

1/24 6 0 6 100%

1/32 6 0 6 100%

1/34 24 0 24 100%

1/36 20 4 24 83%

Positive samples are consistently detected when diluted with up to 33 negative samples. D: detectable. ND: not

detectable.

https://doi.org/10.1371/journal.pone.0271860.t002
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Pooling order assessment. To prepare the pools before RNA extraction is a considerable

reduction of time and work. Therefore, it was important to determine if the sensibility of the

pool strategy was still good enough if the pool was made before RNA extraction. To this assay,

pool size was 34 and the CT of the positive sample was 30 as discussed before. Pool samples

were made prior to RNA extraction and after RNA extraction. To test whether the pooling

approach can be applied even before RNA extraction, the nasopharyngeal swab in saline solu-

tion of one single positive sample was pooled with the saline solution of 33 negative simples.

After that, RNA extraction was performed. In parallel, each sample was purified alone with the

same extraction method and then the pool was made. Although, statistical analysis exhibited a

significant difference showing greater sensitivity if the pool is assembled after extraction (Fig

1), it was possible to visualize viral RNA in pools prepared both before and after RNA extrac-

tion. The concordance between both protocols was 100%. (Shown in Table 3)

Different extraction method assessment. Twenty samples were selected with a CT in a

range of 20 to 26, greater concentrations than the positive sample used to determine the maxi-

mum grouping. Three different extraction methods were tested: manual by column (Tia-

gen1), automated by magnetic beads (Applied Biosystems™ MagMAX™ Viral/Pathogen II

(MVP II) Nucleic Acid Isolation Kit and Thermo Scientific™ KingFisher™ purification system)

and heat (10 min. at 95˚C).

Fig 2 shows that manual extraction by column and automated extraction by magnetic beads

present the lower CT values, but even though the CTs varied, viral RNA was detected in all the

pools.

Fig 1. Pooling order assay. N˚ copies/20 μL were obtained by pooling before or after extraction for A) N1 and B) N2

sequences of the N gene of SARS-CoV-2. The Wilcoxon test and Friedman’s tests for paired, non-parametric samples

determined that there is a significant difference (p< 0.01) between both pooling ways.

https://doi.org/10.1371/journal.pone.0271860.g001

Table 3. Concordance in pooling order.

Concordance of results in pooling order

BEFORE AFTER CONCORDANCE RATE

D 20 20 100%

ND 0 0 100%

Positive samples are consistently detected when diluted with up to 33 negative samples by pooling before or after RNA extraction. D: detectable. ND: no detectable.

https://doi.org/10.1371/journal.pone.0271860.t003
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Cross contamination assessment. To assess the possibility of cross-contamination

throughout the process, 20 negative pools were seeded alternated in a plate with 20 pools

spiked with a positive sample. Considering the European pharmacopeia [29] specifications,

this positive sample had to be present at a viral load concentration 2 order of magnitude higher

than the concentration used for the maximum pool. Therefore, since CT = 30 is the highest

CT considered clinically relevant, we spiked with a 100-fold more concentrated sample

(CT = 23 as 27 = 128), for the cross contamination assessment. Since no positive results were

observed in the negative pools when twenty positive pools and twenty negative pools were

alternated on the plate, we confirm that there was no cross-contamination (Table 4).

Saliva assays

The use of saliva as a sample has several advantages compared to nasopharyngeal swabs. First,

there is no need of a trained professional to obtain the sample, reducing the risk of health

Fig 2. Different methods of extraction assay. N˚ copies/20 μL obtained with different methods of extraction (heat,

manual by column and automated method by magnetic beads) for A) N1 and B) N2 sequences of the N gene of

SARS-CoV-2. The Wilcoxon test and Friedman’s tests for paired, non-parametric samples determined that there is

significant difference (p< 0.0001) between heat extraction method and the other two methods.

https://doi.org/10.1371/journal.pone.0271860.g002

Table 4. Seeding method in PCR plate and results.

