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Abstract: The abundant use of lithium-ion batteries (LIBs) in a wide variety of electric devices and
vehicles will generate a large number of depleted batteries, which contain several valuable metals,
such as Li, Co, Mn, and Ni, present in the structure of the cathode material (LiMO2). The present
work investigates the extraction of lithium, as lithium chloride, from spent LIBs by carbochlorination
roasting. The starting samples consisted of a mixture of cathode and anode materials from different
spent LIBs known as black mass. Calcium chloride was used as a chlorinating agent, and carbon
black was used as a reducing agent. The black mass, calcium chloride, and carbon black were mixed
in 50:20:30 w/w % proportions. Non-isothermal thermogravimetric tests up to 850 ◦C and isothermal
tests at 350, 500, and 700 ◦C were carried out in an inert atmosphere. It was observed that the
carbochlorination reaction starts at 500 ◦C. An extraction percentage of 99% was attained through
carbochlorination at 700 ◦C. The characterization results indicate that CaCO3, Ni, and Co and, to a
lesser extent, CoO, NiO, and MnO2 are present in the roasted sample after the processes of washing,
filtering, and drying.

Keywords: carbochlorination; spent lithium-ion batteries; circular economy; recycle; LiCl

1. Introduction

Lithium-ion batteries (LIBs) are widely used in portable devices due to their high
energy density to weight ratio, reduced memory effect, and a significant number of
charge/discharge cycles [1]. In addition, LIBs are being increasingly used in electro-
mobility technologies for transportation and the alternative energy industry [2,3]. Thus, the
global lithium market is expected to increase by around 87% by 2025 due to the anticipated
expansion of LIBs for their large applications. The increase in demand for LIBs causes some
concern about the supply of the primary resources needed to manufacture new batteries in
the medium term [4]. Thus, their recycling is of the utmost interest.

In general, LIBs consist of a cathode, an anode, and a polymeric separator impregnated
with an electrolyte that enables the ionic conduction of lithium ions. The active material
used in the cathode can vary depending on the manufacturer [3]. The most common
compounds of the cathode material are LiCoO2, LiMn2O4, and LiFePO4, among others [5].
On the other hand, the active material commonly used in the anode is graphite [6,7].

Because of the limited lifetime of LIBs, 11 million tons of spent batteries are estimated
to be produced by 2030 [7,8]. Recently, a report by the United Nations University revealed
that a high percentage of electronic waste, including spent LIBs, is highly polluting because
it often contains Li, Co, Mn, and Ni, among others. It is predicted that 80 GWh of LIBs will
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be discarded as waste by 2025 [9]. This figure is equivalent to the global battery market of
2017, which corresponds to 64,000 tons of Li and 18,000 tons of Co. Therefore, the proper
management of the final disposal of spent LIBs is of great concern.

Recycling spent batteries is an interesting alternative to deal with both the supply
issues of manufacturing new batteries and the polluting effects of discarded batteries [10].
The recycling of discarded LIBs focuses mainly on the recovery of strategic metals: lithium
and transition metals, such as nickel, manganese, and cobalt. These recovered metals could
be reused in the manufacture of new battery electrodes [11,12]. Additionally, the recovered
lithium could be used in many other applications, including glass and ceramics, lubricants
and greases, aluminum production, and air treatment. Even in the medical field, lithium
is applied in various treatments: bipolar disorder, depression, dental, and headaches [13].
The recovery of cobalt and nickel from spent LIBs could also be beneficial because the
extraction of these metals from primary resources is expensive and highly polluting. The
main reserves are found in the Democratic Republic of Congo. Much of the extraction
work is done by hand, posing a risk to the environment and human health [14]. Therefore,
recycling spent batteries may contribute to the circular economy [15–17].

Many studies have been conducted focusing on the recovery of metals from spent LIBs
by applying different methods. Hydrometallurgy and pyrometallurgy are the most typical
methods [18–20]. Hydrometallurgy uses different leaching agents, including hydrochloric
acid (HCl), nitric acid (HNO3), and phosphoric acid (H3PO4), to extract the targeted
metals [21–23]. Whereas pyrometallurgy uses heat to induce a chemical change in the
components of the LIBs to extract the metals of interest.

