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Abstract

Implantation-related events are crucial for pregnancy success. In particular, defects in vascular remodeling at the maternal–fetal 
interface are associated with spontaneous miscarriage and recurrent pregnancy loss. Physical activity and therapies oriented to 
reduce stress improve pregnancy outcomes. In animal models, environmental stimulation and enrichment are associated with 
enhanced well-being, cognitive function and stress resilience. Here, we studied whether the exposure of BALB/c mice to an enriched 
environment (EE) regulates crucial events during early gestation at the maternal–fetal interface. Pregnant BALB/c mice were exposed 
to the EE that combines non-invasive stimuli from the sensory pathway with voluntary physical activity. The pregnancy rate was 
evaluated. Implantation sites were investigated microscopically and macroscopically. Vascular adaptation parameters at the 
maternal–fetal interface were analyzed. We found that exposure to the EE prevented pregnancy loss between gestational days 7 and 
15. Also, it increased the diameter of the uterine artery and decreased the wall:lumen ratio of the mesometrial decidual vessels, 
suggesting that EE exposure promotes vascular remodeling. Moreover, it increased nitric oxide synthase activity and inducible nitric 
oxide synthase expression, as well as prostaglandin F2a production and endoglin expression in the implantation sites. Exposure of 
pregnant females to the EE regulates uterine physiology, promoting vascular remodeling during early gestation. These adaptations 
might contribute to preventing embryo loss. Our results highlight the importance of the maternal environment for pregnancy success. 
The design of an ‘EE-like’ protocol for humans could be considered as a new non-pharmacologic strategy to prevent implantation 
failure and recurrent miscarriage.
Reproduction (2022) 163 85–94

Introduction

Approximately 15% of couples worldwide struggle 
with infertility (Boivin et  al. 2007). This percentage 
is exacerbated in developing countries as one in four 
couples are not fertile (WHO 2012). The impossibility 
of conceiving implies major economic costs for health 
facilities and patients, in addition to the serious emotional 
and psychological consequences. Implantation failure 
and pregnancy loss are the common and distressing 
complications of early pregnancy. Moreover, failed 
implantation is a limiting factor in assisted reproductive 
technologies (Patrizio & Silber 2017).

Proper embryo implantation is crucial for the progress 
of pregnancy since it establishes the first communication 
between the mother and fetus. This reciprocal interaction 
modulates decidualization and vascular remodeling of 
the uterus, which are essential for placentation. During 
vascular remodeling at the maternal–fetal interface, 

vessels become more permeable and spiral arteries lose 
endothelial and vascular smooth muscle cells. As a result, 
blood flow increases and ensures nutrient and oxygen 
supply to the developing embryo. Several growth factors, 
hormones, nitric oxide, cytokines and chemokines are 
involved in these vascular processes (Osol & Mandala 
2009). Failure in implantation-related events has been 
associated with spontaneous miscarriage and recurrent 
pregnancy loss (Plaisier et al. 2009, Quenby et al. 2009, 
Windsperger et al. 2017).

Maternal lifestyle affects the physiology of the 
mother and therefore could modulate the uterine 
environment and pregnancy outcome. In this sense, the 
American College of Obstetricians and Gynecologists 
recommends pregnant women without medical 
complications to practice moderate aerobic exercise, 
as it has been associated with a lower incidence of 
pathological processes related to pregnancy (ACOG 
2020). Moreover, the European Society of Human 
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Reproduction and Embryology suggests that women with 
recurrent pregnancy loss should change their lifestyle as 
a good strategy to improve the performance of assisted 
reproduction techniques (Bender Atik et al. 2018).

