
SoftwareX 20 (2022) 101268

I

m
j
a

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

LiveDewStream: A stream processing platform for running in-lab
distributed deep learning inferences on smartphone clusters at the
edge
Cristian Mateos ∗, Matías Hirsch, Juan Manuel Toloza, Alejandro Zunino
SISTAN-UNICEN-CONICET, Tandil, Argentina

a r t i c l e i n f o

Article history:
Received 23 June 2022
Received in revised form 7 November 2022
Accepted 15 November 2022

Keywords:
Mobile devices, Stream processing, Deep
learning, Dew computing, Android

a b s t r a c t

Dew computing, an evolution of Fog computing, aims at fulfilling computing needs, such as deep
learning applied to object classification, close to where data is originated and using computing
resources that include consumer electronic devices such as smartphones. Simulation tools like DewSim
aid the study of resource allocation mechanisms for exploiting clusters of smartphones, however, there
is a gap w.r.t software tools that allow to perform similar studies over real Dew computing testbeds.
We have developed LiveDewStream, an open source project to model executable tasks derived from
data streams to be run on real smartphone clusters. The project offers a key functionality missing in
other tools: reproducibility of battery-driven Dew experiments. Our major contribution is to provide
the community a common in vivo platform to study best-performing allocation mechanisms under
different stream processing scenarios and/or deep learning inference models.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version V1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00180
Permanent link to reproducible capsule https://github.com/matieber/livedewstream
Legal code license GNU GPL
Code versioning system used git
Software code languages, tools and services used Python, Android, shell scripting
Compilation requirements, operating environments and dependencies The emanager_server and scnrunner modules run on Linux-based machines

using Python 3.7+; Normapp runs on Android 6+ (it is built using the
provided Android Studio project). See dependencies and installation
instructions at the GitHub repository

If available, link to developer documentation/manual https://github.com/matieber/livedewstream/doc
Support email for question matias.hirsch@isistan.unicen.edu.ar

∗ Corresponding author.
E-mail addresses: cristian.mateos@isistan.unicen.edu.ar (C. Mateos),

atias.hirsch@isistan.unicen.edu.ar (M. Hirsch),
uanmanuel.toloza@isistan.unicen.edu.ar (J.M. Toloza),
lejandro.zunino@isistan.unicen.edu.ar (A. Zunino).

1. Motivation and significance

Fog computing [1] was introduced in 2012 to provide highly-
scalable network and computing infrastructures for latency and
location-aware (mobile) IoT applications, while augmenting
resource-constrained devices with processing/storage resources
in their proximity. Several alternatives to realize this idea, includ-
ing cloudlets, mobile edge computing, micro datacenters, nano
ttps://doi.org/10.1016/j.softx.2022.101268
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101268
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101268&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00180
https://github.com/matieber/livedewstream
https://github.com/matieber/livedewstream/doc
mailto:matias.hirsch@isistan.unicen.edu.ar
mailto:cristian.mateos@isistan.unicen.edu.ar
mailto:matias.hirsch@isistan.unicen.edu.ar
mailto:juanmanuel.toloza@isistan.unicen.edu.ar
mailto:alejandro.zunino@isistan.unicen.edu.ar
https://doi.org/10.1016/j.softx.2022.101268
http://creativecommons.org/licenses/by/4.0/

C. Mateos, M. Hirsch, J.M. Toloza et al. SoftwareX 20 (2022) 101268

d
a
l
r

o
a
o
s
u
p
s
a
a
s
t
i
b
t
t
s
c

v
p
i
w
p
p
a
t
n

w
u
i
b
d
c
s
“
p
L
g
t
e
p
t
u

f
a
d
c
c
s
b
i
a
p
i

2

2

s

atacenters and femto Clouds, have been introduced [2], which
im at processing data/computations using computing resources
ocated at the edge of the network and optionally using remote
esources in the distant Cloud when necessary.