Carbothermic reduction has become an important pyrometallurgical method [24–26].
This method implies the use of a carbonaceous material fulfilling the function of a reducing
agent. The metals are directly recovered as Li2CO3, CoO, and MnO. Temperatures as low
as 550 ◦C were found to be optimum for metal recovery using carbon black (CB) as the
reducing agent [18]. Chlorination roasting was also studied as an alternative pyrometallur-
gical method to recover metals such as LiCl, CoCl2, MnCl2, and NiCl2. An extraction yield
as high as 100% was reached at 900 ◦C and 90 min using chlorine as chlorinating agent [27].
The main key to these processes is to break the chemical bonds of the cathode material
with the general formula LiMO2 (usually M = Co or Ni). Thus, Li and M can be con-
verted into two different species that can be separated by precipitation, phase separation,
solvent extraction, or in the form of oxides according to the applied method [1]. Herein,
we propose an innovative carbochlorination process as an alternative method to recover
metals from spent LIBs by combining the important aspects of carbothermal reduction and
chlorination roasting.

Carbochlorination consists of the chlorination reaction leading to metallic chlorides in
the presence of a chlorinating agent and a carbonaceous material in a dry atmosphere [28].
It is favored over direct chlorination regarding thermodynamic and kinetic aspects, which
in turn results in an important reduction in the reaction temperature. The carbonaceous
material fulfills a dual function: as an oxygen acceptor favoring metal reduction and as a
catalyst generating and capturing active chlorine species [29]. Regarding the chlorinating
agent, various compounds, including gaseous chlorine (Cl2), HCl, CCl4, MgCl2, and CaCl2,
were used depending on the metal or sample to be chlorinated [30]. Calcium chloride
(CaCl2) is a very low-cost reagent and can be acquired as a by-product of the Solvay
process. This chloride has already been used to extract lithium, as lithium chloride, from
β-spodumene [31]. Previous investigations have reported that the chlorination roasting-
water leaching process can be efficient in extracting valuable metals from spent lithium-ion
batteries [32,33]. Calcium chloride has also been used to extract lithium by the chlorination
roasting of a slag, simulated as obtained from pyrometallurgical recycling, consisting of
pre-heating, plastic pyrolyzing, and smelting, along with reducing, reaching a lithium
extraction efficiency of 90.58% at 800 ◦C for 60 min [34].
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In the present work, a carbochlorination method using CaCl2 as a chlorinating agent
and carbon black (CB) as a reducing agent is researched to recover metals from spent LIBs.
Different experimental conditions are evaluated to establish an efficient process.

2. Materials and Methods

The starting materials were three samples called black mass samples (BMs). The source
of one BM was smartphones, and the source of the other two BMs was electric/hybrid
vehicles. The BMs from smartphones were called SBM, and those from electric/hybrid
vehicles were called VBM-1 and VBM-2. Calcium chloride with 99% purity (Panreac
Applichem) was used as the chlorinating agent. In addition, commercial carbon black was
used as the reducing agent. Carbon black and calcium chloride were added to each original
black mass sample to prepare a mixture using a mortar. The proportions of the mixture
were 50, 20, and 30 w/w % of black mass, calcium chloride, and carbon black, respectively.
The proportions of CaCl2 and carbon black were calculated based on the percentage of
lithium present in the BM. For comparison purposes, a mixture of black mass and calcium
chloride was also prepared in 50/50 w/w % proportions. All carbochlorination experiments
were carried out in a nitrogen atmosphere of 99.99% v/v.