Environmental stimulation and enrichment have 
been associated with enhanced well-being, improved 
cognitive function and stress resilience in animal 
models (Bakos et al. 2009, Langdon & Corbett 2012). In 
particular, environmental enrichment is an experimental 
strategy that consists of housing modifications that 
provide a complex set of physical, social and cognitive 
stimuli (Mering & Jolkkonen 2015). The enriched 
environment (EE) exerts beneficial effects in neurological 
pathologies and shows advantageous transgenerational 
effects on neurodevelopment (Caporali et  al. 2015, 
Jungling et al. 2017, Balthazar et al. 2018). Furthermore, 
environmental enrichment allows the study of maternal 
housing conditions during pregnancy. Our group has 
previously reported that maternal EE prevents preterm 
birth in an inflammatory mouse model (Schander et al. 
2020). However, the effect of environmental enrichment 
on early pregnancy has not been reported yet. 
Therefore, we aimed to investigate whether maternal 
periconceptional EE regulates crucial events at the 
maternal–fetal interface during early gestation in mice.

Materials and methods

Ethical statement

The present study was performed under the recommendations 
in the Guide for the Care and Use of Laboratory Animals of the 
National Institutes of Health. The study protocol was approved 
by the Committee on the Ethics of Animal Experiments of the 
School of Medicine, University of Buenos Aires (CICUAL; permit 
number 2547/2019). Animals were obtained from the School of 
Pharmacy and Biochemistry of the University of Buenos Aires.

Animals

Six-week-old BALB/c female mice were randomly assigned  
to either control or EE cages. Mice in both conditions  
received food and water ad libitum and were subjected to a 
12 h light:12 h darkness schedule at constant temperature 
(19–21°C) and humidity.

After 6 weeks in control or EE cages, the females were 
mated with fertile males of the same strain housed in control 
conditions (Fig. 1A). The morning when the vaginal plug was 
detected was considered day 0 of pregnancy (d0). Females 
were then returned to control or EE cages respectively.

Under the conditions of our animal care facility, implantation 
occurs in d3 and spontaneous term labor in d19.

Pregnant animals on d7 (early gestation) and d15 (late 
gestation) were euthanized by cervical dislocation. Uterine 
horns were extracted, and the implantation sites and pregnancy 
rates were evaluated. The macrovasculature analysis was 
performed on d7. Also, d7 implantation sites were fixed in 
Bouin solution for hematoxylin–eosin (H&E) staining or were 

Figure 1 Effect of EE on implantation sites on d7. (A) Scheme of 
control and EE protocols. (B) Control housing condition. (C) EE 
condition. (D) Representative images of d7 implantation sites of 
control and EE mice. (E) Amplifications of d7 implantation sites of 
control and EE mice. Control (F and H) and EE (G and I) slices were 
stained with H&E. (C) and (D) scale bar = 500 µm; (E) and (F) scale 
bar = 200 μm. AMD, antimesometrial decidua; C, control; CM, 
circular muscle; DC, decidual crypt; d7, day 7 of gestation; E, embryo; 
EC, ectoplacental cone; EE, enriched environment; GD, glycogenic 
decidua; H&E, hematoxylin–eosin; L, lumen; LM, longitudinal muscle; 
MD, mesometrial decidua; PDZ, primary decidual zone.
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stored at −70°C for western blot, nitric oxide synthase (NOS) 
enzyme assay and RIA studies.

Enriched environment

Mice exposed to the EE were housed in bigger cages 
(64 × 42 × 20 cm) in groups of 10 animals. EE cages contained 
different objects (running wheel, tunnels, shelter, stairs and toys) 
of different materials, textures and colors that were replaced 
weekly (Sano et al. 2019, Schander et al. 2020, Goldstein et al. 
2021) (Fig. 1C). Once a week, the feeding boxes were moved 
to different cage points to encourage foraging and explorative 
behaviors. This protocol provides optimal conditions for further 
exploration, visual, cognitive, social interaction and voluntary 
exercise activity. Control conditions consisted of housing 
four females per standard laboratory cage (43 × 27 × 17 cm) 
containing bedding material and no objects (Fig. 1B).

Evaluation of the pregnancy rate

The pregnancy rate was quantified for d7, d15 and d19, as 
the number of pregnant mice on a specific day of gestation 
compared to the total number of females that presented a 
vaginal plug, expressed as percentage.