Copies N˚/20μL(N1/N2)

1 2 3 4 5

Pools - A 0/0 0/0 0/0 0/0 0/0

Pools + B 45012/46509 49147/50151 51190/52015 55134/53921 51779/52955

Pools - C 0/0 3.31/0 0/0 0/0 0/0

Pools + D 44791/45920 43087/44224 44879/45943 48571/48683 46925/47583

Pools - E 0/0 1.56/0 1.53/0 0/0 0/0

Pools + F 45746/45384 53428/55410 49796/51500 55495/55269 43735/44060

Pools - G 1.59/0 0/0 0/0 0/0 2.69/0

Pools + H 48546/49054 55252/56986 49552/50586 58014/58859 51975/52569

The disposition is related to seeding order on the PCR plate: White and grey cells correspond to negative and positive samples respectively. Each cell shows number of

copies/20μL obtained for N1 and N2 genes (expressed as N1/N2).

https://doi.org/10.1371/journal.pone.0271860.t004
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personnel infection. Second, it is less invasive than swabs and third, there is no need of flocked

swabs and transport media which are prone to shortages. Therefore, we analyze the perfor-

mance of saliva samples arranged in pools. As it is described that saliva has higher content of

inhibitors than nasopharyngeal swabs, we started with pools of smaller sizes. We prepared

pools of three different sizes: 1/10 (1 positive and 9 negatives), 1/15 (1 positive and 14 nega-

tives), and 1/20 (1 positive and 19 negatives). We decided to use as a positive saliva sample one

with CT = 33 (it corresponds to a CT = 30 for a nasopharyngeal sample, as seen in our experi-

ments [34] and considering similarities obtained in bibliography [35]). It was observed that

even in the biggest pool prepared (1/20), the positive sample was detected, thus 24 repetitions

of 1/20 pools were performed (in different days), and 1/20 was defined as our maximum pool

size for saliva with 100% specificity. (Table 5). The decision we made about not increasing the

number of samples in the pools and keeping the pool of up to 20 samples was due to the fact

that we were at the limit of detection (LOD) of the method; we made this inference based on

the number of copies for N1 and N2 genes obtained in the 1/20 pools.

Use of the validated method

During the months of September-October 2021, when positivity rates decreased to 3% in

Argentina, this new methodology was implemented in the laboratory. We prepared pools with

regular samples that arrived at the hospital and the assays were performed following a Matrix-

based non-hierarchical pool testing as shown in the example of Table 6. This strategy uses a

combinatorial pool-testing approach [36] where a double-entry chart is created and cross-

match information between lines and columns is used to get the exact sample that is positive.

Table 5. Maximum grouping determination for saliva samples.

Pool dilutions D ND Repetitions Positivity

1/10 3 0 3 100.00%

1/15 3 0 3 100.00%

1/20 27 0 27 100.00%

Positive saliva samples are consistently detected when diluted with up to 19 negative samples. D: detectable. ND: no

detectable.

https://doi.org/10.1371/journal.pone.0271860.t005

Table 6. Double-entry chart with analyzed samples (example of a real case).

Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Pool 6 Pool 7 Pool 8 Pool 9 Pool 10

Pool A 123–6 140–6 417–6 507–6 508–6 153–6 163–6 042–7 064–7 096–7

Pool B 178–14 401–14 410–14 591–14 510–15 511–15 512–15 135–14 169–19 344–14

Pool C 502–14 503–14 520–14 576–14 587–14 588–14 590–14 161–12 162–12 163–12

Pool D 170–14 501–12 587–12 589–12 509–13 510–13 502–13 503–13 100–12 111–13

Pool E 136–13 355–13 392–13 81–20 396–13 150–12 397–13 398–13 402–13 403–13

Pool F 404–13 103–20 426–20 501–13 504–13 507–13 508–13 590–12 175–13 183–13

Pool G 101–11 102–11 111–11 028–12 503–12 505–12 087–12 102–12 107–12 504–12

Pool H 508–12 159–5 405–6 410–12 411–6 412–6 530–6 551–6 558–6 559–6

Samples that were used for the preparation of 18 pools are shown in this table (numbers in the cells are internal codes of identification of patients used in the hospital).

Pools 1–10 were prepared with samples described under each column and pools A-H were prepared with samples described following each line. Considering this

distribution and preparation of pools, each sample was tested twice, once in pool 1–10 and once in pool A-H. In grey we show the “putative positive samples” to be

retested by RT-qPCR after finding that pools 1,2,6, A, B and E were positives by ddPCR.

https://doi.org/10.1371/journal.pone.0271860.t006
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Later, the cross-matched samples are run individually by RT-qPCR to re-confirm their positiv-

ity. It is important to consider that in the case of having more than an only pair of positive

pools, not all crossmatch are going to be positive samples, that is the reason why it is important

to have low infectivity rates to make good use of this method. At that time this new methodol-

ogy helped to reduce time and costs in our laboratory.