2.1. X-ray Diffraction (XRD)

The structural characterization of the starting black mass samples and the products
obtained after the reaction were made by X-ray diffraction (XRD). Except for the crystal-
lized soluble products (SPs), XRD measurements were collected on a Rigaku D-Max-IIIC
diffractometer operated at 30 kV and 20 mA, using the Kα radiation of Cr and the filter
of V. The structural characterization of the crystallized soluble products (SPs) was evalu-
ated by XRD using a PANalytical multi-purpose diffractometer model X’Pert PRO MPD,
which is equipped with a high-temperature chamber for use with temperature diffraction
measurements, with a Cu anode (Cu Kα radiation). The XRD measurements at 70 ◦C were
obtained using a heating ramp of 10 ◦C min−1.

2.2. Atomic Absorption Spectroscopy (AAS)

Metal concentrations in aqueous solutions were analyzed by atomic absorption spec-
troscopy (AAS) using a Perkin Elmer 1100B spectrophotometer. Previously, each BM was
dissolved with aqua regia solution and was moderately heated for several hours. Then,
the final solution was filtered, and the obtained insoluble solid was dried to calculate the
graphite carbon content in each sample. The determination of the percentage of carbon in
the initial samples was carried out using the combustion technique in an induction furnace
and infrared absorption detection.

2.3. Scanning Electron Microscopy (SEM)

The morphology of all the samples was analyzed by field emission scanning elec-
tron microscopy (FE-SEM) using a LEO 1450 VP microscope equipped with an EDAX
Genesis 2000 energy-dispersive spectrometer and a Hitachi S-4800 equipped with an
energy-dispersive X-ray microanalyzer (EDX). For SEM observations, the powder samples
were placed on an adhesive conductive carbon disk. In the case of the NS-samples, the
powders were embedded into a conductive resin due to the magnetism of the products.

2.4. Thermogravimetric Analysis (TGA) and Differential Thermogravimetric Analysis (DTG)

The non-isothermal calcination tests were conducted in a thermogravimetric sys-
tem suitable for working in corrosive and non-corrosive atmospheres designed in our
laboratory [35]. Isothermal carbochlorination tests were carried out in a high alumina tubu-
lar reactor, with a circulating-flow system. The sample was contained in a high alumina
crucible that was then placed inside the reactor at the required temperature and for the
specific working time.
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3. Experimental Procedure
3.1. Non-Isothermal Experiments

The BM/CaCl2 and BM/CaCl2/CB mixtures were analyzed by thermogravimetric
analysis (TGA). The mixture samples were studied by thermogravimetric analysis (TGA).
In this step, 250 mg of each sample was put in a large alumina crucible. The crucible
containing the sample was placed inside a tubular reactor. Immediately, the heating
program of 5 ◦C/min was run until it reached 850 ◦C. A nitrogen current circulated at
20 mL min−1 during the whole heating period. After the experiment, the sample was
cooled down and withdrawn from the reactor for further analysis.

3.2. Isothermal Experiments

Both BM/CaCl2 and BM/CaCl2/carbon black mixtures were heated at isothermal
conditions. Temperatures of 350 ◦C, 500 ◦C, and 700 ◦C were investigated, using a different
sample for each temperature. These temperatures were selected by analyzing the derivative
of the TGA curve of the BM/CaCl2 and BM/CaCl2/carbon black mixtures. The sample
was put in a large alumina crucible that was then placed inside the tubular reactor, with
a through-flow system circulating 20 mL·min−1 of nitrogen. The heating program was
run at 5 ◦C·min−1 until it reached the working temperature, and then, the temperature
was held constant for 60 min. After the reaction time was fulfilled, the crucible containing
the calcined sample was removed from the reactor and cooled. Subsequently, the calcined
sample was washed with distilled water at 70 ◦C. After washing, the slurry obtained was
filtered. The filtrate solution was analyzed by AAS to measure lithium concentration. Then,
the filtrate solution and the wet solid retained on the filter were left in an oven until dry.
The crystallized solids from the filtrate were identified as soluble products (SPs), and the
dried solids were identified as non-soluble products (NSP). SP and NSP samples were
characterized by XRD and SEM-EDS.