Macroscopical analysis of the implantation sites

Uterine horns were examined macroscopically. The number 
of implantation sites on d7 and d15 was recorded. The color, 
shape, size, wet weight and distribution of the implantation 
sites along the uterine horns were also assessed.

Uterine macrovasculature analysis

After euthanasia of d7 mice, uterine arteries were clamped, 
and the uterine horns with the associated vasculature were 
extracted and photographed. The number of vessels irrigating 
the implantation units was counted. Uterine artery diameter 
was analyzed using Image-Pro Plus version 4.5.0.29 (Scion 
Corporation, Media Cybernetics, Rockville, MD, USA), 
considering the cross-sectional length of the uterine artery in 
the image as the diameter of the vessel.

Histological structure analysis

Whole implantation sites were fixed in Bouin solution (Biopur, 
Buenos Aires, Argentina) overnight at room temperature, 
dehydrated in 70–100% ethyl alcohol gradient and embedded 
in paraffin. Tissues were oriented to be sectioned transversely 
using a microtome (Leica RM 2125). Sections of 5 µm were 
mounted on 2% xylan-coated slides and stained with H&E 
for 15 s. Slices were observed under a light microscope at 
40×, 100× and 400× (Nikon Eclipse 200). The general tissue 
structure and cellular morphology were analyzed.

Microvasculature analysis

The microvasculature of d7 implantation sites was analyzed as 
previously described (Sordelli et al. 2017). One implantation 

site per animal was selected, and 10 fields per site were 
randomly photographed (400×). The number of intact vessels 
with defined boundaries was counted in the mesometrial 
decidua. The circumference, the vessel area and the lumen area 
were determined using the Image-Pro Plus version 4.5.0.29 
(Scion Corporation). The wall area (vessel area – lumen area) 
and wall:lumen ratio (wall area/lumen area) were calculated.

Western blot

Protein levels of cyclooxygenase (COX) 1 and 2, inducible 
nitric oxide synthase (iNOS), endoglin, vascular endothelial 
growth factor (VEGF) and von Willebrand factor were analyzed.

One whole implantation site per animal was thawed, 
homogenized in lysis buffer (Tris buffer 50 mM pH 7.4, sodium 
deoxycholate 0.25% (v/v), NaCl 150 mM and proteinase 
cocktail inhibitors), sonicated for 10 s and centrifuged at 9000 g  
for 10 min at 4°C. Supernatants were isolated, and total 
proteins were quantified by the Bradford method.

Then, 75 μg of protein were loaded in each lane, separated 
in 7% (w/v) SDS-PAGE (100 V for 90 min at room temperature) 
and transferred to a nitrocellulose membrane (100 V for 90 
min at 4°C). Membranes were blocked using dried skim 
milk 5% (w/v) in PBS and incubated overnight at 4°C with 
primary antibodies. These antibodies were used as follows: 
anti-COX1 (1:200) (Cayman Chemical Company, catalog 
#160109), anti-COX2 (1:200) (Cayman Chemical Company, 
catalog #160126), anti-iNOS (1:200) (Cayman, Chemical 
Company, catalog #160862), anti-endoglin (1:200) (Santa 
Cruz Biotechnologies), anti-VEGF (1:200) (Abcam, catalog 
ab46154), anti-von Willebrand factor (1:200) (Dako, A0082) 
and anti-β-actin (1:3000) (Sigma Chemical). Nitrocellulose 
membranes were then incubated with goat anti-rabbit HRP-
conjugated antibody (1:3000, Sigma Chemical) for 1 h at 
room temperature. Membranes were washed three times after 
each incubation with PBS containing 0.1% (v/v) Tween-20 to 
remove non-specifically bound antibodies. Protein bands were 
detected using an enhanced chemiluminescence western blot 
system. Images were obtained using GeneGnome XRQ NM 
(Syngene) and analyzed using the ImageJ software package 
(free access). Results were expressed as the relative optical 
density to β-actin.