Since then, there has been a tremendous growth in the amount
f resource-rich devices and hence computational resources avail-
ble at the closest edge. According to Statista.com, nearly 84%
f the current world’s population owns a smartphone. Modern
martphones contain, on average, more than a dozen sensors,
p to eight cores, and powerful GPUs. Likewise, thousands of
urpose-specific sensing devices such as surveillance cameras,
moke detectors, noise detectors, and so on are being deployed
cross buildings and cities around the globe. This has led to
nother paradigm shift by which relying on not-so-close Fog
ervers to support IoT applications consuming and processing
he streams of data from such devices might not suffice. This
s particularly true considering that today’s IoT applications are
ecoming more commonplace and intelligent, and therefore the
imely and efficient execution of increasingly complex tasks and
he context-aware processing of larger amounts of data in urban
cenarios is needed, which is difficult for centralized Clouds and
hallenging even for Fog infrastructures.
Dew computing proposes to establish clusters of mobile de-

ices at the very edge [3], as a form of ‘‘ubiquitous and op-
ortunistic computing’’ within data sensing contexts, specially
n public places such as transport, classrooms and coffee shops,
here many nearby devices are present. Hence, cost-effective
latforms for intelligent IoT applications emerge, provided com-
utational resources are managed wisely. Therefore, platforms
nd tools to study the individual/collective capabilities and limi-
ations of smartphones for intelligent data stream processing are
eeded.
We present a software platform to support experimentation

ith a specific but broad family of such applications, i.e. those
sing deep learning over data streams. The software allows users,
.e. in-lab Dew researchers, to specify automatic, repeatable batch
enchmark plans, while indicating specific smartphone-ready
eep learning models and task scheduling algorithms for the
luster. Even when we have already proposed a Dew simulation
oftware [3], our framework represents the first step towards
in vivo” benchmarking of mobile devices for such applications,
retty much like commercial platforms such as BrowserStack and
ambdaTest allow users to create in-Cloud device farms with the
oal of test automation of web and mobile applications. Given
hat there is a need for platforms for fairly and comparatively
valuating Edge deep learning performance [4–6], this is the first
latform of this kind, particularly aiming at providing a common
estbed for studying scheduling of deep learning inference tasks
nder horizontal execution over mobile device clusters.
The scientific value of this experimentation platform is three-

old, namely to allow researchers to (a) realistically characterize
nd compare smartphone hardware capabilities for executing
eep learning codes over arbitrary data streams using multi-
ore microprocessors and GPUs, (b) to experiment with different
luster settings and task scheduling criteria, and (c) to gather
martphone profile data that might be in turn employed to feed
ack our existing Dew simulators, thus creating a virtuous circle
n deriving task schedulers [7]. As we support arbitrary streams
nd Tensorflow models, in practice, derived knowledge using our
latform might impact many disciplines where Dew computing
s the killer computing paradigm.

. Software description

.1. Software architecture

From an architectural standpoint, the platform is a client–
erver software system, complemented with a hardware device

called Motrol (see Fig. 1(a)). Clients are, on one hand, the mobile
devices being exercised, which run a native Android 6+ applica-
tion (Normapp). Another client is the scnrunner module, which
parses Dew computing scenario parameters, builds corresponding
data streams, derives deep learning-based jobs, decides which
node executes which job, and submits jobs to the server and
hence indirectly exploiting attached mobile devices.

The server works by assuming an energy managing device
called Motrol for which Python-based drivers are provided. Via
its support for dynamic energy supply switching, Motrol allows
researchers to automatically repeat/reproduce job set executions
involving several smartphones configured with a specific battery
level. Currently, we support an USB-interfaced Arduino device
called Motrol 1.0 [8], and a WiFi-enabled ESP8266-based micro-
controller device called Motrol 1.5 (see Fig. 1(b)). A more complex
prototype based on the Raspberry Pi 4 Model B, called Motrol
2.0 [9], is under development but it is still not considered in
this paper. For example, this model will support USB-charging in
addition to AC-charging, a feature missing. In terms of software
design, emanager_server exposes several Rest APIs. Please refer
to the project’s documentation for detailed API specifications in
the popular Swagger format (http://swagger.io).

Motrol 1.0 and Motrol 1.5 use electromechanical relays and
provide low-level operations to control energy supply for at-
tached mobile devices. We also provide a mock energy manager
to operate the whole platform without Motrol, which prompts
the user to manually plug/unplug a specific smartphone1 from
the power grid during test execution as needed. Naturally, this
plug/unplug behavior, when using Motrol, remains automatic.