Lithium extraction was calculated using Equation (1):

X =
mf
mi
·100 (1)

where X is the lithium extraction as a percentage, mi is the initial mass of Li in the black
mass sample, determined using the concentration of Li in the original black mass sample,
and mf is the mass of Li in the soluble products, determined using the concentration of Li
in the filtrate solution obtained after washing the calcined samples.

4. Results and Discussion
4.1. Characterization of the Initial Black Mass Samples

After the leaching of the BM with aqua regia, a black solid remained insoluble. This
residue could be graphite, proceeding from the anode material. Table 1 shows the metal
and carbon concentrations measured by AAS and combustion, respectively. The calculated
total carbon content was around 30–33% for the three samples.

Table 1. Composition of metals and carbon of the black mass samples (weight percentage %).

Sample Li Co Mn Ni Cu C

SBM 1 4.5 30 4.30 0.90 0.30 33.3
VBM-1 3.11 5.62 10.1 11.2 2.2 32
VBM-2 5.2 3.2 n.d. 41.2 1.2 30.9

n.d.—not detected.

The XRD patterns for SBM, VBM-1, and VBM-2 are shown in Figure 1. Diffraction
maxima were found that can be attributed to the phases of LiCoO2 for SBM, LiNi0.5Mn1.5O4
for VM-1, and, to a lesser extent, LiNiO2 for VM-2. Several reflection maxima corresponding
to the carbon graphite phase were detected in the three samples SBM, VBM-1, and VBM-2.
Thus, the high carbon content in black mass samples is related to crystalline carbon graphite.
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This result agrees well with the chemical composition of the initial samples. Figure 2 shows
SEM micrographs and EDS spectra from particles of each black mass sample. VBM-1
and VBM-2 samples are made up of agglomerates of rounded primary particles. The
micrograph of the SBM sample exhibits particles without a regular form having a smooth
surface and sharp edges. Regarding the EDS results, the elements detected are as follows:
C, O, Ni, Al, Mn, and Co in VBM-1; C, O, Al, Co, and Ni in VBM-2; and C, O, Co, and Si
in SBM.
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Figure 1. Diffractograms of the black mass samples from spent LIBs: (a) SBM, (b) VBM-1, and
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4.2. Non-Isothermal Experiments

Figure 3 shows the thermograms obtained after the non-isothermal experiment. The
first mass loss can be distinguished between 40 and 210 ◦C, which can be associated with
loss of moisture for all samples. Between 212 and 695 ◦C, a small mass loss of approximately
3%, 7%, and 8% for SBM, VBM-1, and VBM-2, respectively, can be observed. This mass
loss can be attributed to the volatilization of impurities present in the original black mass
sample. These impurities can be associated with the binders, the electrolytic and organic
solvents, and the other contaminants acquired in the initial pretreatment and disassembly
process. Between 700 and 850 ◦C, a marked mass loss zone can be detected: 20%, 24%,
and 32% for SBM, VBM-1, and VBM-2, respectively. This last mass loss could be related to
the release of CO2 as a product of the reduction of cobalt, nickel, and manganese and the
release of CO2. It is expected that during the heat treatment, lithium chloride is produced.
Thus, the mass loss detected between 700 and 800 ◦C could also be attributed, in part, to
either the volatilization of volatile lithium chloride or the reaction of lithium chloride with
the crucible made up of alumina [36].

4.3. Isothermal Experiments

Table 2 shows the mass losses of BM/CaCl2 and BM/CaCl2/carbon black mixtures
after being heat-treated at isothermal conditions. These mass losses coincide with those
shown in Figure 3, being associated with the loss of impurity in the sample. At 500 ◦C, the
increase in mass loss is associated with the release of CO2 by the carbon effect and, finally,
at 700 ◦C, with the reduction of Ni and Co to the metallic state.
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Table 2. Mass loss of the mixtures calcined at isothermal conditions.