NOS enzyme assay

One whole implantation site per animal was used, and NOS 
activity was quantified by the modified method of Bredt 
& Snyder as previously described (Sordelli et  al. 2012). 
One whole implantation site per animal was weighed and 
homogenized in HEPES buffer (20 mM HEPES, 0.45 mM 
CaCl2, 2.5 mM DTT and 25 mM l-valine). Homogenates were 
incubated at 37°C for 15 min with [14C]-l-arginine and 0.5 mM  
NADPH. Samples were centrifuged for 15 min at 12,000 g 
and the supernatants were applied to a DOWEX AG50W-X8 
column. [14C]-l-citrulline was eluted in distilled water, and the 
radioactivity was measured using liquid scintillation counting. 
Enzyme activity was expressed as fmol [14C]-l-citrulline/mg 
wet weight/15 min.

Downloaded from Bioscientifica.com at 09/12/2023 01:10:39PM
via free access

https://rep.bioscientifica.com


 https://rep.bioscientifica.com

F L de la Cruz Borthiry and others88

Reproduction (2022) 163 85–94 

Radioimmunoassay

Two implantation sites per animal were used, and prostaglandin 
(PG) E2 and F2a production were measured by RIA. Implantation 
sites were thawed, weighed and incubated in Krebs–Ringer 
bicarbonate buffer for 1 h at 37°C in a 5% CO2 atmosphere. 
Tissues were discarded and the medium was acidified with  
1 N HCl. Afterward, 2 mL of ethyl acetate was added and the 
organic phase was collected. The extraction was repeated 
two more times. The organic solvent was evaporated in a 
vacuum stove. PGF2a and PGE2 antiserum were highly specific 
for PGF2a and PGE2 respectively and showed low cross-
reactivity with related compounds. Sensitivity was 5–10 pg 
per tube and Ka = 1.5 × 1010L/mol. Values were expressed as  
pg PG/mg wet weight.

Statistical analysis

Statistical analysis was performed using the InfoStat software 
(Faculdad de Ciencias Agropecuarias, University of Cordoba, 
Argentina). The approximate sample size was calculated a 
priori for all determinations using this software. Pregnant mice 
were considered the experimental unit. No pregnant mice 
were excluded from the analysis.

Comparisons between groups were performed using  
one-way ANOVA followed by Tukey’s multiple comparisons 
test. Normality and homoscedasticity were tested by 
Shapiro–Wilk and Levene tests respectively. Statistical 
analysis was performed using a randomized block design  
when necessary.

The pregnancy rate was analyzed by an arrangement of the 
data in T contingency tables. The chi-square test was used to 
analyze the hypothesis of independence between the housing 
condition and pregnancy rate.

Results were expressed as mean ± s.e.m. Differences were 
considered significant when the P -value was 0.05 or less.

Results

EE regulates the pregnancy rate between d7 and d15

Control mice on d19 and d15 presented a reduced 
pregnancy rate compared to d7 control females 
(Table 1). Interestingly, the pregnancy rate of EE mice 
on d19, d15 and d7 was similar. No differences 
were detected between the groups on d7. However, 
d15 EE mice showed a higher pregnancy rate than 
d15 control mice. These results indicate that EE 
exposure prevents pregnancy loss between d7  
and d15.

Regarding the number of implantation sites, no 
differences were found between the groups and between 
the days of gestation (10 ± 4 on d7 and 8 ± 2 on d15 of 
gestation, for both groups).

Based on these results, we investigated whether the 
maintenance in pregnancy rate due to EE exposure is 
modulated by an effect on early pregnancy-related 
processes on d7.

Control and EE implantation sites present similar 
appearance and architecture

First, the implantation sites were analyzed 
macroscopically. D7 pregnant mice from both housing 
conditions (Fig. 1B and C) presented well-developed 
implantation sites spaced evenly along the uterine horns 
(Fig. 1D). No differences in the size, color, shape and 
wet weight (26.22 ± 0.59 vs 27.35 ± 1.49 mg, n  =10 
P  = 0.5) of the implantation sites were detected between 
the control and EE mice (Fig. 1E).