In respect to scnrunner, it is a subproject designed to encap-
sulate logic that facilitates stream-derived jobs modeling and its
online execution using real Dew computing testbeds. Modeling
stream-derived jobs consists in generating partitions from a con-
tinuous data flow, for example, frames captured within a time
window, so its processing is treated by the computing infras-
tructure (e.g., mobile cluster) as an indivisible workload (atomic
job) to be solved. By online execution we mean that once an
atomic job is available, a scheduling mechanism is activated to
delegate its execution to a smartphone within the Dew cluster.
For now, jobs perform object recognition and classification oper-
ations with deep learning over images. By extending the stream.py
module, i.e., providing custom implementations to the has_items
and get_itemmethods of the StreamSource class, new stream types
can be supported, e.g., audio streams and text streams.

In conjunction with emanager_server, scnrunner eases the re-
production of experimental settings representing Dew computing
scenarios to study relevant metrics (e.g. throughput, battery uti-
lization, latency) as a result of using different scheduling criteria
under real Dew computing environments. An experimental set-
ting is mainly characterized by a workload generation and node
states reset. scnrunner provides a run.sh script that is the entry
point to execute a given set of Dew computing scenarios. The
script receives a path to a directory containing Dew computing
scenarios descriptor files as the only required argument.

2.2. Software functionalities

Once installed in a PC, the server must be started, by op-
tionally indicating the total number of mobile devices to be
employed in the benchmark session. By default, this parame-
ter is the maximum number of smartphones (connection slots)
supported by the configured energy device (please see src/em-
anager_server/serverConfig.json).

1 Under this operation mode, smartphones must be connected directly to the
power grid
2

http://swagger.io

C. Mateos, M. Hirsch, J.M. Toloza et al. SoftwareX 20 (2022) 101268

s
v
t
I
d
o
a
(
A
a
t
p
c
l
s
O
e
c
1
p
t
s

2

h
t
c
8
b
e
S
s
P
t

Fig. 1. Architectural view of LiveDewStream. The diagram depicts the UML deployment view, and within each node, the UML components and classes modeling the
various entities.

The server will then initialize each device involved in the
ession, by asking the user to plug, one by one, each device
ia USB to the PC. This allows the server to gain root access to
he device to (a) pushing essential configuration such as server
P address and port, and mostly (b) copy and run shell scripts
irectly on the device that are needed for benchmarks to correctly
perate, and (c) remotely install (or update) and run our Android
pplication on the device. It is worth noting that tasks (a) and
b) are performed via the ADB (Android Debug Bridge) tool of the
ndroid SDK, which allows a PC to remotely send commands to
daemon which runs on a mobile device. On the other hand,

ask (c) is done by using ADB in conjunction with Monkey, a
rogram that emulates streams of mobile user events such as
licks, touches, or gestures, as well as a number of system-
evel events. Via Monkey, we launch and (if configured to do
o in serverConfig.json) start the application automatically.
nce Normapp is running in the smartphones, the user unplugs
ach mobile device from the PC and plugs it using its original
harger to the configured energy supply hardware (i.e. Motrol
.0 or Motrol 1.5) or to wall sockets (i.e. Mock). Normapp will
eriodically poll the server via the DeviceService API for jobs
o execute, and submit back the results. Job creation and result
ummarization is done by scnrunner.

.3. Sample code snippets

Algorithm 1 shows src/scnrunner/dew_runner.py, which
as the main method of scnrunner. In lines 1–9 there is logic
o parse the supplied Dew computing scenario JSON file and to
reate the corresponding stream and processor objects. At line
, a shared queue is created (and passed as argument to the
uild_stream factory method) to enable stream and processor
ntities to communicate using a producer–consumer pattern. The
tream entity, which produces items, runs in a separate thread
tarted upon invocation of stream.yield_items() at line 11.
rocessor entity runs in the main thread consuming items from
he shared queue (line 15).