In the example shown here, after analyzing by ddPCR the pools described in Table 6, we

were able to determine 6 positive pools: 1, 2, 6, A, B and E. The intersection between columns

and files shown in grey in Table 6 are the “putative positive samples” to be re-tested by RT-

qPCR assays.

Table 7 shows the results obtained after RT-qPCR assay. It was possible to identify three

positive samples without further inconvenience. It is important to remark the reduction of

time and cost of this validation, considering that from an initial amount of 80 samples, only

one ddPCR assay with 18 pools and one RT-qPCR assay with 9 individual samples were done.

In other words, only 26 determinations for 80 samples.

Discussion

This clinical validation of ddPCR for SARS-CoV-2 molecular testing in pool samples demon-

strates the feasibility of detecting one positive nasopharyngeal swab sample with a CT = 30 in a

pool of 33 negative samples with 100% sensitivity and 100% specificity. According to our

experiments, this is the maximum grouping possible that maintains this level of sensitivity.

Idan Yelin et al. [14] evaluated multi-sample pools with RT-qPCR and determined that viral

RNA can be consistently detected but pooling would reach a sensitivity of 96% for a pool size

of 16 samples and higher-fold pooling have an estimated false-negative rate of 10%. This is

consistent with results from Tao Suo et al. [1] who described that ddPCR for SARS-CoV-2

detection is around 500 times more sensitive than RT-qPCR at low-level viral load. This

advantage of ddPCR is derived from its use of endpoint quantification rather than quantifica-

tion by real-time amplification used by RT-qPCR. Moreover, this qualitative measurement for

each droplet reduces the susceptibility to poor amplification efficiency, and the compartmen-

talization of the individual droplets helps to get higher confidence at low input viral load [37].

It is important to highlight the difference between the limit of detection of ddPCR and RT-

qPCR. According to one of the studies of Tombuloglu et al. [38], the RT-qPCR method for the

Table 7. RT-qPCR assay (example of a real case).

Sample N-gene ORF1ab-gene Internal Control RESULT

(CT) (CT) (CT)

123–6 36.29 ND

153–6 30.31 ND

178–14 31.12 30.20 31.28 D

511–14 33.32 ND

136–13 27.54 ND

150–12 30.92 29.51 31.85 D

140–6 17.18 15.73 30.27 D

401–14 32.87 ND

355–13 33.80 ND

Samples that were suspected of being positive after pool analysis by ddPCR, were retested individually by RT-qPCR. CT results for N gene (detected with FAM

fluorophore), ORF1ab gene (HEX) and RNAse P (Cy5) are shown for each sample, and the resolution after evaluating CT information, is determined in the last column,

being D: detectable. ND: no detectable.

https://doi.org/10.1371/journal.pone.0271860.t007
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diagnosis of SARS-CoV-2 has a LOD of 0.81 copies/μL for the N gene and 1.40 copies/μL for

the RdRP gene. In another study [39], Tombuloglu et al. determined that the LOD for RdRP

and E genes were at least 101 and 103 copy/μL, respectively by RT-qPCR. On the other hand,

Jing Xu’s group [40] determined that the LOD for SARS-CoV-2 by ddPCR was 0,05 copies/ μL

for N1 and N2 gene. Thus, even if considering the lowest LOD mentioned for RT-qPCR,

ddPCR is still 16 times more sensitive.

Furthermore, ddPCR compared with RT-qPCR, has increased resistance to inhibitors due

to lower competition/inhibition for reaction resources derived from the compartmentaliza-

tion. In nasopharyngeal swabs samples, this technical advantage was proven useful as it was

possible to detect a positive sample in a 1/34 pool prepared with crude lysate from patient sam-

ples (Heat 10 min. at 95˚C). This was evaluated before [37] and adds information in highlight-

ing the potential advantages of ddPCR for COVID-19 diagnosis, particularly to obtain

quantitative results from crude lysate, thus obviating the need for nucleic acid purification.

To take full advantage of inhibitor resistance, we show that pure saliva samples can be ana-

lyzed by ddPCR, whereas this is not possible by RT-qPCR due to its high inhibitor content.

Working with saliva presents several advantages, permits more affordable and frequent testing,

fewer risks of infection to healthcare personnel compared with swab-based methods, and alle-

viates demand for supplies of swabs and personal protective equipment (PPE). For all this, we

consider the successful detection of SARS-CoV-2 in saliva in pools of 20 samples, as a signifi-

cant result of maximum value [41].