Then, we evaluated the histological structure of the 
implantation sites on d7. Control and EE implantation 
sites exhibited a highly conserved architecture and no 
differences were found between the groups (Fig. 1F 
and G). Mesometrial and antimesometrial decidua, 
the uterine lumen containing the embryo and the 
longitudinal and circular smooth muscle layers were 
observed. The ectoplacental cone and the decidual 
crypt were also detected (Fig. 1H and I). Mesometrial 
decidual cells presented small nuclei, scarce cytoplasm 
and vacuoles. The glycogenic decidua exhibited cells 
with multiple vacuoles. Antimesometrial decidual cells 
showed bigger nuclei with abundant cytoplasm, and 
binucleated cells were also observed.

EE favors vascular remodeling in early pregnancy

The uterine macrovasculature was analyzed (Fig. 2A). 
EE mice presented an increase in the diameter of  
the uterine artery compared to control (P  = 0.0002)  
(Fig. 2B). No differences in the number of vessels 
irrigating each implantation site were found between 
the groups (Fig. 2C).

When the microvasculature of the mesometrial 
decidua was analyzed (Fig. 3A), we observed that the 
number of vessels per field and their circumferences 
were similar between the control and EE females (Fig. 3B 
and C). To evaluate vessel remodeling, the wall:lumen 
ratio was quantified. A lower ratio was detected in mice 
exposed to EE compared to control (P  = 0.003) (Fig. 3D). 
As we observed an uneven distribution of the data, we 
discriminated the analysis between vessels with low 
(<2) and high (>2) wall:lumen ratios. Those vessels 
with a high ratio corresponded to thick-wall vessels 

Table 1 Effect of EE on the pregnancy rate.

Group
Pregnancy rate on

d7 d15 d19
C 70% (14/20) 45% *(9/20) 45% *(9/20)
EE 75% (15/20) 85% +(17/20) 85% # (17/20)

Percentage of pregnancy rate of C and EE mice on days 7, 15 and 19 
of gestation (P  = 0.03); Chi-square test (n = 20 animals per group).
*Statistically significant differences compared to control d7; 
+Statistically significant differences compared to control d15; 
#Statistically significant differences compared to control d19.
C, control; EE, enriched environment; d7, day 7 of gestation; d15, 
day 15 of gestation; d19, day 19 of gestation.
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suggesting that they had not been remodeled. There 
was no difference between control and EE in this data 
set (Fig. 3E). Interestingly, EE mice presented decreased 
wall:lumen ratio in thin-wall vessels (<2) compared to 
control (P  = 0.001) (Fig. 3F).

EE modulates vascular mediators

Vascular remodeling at the maternal–fetal interface is a 
process regulated by multiple mediators. Among these 
molecules, nitric oxide is a known vasodilator that  
mediates uterine angiogenesis. In the present work, 
we observed that d7 pregnant mice exposed to the EE 
presented higher NOS activity (P  = 0.04) and iNOS protein 
levels compared to control (P  = 0.02) (Fig. 4A and D).

PGs produced by COX are lipid hormones which 
regulate uterine contractions, decidualization and 
angiogenesis during early gestation. Control and 
EE mice presented similar levels of PGE2 (Fig. 4B). 
Nonetheless, EE mice showed higher levels of PGF2a 
compared to control (P  = 0.01) (Fig. 4C). When COX1 
and COX2 isoforms protein expression were analyzed, 
no differences were found between the experimental 
groups (Fig. 4E and F).

Finally, we investigated the expression of endoglin, 
VEGFA and von Willebrand factor, which are well-
described mediators of vascular processes. We 
observed that EE mice presented higher protein levels 
of endoglin (P  = 0.01) (Fig. 4G). No differences were 
detected when VEGFA and von Willebrand factor 
were studied (Fig. 4H and I).