3. Illustrative example

In the GitHub repository, we provide a sample scenario config-
uration file (/doc/cs402_scn002.json). The src/scnrunner
/run.sh script accepts as an argument a directory path with at
least one of these JSON formatted files. The scn_id field identi-
fies the scenario. In the file, this field used to name the results
directory and an output log file, all created by the platform and
where it stores scenario execution related information. The JSON
file also contains configuration parameters of the stream entity
mentioned in Section 2.3. For instance, img_folder indicates
the path where input images are located within the filesystem,
per_job_frames, per_burst_jobs, millis_btw_jobs and
millis_btw_bursts are parameters used to shape the stream
speed and load introduced to the system. In the provided ex-
ample, jobs are composed of 30 consecutive frames and these
jobs are generated every one second (millis_btw_bursts). Job
generation finishes when consuming all images of img_folder.
Images are served to Normapp through a simple HTTP server
which can be accessed through the specified port. The configu-
ration also indicates the Python class loaded by the platform to
create the next job item every time the get_item() method is
invoked.

The processor key is where parameters of the processor entity
are configured. The hardsupp.mobile_cluster.LabMobile
Cluster class is loaded by the platform to perform nodes initial-
ization and jobs scheduling. The class uses the emanager_server
Rest API. Nodes in this case are four smartphones whose model
names and initial battery level are indicated under devs_batt_
init. Battery level is a two-decimal number in the range [0-
1]. This is, in the configuration, battery level is a number with
at most two decimals, being 0 equals to 0% of battery (in the
mobile device). The same applies to battery level equals to 1
(it represents 100%). Other examples are 0.04, 0.55 and 0.85
(meaning 4%, 55% and 85%). Besides, “-1” is interpreted as “any
battery level”. Desired scheduling logic is configured by providing
the path using dot notation to the class implementing a processor
logic, in this case, job.job_scheduling.RoundRobin. Paths
are relative to where dew_runner.py is within the project.

Fig. 2 shows, on the top left, a sample directory tree of
files generated by the platform after running a test. The scn_id
3

C. Mateos, M. Hirsch, J.M. Toloza et al. SoftwareX 20 (2022) 101268

s
i

Algorithm 1: Parsing/creating the stream and processor entities declared in scenario descriptor file.

1 if __name__ == ’__main__’:
2
3 args = parser.parse_args()
4 with open(args.scenarioDescriptor , " r ") as scnfile:
5 scn_data = json.load(scnfile)
6
7 processor = pb.build_processor(scn_data[" processor "])
8 jobs_queue = queue.Queue(0)
9 stream = sb.build_stream(scn_data[" scn_id "], scn_data[" stream_source "], jobs_queue)

10
11 stream.yield_items()
12 test_end = False
13 while not test_end:
14 try:
15 processor.process_job(jobs_queue.get())
16 except queue.Empty:
17 if stream.is_closed() and processor.all_jobs_completed():
18 test_end = True

Fig. 2. Output sample: Directory tree generated, events log and results file.

pecified in the scenario file and the system date are used to
dentify and create a directory (dogs_finder_app/results/-
cs402_scn002) where to locate all output files generated by a
test. Such directory includes a plain text log containing
chronologically-ordered events (see Fig. 2 top right). Depending
on which entity is logging information, entries of the event log
are tagged with [STREAM] or [PROCESSOR]. There is also scenario
descriptor file information to identify which log corresponds to
which input parameters. Fig. 2 bottom part shows a sample
results.csv file, which is built by merging individual results
sent by mobile devices to the server. It tells which images were
sent to which device, how much time the device spent on down-
loading data and performing the inference over the image. It also
records RSSI indicator, battery level at the time of downloading
images and finishing inferences, and the output of the recognition
algorithm itself.