Moreover, the process of sample partitioning has the extra advantage of concentrating rare

species present in bulk of large quantity of wild type as it increases the relative concentration

in the micro-environment of each droplet (each PCR vessel only contains an average of less

than 1 molecule) [2]. In our laboratory, ddPCR is being validated to detect SARS-CoV-2 vari-

ants (delta and omicron) in a pool of positive samples in order to provide epidemiologically

significant results.

When selecting the CT value for the positive sample, we decided to choose the "worst-case

scenario". Therefore, our goal was to use the highest CT value that is clinically relevant. Anika

Singanayagam’s group [42] demonstrated that infectiousness persists for a week or more after

symptom onset, declining over time (with CT = 28 the first week after infection, CT = 30.65

during the second week after infection, and CT = 31.60 after 14 days post-infection). They

observed that ten days after symptom onset, the probability of culturing the virus declined to

6.0%. Therefore, we decided to take a CT value close to the second week of infection (lower

infective-viral load). Similarly, La Scola et al. [43], found a significant relationship between CT

value and culture positivity rate. The culture positive rate decreased progressively according to

CT values to reach 12% at CT = 33. No culture was obtained from samples with CT�34. As

mentioned in the results, the group of Poliquin observed infectiousness only with CT< 24

[31] while van Kampen et al. described that the probability of isolating infectious virus was less

than 5% when viral RNA load was below 4x106 RNA copies/mL [32]. Considering all this

information; the fact that in our hands CT = 30 corresponds to 4x104 RNA copies/mL, and

having in mind that a CT = 30 is the highest CT value accepted for sequencing and variant

determinations in Argentina, we used a CT = 30 as the positive sample for the assays. For saliva

samples, the CT value chosen was 33, as previous evidence from our lab demonstrated that

there is an increase of 3 cycles from nasopharyngeal swabs to saliva [34].

The asymptomatic and pre-symptomatic patients are likely to be a hidden source of infec-

tious virus; thus, pooling is especially useful for routine community surveys and for monitor-

ing cohesive groups. Local and global epidemic response critically depends on determining

carriage frequency in the population, which is greatly enabled by pooling techniques [14].
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Additional advantages of pooling with ddPCR are the reduction in cost and time. Even

when ddPCR doubles the costs of RT-qPCR, these costs are reduced when pooling samples.

Savings will depend on the positivity rate, the group size, and the cost of ddPCR testing. Con-

sidering 1000 samples in groups of 10, for positivity rates of 1% and assuming ddPCR is 2

times more expensive than individual RT-qPCR test, cost reductions of at least 70% and time

savings of at least 75% are achievable when comparing ddPCR versus RT-qPCR. Similarly, for

a positivity rate of 0.1%, cost savings would be 80% and saving in time remains the same.

Regardless of all advantages mentioned before, our study has some limitations that need to

be considered. First, as mentioned by Juing Xu, false negatives are a concern for pooled speci-

men testing, but studies have found that most borderline positive results occur in convalescent

patients after 10 to 14 days of symptoms when infectiousness is considered to be low [40].

Thus, if our primary goal with group testing is to detect infective patients, then our purpose is

accomplished. Second, if we take into consideration pre-analytical variables, with pooling we

are dismissing invalid samples. The rate of invalid samples/total samples by RT-qPCR in the

routine of our lab is 1.3%, and considering that ddPCR is more resistant to inhibitors, this per-

centage may be even lower. Nevertheless, this problem arises in every pool testing diagnostic

strategy and recommendations are to pay special attention to adequate sample collection so

that pre-analytical processes do not lead to major signal losses [36, 44]. Then, if we take into

consideration that pooling by ddPCR is thought for screening, this has an even less negative

connotation.

To sum up, we have validated the use of pooled testing by combining up to 34 nasopharyn-

geal swab samples per pool by ddPCR, determining a sensitivity of 100%, a specificity of 100%,

and the robustness of the method (tolerate pooling before purification and allows different

purification methods). Likewise, the maximum grouping for saliva was 20 samples, detected

with 100% specificity and 100% specificity. All in all, we proved that ddPCR is a promising

molecular diagnostic tool to detect low levels of SARS-CoV-2 RNA by pool strategy. Our hope

is that this will allow for more routine monitoring and detection of low carrier frequency,

monitoring critical sectors that must kept functional, such as hospitals, workplaces, schools,

and sports teams.
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