Figure 2 Effect of the EE on macrovascular remodeling in pregnant 
mice on d7. (A) Representative images of the main vessels supplying 
the uterine horns from control and EE mice. (B) Vessel diameter of the 
uterine artery on d7 (P  = 0.0002). (C) Number of vessels irrigating 
each implantation site (P  = 0.9). Results are expressed as means ± 
s.e.m. One-way ANOVA, Tukey’s test (n = 4 animals per group), 
*Significant statistical differences. C, control; d7, day 7 of gestation; 
EE, enriched environment.

Figure 3 Effect of the enriched environment on 
microvasculature in pregnant mice on d7.  
(A) Representative images of mesometrial 
microvessels. Arrows indicate vessels that met 
the criteria. (B) Number of microvessels per 
field (P  = 0.5). (C) Circumference of 
microvessels (P  = 0.5). (D) Wall:lumen ratio of 
all microvessels (P  = 0.003). (E) Wall:lumen 
ratio and a representative image of vessels 
with high ratio (P  = 0.8). (F) Wall:lumen ratio 
and a representative image of vessels with low 
ratio (P  = 0.001). Results are expressed as 
means ± s.e.m. One-way ANOVA, Tukey’s test, 
(n = 4 animals per group), *Significant 
statistical differences.
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Discussion

In the present work, we demonstrate that periconceptional 
exposure of females to the EE prevents embryo loss 
and promotes the vascular remodeling that takes place 
during early gestation.

Inadequate decidual angiogenesis contributes to 
early pregnancy loss (Plaisier et al. 2009, Quenby et al. 
2009, Windsperger et al. 2017) and the development of 
obstetric pathologies at mid- and late gestation (Brosens 
et al. 2019a,b). Furthermore, it has been reported that 
insufficient decidual vascular development leads to 
embryo resorption and pregnancy loss by mid-gestation 
in mice (Douglas et al. 2009, Khankin et al. 2012, Kim 
et  al. 2013). In recent years, the appearance of these 
obstetric pathologies has been associated with maternal 
lifestyle (Dunkel Schetter & Tanner 2012, Zhang et al. 

2016, Sominsky et  al. 2017). Indeed, maternal stress 
affects placental angiogenesis (Ozmen et al. 2017) and 
is a factor that might influence the performance of in 
vitro fertilization protocols (Massey et al. 2016). On the 
contrary, physical activity and relaxation techniques 
appear to have beneficial effects on the physical and 
emotional health during gestation and potentially 
improve pregnancy outcomes (Hinman et  al. 2015, 
Matvienko-Sikar et al. 2016). In animal models, it has 
been observed that mice subjected to stress show fewer 
implantation sites (Burkuš et al. 2015). Interestingly, we 
previously reported that the exposure of pregnant females 
to the EE decreases the percentage of preterm delivery 
and perinatal death of the offspring in a mice model of 
inflammation (Schander et  al. 2020). Moreover, pups 
born from EE mothers are healthy and present a normal 
development during lactation (Schander et  al. 2021).  