To illustrate some of the software output that allow
researchers to study the feasibility of Dew computing scenarios,
next we include running examples of several Dew computing
scenario configuration files (dogs_finder_app/scn/). These
aim at studying the performance of different versions of the
same Tensorflow Lite model on two mobile devices using differ-
ent tasks load balancing mechanisms. The resulting plots were
obtained by processing the results.csv file of each Dew com-
puting scenario. Figs. 3(a) and 3(b) show the inference times of
different versions of the same Tensorflow Lite model (YOLOv4)
when running on a Xiaomi Redmi Note 7 and a Samsung A30
smartphone, respectively. We can see that the lowest inference
time is achieved using quantization and multithreading. How-
ever, multithreading produces more dispersed times than single
threading model execution. Fig. 3(c) shows the performance of
all model-thread combinations for a Dew computing scenario
4

C. Mateos, M. Hirsch, J.M. Toloza et al. SoftwareX 20 (2022) 101268

w
s
w
m
b
o

4

i
s
h
t
a
a
S
m
F
p
(
p
f
w
s
u
D
s
l
w

e
u
d
f
b
m
m
e
b
t
h

d
r
f
c
y
s
b

Fig. 3. YOLOv4 model performance.

here two smartphones cooperate in making inferences over a
tream of 1000 images given at a rate of 30 FPS. Consistently
ith previous results, the quantized version of YOLOv4 using
ultithreading achieves the lowest makespan. Moreover, a pull-
ased load balancing mechanism beats Round Robin irrespective
f the model version.

. Impact and closing remarks

Due to the difficulty and time-consuming nature of exper-
mentation in the Distributed Computing research community,
imulation is an accepted practice. This is demonstrated by the
eavy adoption of simulators for Cloud and Fog computing in
he literature. Prominent examples are CloudSim (2011) [10]
nd iFogSim (2017) [11], whose seminal papers have reached
round 5,500 and 1,200 citations respectively according to Google
cholar. The software projects behind these simulators have also
ade an impact in the abovementioned research community.
or instance, CloudSim has generated dozens of complementary
rojects (e.g. WorkflowCloudSim) and its GitHub repo
github.com/Cloudslab/cloudsim) has over 400 forks. In Dew com-
uting, simulation is also a practiced evaluation methodology
or studying mobile resource scavenging heuristics [7]. Then,
e have proposed DewSim (2020) [3], a trace-based simulation
oftware that uses battery traces to map mobile devices resource
tilization levels (e.g. microprocessor) with battery behavior.
espite having many miles ahead to travel yet, DewSim plus its
upporting platform [8] has already shown impact in the scientific
iterature, as it is the support for many Dew schedulers [7,12],
hich have been published in reputed journals.
Generally speaking, simulations assume that all the involved

lemental processes are known and correct, only then built sim-
lators are fully trustworthy. In practice, however, the relentless
eveloping nature of Cloud, Fog and Dew gradually introduce new
undamental knowledge that challenge the assumptions made by
uilt simulators. This means (a) new versions of specific software
odules have to be built, or (b) integral software modifications
ust be carried out in order to comply to certain validation
xperiments. For example, a trace-based file transfer model has
een proposed for CloudSim [13], and the sub-optimal accuracy of
he simulator as a whole when modeling resource heterogeneity
as been evidenced [14].
The software proposed in this paper provides a testbed for

eriving such fundamental knowledge, so DewSim can be cor-
ectly evolved, and proper validation experiments can be per-
ormed. Not to mention that, as the platform targets deep learning
odes over data streams on mobile devices clusters, this specific
et general-enough application scenario, where Dew computing
eems to be the killer paradigm, might increment our current user

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

We thank Eng. Pablo Sanabria (https://www.linkedin.com/in/
tailmon/?originalSubdomain=cl) from Chile for his assistance re-
garding running Tensorflow Lite models on Android. We also ac-
knowledge the financial support by CONICET (grant no.
11220170100490CO) and ANPCyT(grant no. PICT-2018-03323).

References

[1] Bonomi Flavio, Milito Rodolfo, Zhu Jiang, Addepalli Sateesh. Fog com-
puting and its role in the internet of things. In: Proceedings of the
first edition of the MCC workshop on mobile cloud computing. 2012,
p. 13–6.

[2] Aazam Mohammad, Zeadally Sherali, Harras Khaled A. Offloading in
fog computing for iot: Review, enabling technologies, and research
opportunities. Future Gener Comput Syst 2018;87:278–89.

[3] Hirsch Matías, Mateos Cristian, Rodriguez Juan Manuel, Zunino Ale-
jandro. Dewsim: A trace-driven toolkit for simulating mobile device
clusters in dew computing environments. Softw - Pract Exp 2020;50(5):
688–718.