Temperature (◦C) BM/CaCl2 ∆m (%) BM/CaCl2/Carbon Black ∆m (%)

350
VBM-1 7 VBM-1 24
VBM-2 12 VBM-2 20

SBM 4 SBM 27

500
VBM-1 10 VBM-1 27
VBM-2 14 VBM-2 25

SBM 6 SBM 27

700
VBM-1 12 VBM-1 30
VBM-2 15 VBM-2 30

SBM 7 SBM 31

Figure 4 shows the XRD patterns of the NSP samples obtained after each isothermal
calcination of both mixtures BM/CaCl2 and BM/CaCl2/CB. Figure 4a–c show the results
of VBM-1, VBM-2, and SBM, respectively. Regarding VBM-1, at 350 ◦C, the peaks of the
LiNi0.5Mn1.5O4 phase found in the original sample are still present in the XRD pattern
of the NSP sample. At 500 ◦C, the peak intensity of the LiMn0.5Ni1.5O2 phase decreases
significantly, but the decrease is more noticeable in the case of the VBM-1/CaCl2/CB
system. We can infer that at 500 ◦C, LiMn0.5Ni1.5O2 starts to react with CaCl2, and the
reaction is favored when CB is present because peaks of CaCO3 and mixed Ni and Mn
oxide start to become noticeable. At 700 ◦C, the LiMn0.5Ni1.5O2 is no longer detected in
either case. In the case of the VBM-1/CaCl2 system, peaks characteristic of mixed Ni and
Mn oxide and CaCO3 are predominantly observed. In the case of the VBM-1/CaCl2/CB
system, very intense peaks corresponding to metallic Ni can be observed. Peaks of CaCO3
and MnO2 are also identified as reaction products.
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Figure 4. XRD patterns of the NSP samples obtained after the isothermal calcination of both mixtures
BM/CaCl2 and BM/CaCl2/CB: (a) VBM-1, (b) VBM-2, and (c) SBM.

With respect to VBM-2, at 350 ◦C, the peaks of the LiNiO2 phase found in the orig-
inal sample are also identified in the NSP sample for both systems VBM-2/CaCl2 and
VBM-2/CaCl2/CB. At 500 ◦C, the peak intensities of the LiNiO2 phase decrease drastically
for the VBM-2/CaCl2. In the case of the VBM-2/CaCl2/CB system, the phase LiNiO2 is
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no longer detected; instead, NiO and CaCO3 are detected as reaction products. Therefore,
we can infer that at 500 ◦C, LiNiO2 starts to react with CaCl2. When the temperature
is increased to 700 ◦C, NiO and CaCO3 are the reaction products for the VBM-2/CaCl2
system. Whereas metallic Ni, CaCO3, and NiO are identified as reaction products for the
VBM-2/CaCl2/CB system. The peaks of the NiO phase are largely reduced in intensity.

Concerning SBM, at 350 ◦C, the LiCoO2 phase originally found in the cathode material
is still present in the XRD pattern of the NSP sample for both systems SBM/CaCl2 and
SBM/CaCl2/CB. At 500 ◦C, the peak intensities of the LiCoO2 phase significantly decrease,
the characteristic peaks of the CoO phase start to become noticeable, and only one peak
corresponding to the CaCO3 phase can be detected in the case of the SBM/CaCl2 system.
The characteristic peaks of the LiCoO2 phase disappear completely, whereas the peaks of
the CoO and CaCO3 phases are well defined in the case of the SBM/CaCl2/CB system. At
700 ◦C, the identified crystalline products are CoO and CaCO3 for the SBM/CaCl2/CB sys-
tem. In addition to CoO and CaCO3, characteristic peaks of metallic Co are also identified,
indicating a superior reducing effect of the CB for the SBM/CaCl2/CB system.

The graphite phase originally found in the black mass samples was also identified
in all NSP samples. The comparative analysis of the XRD patterns of the NSP samples
indicates that the original oxide present in the black mass sample is completely attacked at
700 ◦C for both studied systems.