Figure 4 Effect of the EE on vascular mediators. 
(A) NOS activity was determined by the 
modified method of Bredt & Snyder 
(P  = 0.009, n  = 5 per group). (B and C) PGE2 
(P  = 0.2, n  = 6 per group) and PGF2a (P  = 0.01, 
n  = 5 per group) levels were determined by 
RIA (D) iNOS (P  = 0.01, n  = 6 C and 5 EE), (E) 
COX1 (P  = 0.6, n  = 7), (F) COX2 (P  = 0.7, n  = 
7), (G) endoglin (P  = 0.01, n  = 5), (H) VEGFA 
(P  = 0.2, n  = 7), (I) von Willebrand factor 
(P  = 0.4, n  = 5) protein levels were determined 
by western blot. Representative cropped blots 
are shown. Results are expressed as means ± 
s.e.m. One-way ANOVA, Tukey’s test. 
*Significant statistical differences. C, control; 
EE, enhanced environment; iNOS, inducible 
nitric oxide synthase; NOS, nitric oxide 
synthase; PG, prostaglandin; VEGF, vascular 
endothelial growth factor.
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In this work, we showed that the pregnancy rate of 
control mice dropped between d7 and 15 of gestation, 
indicating that there is postimplantation embryo loss 
that occurs under control conditions. Exposure of 
pregnant mice to the EE maintains gestation, and this is 
evidenced by the finding that the pregnancy rate of EE 
mice remained the same. EE exposure also modulates 
vascular remodeling on d7, and these vascular 
adaptations could be involved in its protective effect. 
Our results, together with the data published by other 
authors, support the hypothesis that maternal lifestyle 
influences the quality and the progress of gestation and 
the well-being of the offspring.

The uterine artery is the main vessel that supplies 
blood to the uterine horns and branches to the spiral 
arteries that irrigate the endometrium. Pregnant females 
exposed to the EE showed an increase in the diameter 
of the uterine artery, suggesting an increase in blood 
flow to the implantation sites. The loss of smooth muscle 
layers during maternal vessel remodeling transforms 
the vascular walls allowing the increase in blood flow 
that occurs in response to the metabolic demands 
of the growing embryo and the placenta. In healthy 
pregnancies, this process proceeds without an excessive 
increase in the shear stress and the production of 
reactive oxygen species and pro-inflammatory cytokines 
(Cartwright et al. 2010, Mannaerts et al. 2018). In this 
sense, the microvessels of EE females have a lower 
wall:lumen ratio, suggesting that the exposure to the EE 
promotes vessel remodeling of the implantation sites. 
We hypothesize that the decrease in the wall:lumen ratio 
induced by the EE might be necessary to prevent embryo 
loss, as the number of vessels irrigating the implantation 
sites and their circumferences did not differ between 
treatments. Therefore, the EE might modulate maternal 
physiology protecting the implantation site from 
potential detrimental effects triggered by an increase in 
blood flow, which finally would lead to pregnancy loss.

The architecture of d7 implantation sites remains 
conserved between the control and EE females. 
This result suggests that the EE conditioned vascular 
remodeling without affecting other processes related to 
the structure of the implantation site.

We observed that the changes in the micro- and 
macrovasculature induced by EE are paralleled by the 
modulation of molecules involved in vascular processes.

Nitric oxide is a potent mediator of angiogenesis 
during gestation (Krause et al. 2011). The regulation of 
nitric oxide tone at embryo implantation sites is crucial 
to maintain early pregnancy (Ota et  al. 1999, Purcell 
1999, Novaro et al. 2001). We had previously reported 
that NOS activity is higher at rat implantation sites than 
at intersites, and it is differentially regulated by the 
blastocyst (Sordelli et al. 2011). We recently described 
that exposure to the EE augments NOS activity at mid-
gestation in the mice uterus (Schander et  al. 2020). 
Additionally, we reported that iNOS isoform is involved 

in the increase of interleukin-10, a vascular marker, in 
the rat uterus (Beltrame et  al. 2013) and participates 
in the acquisition of the endovascular phenotype by 
the first-trimester trophoblast (Beltrame et  al. 2018). 
Interestingly, iNOS is the main isoform of NOS 
expressed in the uterine endometrium in early gestation 
(Ali 1997). In the present work, EE females showed an 
increase in iNOS expression compared to control mice. 
This result suggests that the EE induces an increase in 
NOS activity at the implantation sites by an increase in 
iNOS expression, which in turn would promote vessel 
remodeling.