[4] Wang Xiaofei, Han Yiwen, Leung Victor CM, Niyato Dusit, Yan Xue-
qiang, Chen Xu. Convergence of edge computing and deep learn-
ing: A comprehensive survey. IEEE Commun Surv Tutor 2020;22(2):
869–904.

[5] Chen Jiasi, Ran Xukan. Deep learning with edge computing: A review. Proc
IEEE 2019;107(8):1655–74.

[6] Murshed MG Sarwar, Murphy Christopher, Hou Daqing, Khan Nazar, Anan-
thanarayanan Ganesh, Hussain Faraz. Machine learning at the network
edge: A survey. ACM Comput Surv 2021;54(8):1–37.

[7] Hirsch Matías, Mateos Cristian, Zunino Alejandro, Majchrzak Tim A,
Grønli Tor-Morten, Kaindl Hermann. A task execution scheme
for dew computing with state-of-the-art smartphones. Electronics
2021;10(16):2006.

[8] Hirsch Matías, Mateos Cristian, Zunino Alejandro, Toloza Juan. A
platform for automating battery-driven batch benchmarking and pro-
filing of android-based mobile devices. Simul Model Pract Theory
2021;109:102266.

[9] Mateos Cristian, Hirsch Matías, Toloza Juan, Zunino Alejandro. Motrol
2.0: A dew-oriented hardware/software platform for batch-benchmarking
smartphones. In: 2021 IEEE 45th annual computers, software, and
ase. applications conference. IEEE; 2021, p. 1772–7.

5

https://www.linkedin.com/in/tailmon/?originalSubdomain=cl
https://www.linkedin.com/in/tailmon/?originalSubdomain=cl
https://www.linkedin.com/in/tailmon/?originalSubdomain=cl
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb1
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb1
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb1
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb1
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb1
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb1
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb1
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb2
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb2
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb2
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb2
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb2
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb3
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb3
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb3
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb3
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb3
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb3
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb3
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb4
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb4
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb4
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb4
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb4
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb4
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb4
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb5
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb5
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb5
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb6
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb6
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb6
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb6
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb6
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb7
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb7
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb7
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb7
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb7
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb7
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb7
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb9
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb9
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb9
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb9
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb9
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb9
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb9

C. Mateos, M. Hirsch, J.M. Toloza et al. SoftwareX 20 (2022) 101268
[10] Calheiros Rodrigo N, Ranjan Rajiv, Beloglazov Anton, Rose César AF De,
Buyya Rajkumar. Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms. Softw - Pract Exp 2011;41(1):23–50.

[11] Gupta Harshit, Dastjerdi Amir Vahid, Ghosh Soumya K, Buyya Rajkumar.
Ifogsim: A toolkit for modeling and simulation of resource manage-
ment techniques in the internet of things, edge and fog computing
environments. Softw Pract Exp 2017;47(9):1275–96.

[12] Hirsch Matías, Rodríguez Juan Manuel, Mateos Cristian, Zunino Alejandro.
A two-phase energy-aware scheduling approach for cpu-intensive jobs in
mobile grids. J Grid Comput 2017;15(1):55–80.

[13] Chai Anchen, Bazm Mohammad-Mahdi, Camarasu-Pop Sorina, Glatard Tris-
tan, Benoit-Cattin Hugues, Suter Frédéric. Modeling distributed platforms
from application traces for realistic file transfer simulation. In: 2017 17th
IEEE/ACM international symposium on cluster, cloud and grid computing.
IEEE; 2017, p. 54–63.

[14] Zakarya Muhammad, Gillam Lee. Modelling resource heterogeneities in
cloud simulations and quantifying their accuracy. Simul Model Pract
Theory 2019;94:43–65.
6

http://refhub.elsevier.com/S2352-7110(22)00186-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb11
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb11
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb11
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb11
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb11
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb11
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb11
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb12
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb12
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb12
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb12
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb12
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb13
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00186-8/sb14

	LiveDewStream: A stream processing platform for running in-lab distributed deep learning inferences on smartphone clusters at the edge
	Motivation and significance
	Software Description
	Software Architecture
	Software functionalities
	Sample code snippets

	Illustrative example
	Impact and closing remarks
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