Figure 5 exhibits the SEM micrographs and EDS spectra of NSP samples from the
calcination of the BM/CaCl2/CB sample at 700 ◦C. If we draw a comparison with the SEM
micrographs from Figure 2, we can infer that the samples are attacked because they have
very different morphology after the heat treatment. Regarding EDS results, the elements
detected are as follows: C, O, Ni, Al, Ca, Mn, and Co in VBM-1; C, O, Ni, Al, Ca, and Co in
VBM-2; and C, O, Ca, Mn, Co, and Ni in SBM. Considering the XRD results, the detection
of Ca by EDS in the three NSP samples can be associated with the CaCO3 phase.

In the case of VBM-1, the presence of C can be associated with the graphite phase
detected by XRD. The presence of Ni can be associated with metallic Ni, while the presence
of Mn can be associated with the MnO2 phase. The presence of Al is due to the Al impurity
identified in the original black mass sample. The presence of Co cannot be associated with
any crystalline phase since Co-containing phases are not detected in the XRD pattern of the
corresponding NSP sample.

Regarding VBM-2, the presence of C can also be associated with the graphite phase
detected by XRD. The presence of Ni can be associated with the NiO phase and metallic Ni.
The presence of Al is also due to the Al impurity detected in the original black mass sample.
The presence of Co cannot be associated with any crystalline phase since Co-containing
phases are not detected in the XRD pattern of the corresponding NSP sample.

With respect to SBM, the presence of C can be associated with the graphite phase
detected by XRD. The presence of Co can be associated with the CoO phase and metallic
Co. Neither the presence of Ni nor Mn can be associated with any crystalline phases since
Co- and Mn-containing phases were not detected in the XRD pattern of the corresponding
NSP sample. Ni and Mn from the original sample were detected by AAS.

Figure 6 shows the XRD patterns of the SP samples obtained after the isothermal
experiment performed at 700 ◦C for the BM/CaCl2/CB system. Figure 4a–c show the results
of SBM, VBM-1, and VBM-2, respectively. All patterns exhibit characteristic diffraction
maxima of LiCl and hydrated LiCl. Minor characteristic peaks of LiF were also detected; this
result can be attributed to possible impurities associated with traces of electrolyte that may
have still been present in the original black mass sample. The presence of LiF could also be
due to the formation of a solid electrolyte interface (SEI) during the lithiation/delithiation
process (i.e., lithium intercalation process).
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Figure 7 presents the SEM micrographs of the SP samples. The particles of the three
samples have a microscopic structure with a high degree of crystallization, agglomeration,
and approximate laminated morphology with a smooth surface and a hexagonal shape. Ele-
mental analysis shows the presence of Cl. These results confirm that LiCl is predominantly
present in the SP samples. Therefore, lithium is extracted selectively as LiCl from each black
mass sample by the process of carbochlorination with CaCl2. Other elements are detected
in SP samples by EDS; they are impurities that originated during sample preparation.

Table 3 compares the lithium extraction results of both systems, BM/CaCl2 and
BM/CaCl2/CB, from isothermal experiments performed at 500 and 700 ◦C. The lithium
extraction values at 500 ◦C are higher than those obtained at 700 ◦C for both systems. A
closer inspection of the table shows that the extraction levels from the BM/CaCl2/CB
combination are considerably higher than those obtained from the BM/CaCl2 combination.
Quantitative extraction is reached from the BM/CaCl2/CB combination at 700 ◦C for
the three samples. Overall, the extraction results agree with XRD results. With regard
to the XRD results of the NSP samples, the levels of extraction agree well with either a
significant decrease in the intensity peaks or complete disappearance of the original phase
intensity peaks.

Table 3. Lithium extraction at 500 ◦C and 700 ◦C for 60 min.