PGs play an essential role at the site of implantation. 
Different authors have proposed that whereas 
PGE2 contributes to maternal decidualization and 
angiogenesis, PGF2a regulates uterine contractions 
(Hamilton & Kennedy 1994, Stocco & Deis 1998, 
Callegari et al. 2005). Recently, a novel role has been 
described for PGF2a as a regulator of the vascular 
processes at the endometrium (Kaczynski et  al. 2016, 
2020, Baryla et al. 2019). Therefore, we propose that the 
increase in PGF2a favors the macro- and microvascular 
changes described in EE females. Although PGE2 is 
associated with vascular physiology, high levels of PGE2 
are related to inflammation. It is then possible that the 
EE exerts a protective effect by preventing an increase 
in PGE2 at the implantation site. A potential mechanism 
that might explain the increase in PGF2a is the conversion 
of PGE2 to PGF2a by the PGE2-9-ketoreductase enzyme. 
However, more studies are needed to confirm this 
conjecture.

Within the wide range of mediators involved in the 
vascular process of early pregnancy, different authors 
have shown the importance of endoglin, von Willebrand 
factor and VEGF. Endoglin is expressed in the apical face 
of the luminal epithelium of the endometrium and the 
primary and secondary decidua in mice (Chadchan 
et  al. 2016, Yuan et  al. 2019). It has been shown that 
endoglin participates in the adhesion of the blastocyst 
to the uterus and modulates uterine receptivity during 
the window of implantation. Also, endoglin regulates 
angiogenesis through different signaling pathways 
(Lebrin et  al. 2004, Mano et  al. 2011, Kapur et  al. 
2013). In the present work, we observed an increase in 
endoglin expression at the implantation sites of females 
exposed to the EE. This increase might be related to the 
reception of signals released by the embryo (Chadchan 
et al. 2016, Yuan et al. 2019), which stimulate vascular 
remodeling of the maternal–fetal interface. On the other 
hand, the EE action on vascular remodeling seems not 
to be mediated by VEGFA or von Willebrand factor as 
we did not observe any differences between control and 
EE mice. Although EE has proven to have positive effects 
on the vascular adaptations in the brain after ischemia 
through changes in VEGF (Zhang et  al. 2017, Zhan 
et al. 2020), we did not observe the regulation of this 
molecule at the maternal–fetal interface. However, we 
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could not rule out the involvement of other members of 
the VEGF family, such as VEGF receptors among others.

Neurotrophins are expressed in the placenta 
and stimulate trophoblast cell growth and survival 
(Kawamura et  al. 2009), playing an important role 
during pregnancy and placental angiogenesis (Sahay 
et  al. 2017). Also, neurotrophins induce nitric oxide 
production in endothelial cells (Meuchel et  al. 2011, 
Marie et al. 2018) and cooperate with the TGF-β pathway 
to protect vessels and injured tissues (Schlecht et  al. 
2021). Besides, it has been reported that EE exposure 
modulates neurotrophins levels, like brain-derived 
neurotrophic factor, in the CNS and immune system 
(Cao et  al. 2010, Mansour et  al. 2021). Therefore, we 
postulate that one of the mechanisms modulated by EE 
exposure might be neurotrophin levels in the uterus and 
its triggered pathways stimulating vascular remodeling 
during early gestation. Nevertheless, more studies are 
required to elucidate the mechanisms underlying EE 
positive effects during gestation.

In conclusion, we observed that the exposure of 
pregnant females to the EE regulates the physiology 
of the uterus, preventing embryo loss and promoting 
the vascular remodeling that takes place during early 
gestation. Our findings support the notion that the 
well-being of mothers improves early pregnancy by 
mechanisms associated with the remodeling of the 
uterine vasculature. Even taking into account the 
limitations of animal models, the positive effects of 
non-pharmacological interventions in humans support 
the idea that an ‘EE-like’ protocol could be designed 
for women seeking pregnancy. This protocol would 
include relaxing, exercise and anti-stress therapies. This 
treatment might be advantageous for fertile women, but 
especially for those women who have to overcome a 
fertility treatment. The non-invasive nature of maternal 
environmental enrichment makes this tool particularly 
interesting when considering new strategies to prevent 
implantation failure and recurrent miscarriage.
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