Temperature (◦C) BM/CaCl2 X (%) BM/CaCl2/Carbon Black X (%)

500
VBM-1 35 VBM-1 76
VBM-2 35 VBM-2 80

SBM 60 SBM 95

700
VBM-1 90 VBM-1 99
VBM-2 90 VBM-2 99

SBM 95 SBM 99
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Together, all the results indicate that the carbochlorination of the LiMO2 structure
(with M = Co, Ni-Mn, and Ni) is feasible at 500 and 700 ◦C. The reaction leads to LiCl as
the only chloride generated. The whole carbochlorination process can be represented by
reaction Equation (2):

4 LiMO2 + 2 CaCl2 + C→ 4LiCl + 2 CaCO3 + 4M + CO2 (2)

Lithium is extracted from the structure of the initial LiMO2 phase by the chlorinating
action of calcium chloride. The presence of the carbon material favors the formation
of CaCO3. Additionally, carbon black induces the reduction of the transition metal M
to form metallic M. Temperature has a significant influence on lithium extraction and
the products that can be evolved. Lithium extraction values at 700 ◦C are much higher
than those at 500 ◦C for both systems, BM/CaCl2 and BM/CaCl2/CB. In the case of
VBM-1 carbochlorination, at 500 ◦C, the oxide NiO0.75MnO0.25 evolves, while the oxide
NiO0.75MnO0.25 and metallic Ni evolves when the temperature is increased to 700 ◦C for
the VBM-1/CaCl2. At 500 ◦C, NiO0.75MnO0.25 and MnO2 evolve, while MnO2 and metallic
Ni evolve when the temperature is increased to 700 ◦C for the VBM-1/CaCl2/CB system.
In the case of VBM-2 carbochlorination, at 500 ◦C, no oxide evolves, while NiO evolves
when the temperature is increased to 700 ◦C for the VBM-2/CaCl2. At 500 ◦C, NiO evolves,
while NiO and metallic Ni evolve when the temperature is increased to 700 ◦C for the
VBM-2/CaCl2/CB system. In the case of SBM carbochlorination, at 500 ◦C, CoO evolves,
while CoO and metallic Co evolve when the temperature is increased to 700 ◦C for the
SBM/CaCl2/CB system.
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The presence of carbon black also has a great influence on lithium extraction and the
reduction extent. Quantitative lithium extraction is achieved when carbon black takes part
in the reaction system, while the maximum lithium extraction achieved is 95% when carbon
black is not added to the system. The superior reduction action of carbon black is very
notorious at 700 ◦C due to the presence of Ni and Co in their metallic state. However, the
reduction from oxide to metal is not complete. Graphite, originally present in the black
mass samples in high concentration, which in turn has a low reduction action as compared
with carbon black [18,37], could be hindering the reduction reaction and preventing the
complete reduction of Co and Ni to their elemental states. In addition, ash formed during
the carbochlorination process may also be preventing the reaction of reduction of Co
and Ni.

The present results are significant in at least two major respects. Lithium is selectively
chlorinated using CaCl2 as a chlorinating agent under the experimental conditions of this
study. Then, LiCl can be easily recovered by water leaching. Another interesting finding is
that the addition of carbon black favors the yielding of Co and Ni in their metallic state.
Thus, both metals could be separated magnetically from CaCO3, another product of the
carbochlorination reaction, and other impurities to fully recover the metals present in the
black mass samples. Therefore, there is a need for further progress in determining the
conditions and processes necessary to separate all metals from black mass samples with a
high purity degree.

5. Conclusions

Carbochlorination using CaCl2 as chlorinating agent and carbon black as reducing
agent was an effective process to extract, selectively, lithium as lithium chloride from black
mass samples with varied cathode chemistries from spent LIBs. Temperature and carbon
type were the variables that had the most marked effect on the carbochlorination process.
The extraction of lithium increased with temperature and the use of carbon black as a
reducing agent. Quantitative lithium extraction was achieved at 700 ◦C for 60 min in the
presence of carbon black in the reaction system. In addition, this process allowed us to
recover Co and Ni in their metallic state, and as metallic oxide, they could be separated
magnetically after a second calcination process. Finally, the researched methodology reveals
that it is possible to effectively separate and recover different metals from discarded LIBs of
different natures, leading to materials that could be used in the production of new batteries,
which in turn could promote a circular economy and sustainable development goals.
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